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Abstract. This paper presents a formal approach to the evolution of a representation for
usein adesign process. The approach adopted is based on concepts associated with genetic
engineering. An initial set of genes representing elementary building blocks is evolved
into a set of complex genes representing targeted building blocks. These targeted build-
ing blocks have been evolved because they are more likely to produce designs which ex-
hibit desired characteristics than the commencing elementary building blocks. The tar-
geted building blocks can then be used in a design process. The paper presents a formal
evolutionary model of design representationsbased on genetic algorithms and uses pattern
recognition techniquesto execute aspects of the genetic engineering. The paper describes
how the state space of possible designs changes over time and illustrates the model with
an example from the domain of two-dimensional layouts. It concludes with a discussion
of stylein design.

1. Introduction

Thereisan increasing understanding of therolethat adesign language and itsrep-
resentation play in the efficiency and efficacy of any design process which uses
that language (Coyne et al., 1990; Gero et al., 1994). A recurring issue is what
is the appropriate granularity of a language. If building blocks which constitute
the elements of a design map onto a design language then the question becomes
what isan appropriate scal e for those building blocks in terms of the final design.
At one extreme we have parameterised representations where the structure of a
design is fixed, all the variables which go to define a design are predefined and
what is|eft isto determine the values of those variables. This defines avery small
design space, small in terms of all the possible designs which might be able to be
produced for that design situation. At the other extreme we have elementary build-
ing blockswhich can be combined in avery large variety of ways and which, asa
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Figurel. S. isthedesign spaceproduced by all the possible combinations of the elementary build-
ingblocks, .S, isthedesign space produced by all the combinationsof theval uesof the parameterised
variables, S; isthe design space of interesting designs for the design situation.

consequence defineavery large design space, the vast part of which coversdesigns
which are likely to be uninteresting in terms of the current design situation. The
designs produced by the parameterised design representations are a subset of those
capable of being produced by the elementary building block representation, Fig-
ure 1. Examples of building block representations include constructive systems
such as design grammars as exemplified by shape grammars (Stiny, 1980b). Ex-
amples of parameterised variable representationsinclude awide variety of design
optimization formulations (Gero, 1985).

The advantage of the use of the elementary building blocks representation is
the coverage of the entire design space they provide, whereas the advantage of the
parameterised variable representation is the efficiency with which a solution can
be reached.

We present here aformal approach which generates a targeted representation
of adesign problem. A targeted representation is the one which closely mapson to
the problem at hand. As an example consider a layout planning problem in archi-
tectural design. One representation may be at the material molecular level, where
mol ecules can be combined to make avariety of materialsand particular combina-
tionsin space produce physical objects; here the potential solution space includes
designs which bear no relations to architecture. A targeted representations may be
to represent rooms such that the potential solution space primarily includesdesigns
which are all recognizably architectural layouts.

In order to simplify our analysiswe consider designswhich areassembled from
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Figure2. The set of building blocksfor Froebel’s kindergarten gifts (Stiny, 1980b).

somefinite collection of spatial elements (wecall them building blocks or compon-
ents) along with assembly rules. It is assumed that the assembly rules do not affect
the components - the design object is a union of non-overlapping building blocks.
We start with some set of building blockswhich we call elementary components. It
is assumed that they cannot be decomposed into any smaller ones. We call a set of
building components and assembly rules a representation of the design problem
and the set of elementary components and corresponding rulesthe basic represent-
ation. We call it arepresentation because it implicitly definesthe set of al designs
(design state space) which can be produced using this set of building blocks and
assembly rules.

The kindergarten gifts of Froebel (Stiny, 1980b) is atypical example of such
types of design problem. One of many possible elementary representationsand as-
sembly rulesfor it isshownin Figures 2 and 3. One can easily extend it by adding
further elementary building blocks and/or further assembly rules.

Targeted representations

A great variety of designs can be produced within a basic representation. Usually
thedesigner isinterestedin some particul ar class of designs. Assumewe havesome
additional set of composite building blocksand an additional set of assembly rules
to handle them. We can calculate the number of these composite building blocks
which can befoundin al possibledesignsin that particular class and the number of
elementary building blocksused to build therest of these designs (each elementary
building block should be counted only once as a member of composite building
or elementary building block, the largest composite blocks are counted first and
the elementary blocks are counted last). Then we can calculate the frequency of
usage of these composite building blocks and elementary building blocks in the
entire design space. The same values can be calculated for al designswhich have
the property or propertieswe are interested in. If the frequency of the usage of the
composite building blocks is much higher for the designs of interest than for all
designs built from the elementary building block and the frequency of elementary
components usage is much lower than that of the composite building blocks for
the design space of interest then we can use the composite building blocksinstead



4 John S. Gero AND Vladimir A. Kazakov

=2 = ol

= L
Figure3. The set of six assembly rules for Froebel’s kindergarten gifts.

of elementary one to produce designs of interest with much higher probability. In
other words arepresentation existswhich mapsinto the areaof interest of theentire
design space. Let us call it the targeted representation for the particular class of
designs. Obvioudly different targeted representations can be produced which cor-
respond to different sets of composite building blocks. We characterize these rep-
resentations by their “complexity” which is defined recursively as: 0-complexity
for the basic representation, 1-complexity for the representation whose building
blocks are assembled from elementary building blocks, 2-complexity for the rep-
resentation whose building blocks are assembled from the building blocks of O-
complexity and 1-complexity, etc. Assume an evol ution occursin an abstract space
of complex representations: initially only elementary building blocks exist then
acycle proceeds when a new set of composite building blocks is produced from
the oneswhich are currently available. Then arepresentation of i-complexity (and
building blocks of i-complexity) simply means that composite building blocks of
this representation have been produced during i-th step of this evolution.
Different composite building blocks of the same i-complexity may contain dif-
ferent numbers of elementary building blocks: for example, assume some build-
ing block of 3-complexity contains 3 elementary building blocks and one of the
composite building blocks of 4-complexity isassembled from 2 building blocks of
3-complexity and thus contains 6 elementary components and another one is as-
sembled from one block of 3-complexity and one block of 0-complexity and thus
contains 4 elementary components. It is also clear that because there are different
ways to assembl e the same composite building block it may be produced multiple



Evolving Building Blocks for Design Using Genetic Engineering 5

(@
(b) (0

Figure4. The set of composite building blocks of different complexity for building astaircase; (a)
1-complexity, (b) and (c) 2-complexity.

times in representations of different complexity level during the evolution.

The search for areasonably good design using the basic representationis very
difficult because significant part of the search effort iswasted in the search of un-
useful parts of the design space. If thetargeted representationis used instead of ele-
mentary onethe probability of producing designs of interest becomesmuch higher,
the design space becomes smaller and the design problem less complicated and
easier to deal with. The approach presented in this article automatically generates
the hierarchy of more and more complex building blocks (in general); ones which
are more and more close to the targeted representations which are capable of pro-
ducing better and better designs.

Assume we work with the representation of the kindergarten blocks shown in
Figures 2 and 3 and are trying to design a two-level building with walking ac-
cess from one floor to the next. The search for a design with this property is quite
difficult because only a very small fraction of al feasible objects exhibits it and
the probability of discovering the combination of building blocks which makes a
staircase during the search is low. However, if we add a composite object of 1-
complexity (Figure 4) and corresponding assembly rules Figure 5 to the repres-
entationweincreasethisprobability, and if we add acomposite building block with
2-complexity (Figure 4) then this probability increases further.

Genetic engineering

Genetic engineering, as used in this paper, is derived from genetic engineering no-
tionsrelated to human intervention in the genetics of natural organisms. Inthe ge-
netics of natural organisms we distinguish three classes: the genes which go to
make the genotype, the phenotype which is the organic expression of genotype,
and the fitness of the phenotype in its environment. When there isa unique identi-
fiable fitness which is performing particularly well or particularly badly amongst
all the fitness of interest we can hypothesize that there is a unique cause for it and
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Figure5. The set of additional assembly rules for handling composite building blocks.

that this unique cause can be directly related to the organism’'s genes which ap-
pear in a structured form in its genotype. Genetic engineering in concerned with
locating those genes which produce the fitness under consideration and in modify-
ing those genesin some appropriate manner. Thisis normally donein a stochastic
process where we concentrate on populations rather than on individuals.

Organisms which perform well (or badly) in the fitness of interest are segreg-
ated from these organisms which do not exhibit that fitness or do so only inamin-
imal sense. This bifurcates the population into two groups. The genotypes of the
former organisms are analysed to determine whether they exhibit common char-
acteristics which are not exhibited by the organismsin the latter group (Figure 6).
If they are digunctive, these genes are isolated on the basis that they are respons-
ible for the performance of the fitness of interest. In natural genetic engineering
these isolated genes are either the putative cause of positive or negative fitness. If
negative then they are substituted for by “good” genes which do not generate the
negativefitness. If they are associated with positivefitnessthey are reused in other
organisms. It is thislater purpose which maps on to our area of interest.

One can interpret the problem of finding the targeted set of building blocks
as an analog of the genetic engineering problem: finding the particular combin-
ations of genes (representing elementary building blocks) in genotypeswhich are
responsible for the properties of interest of the designs and regular usage of these
gene clusters to produce designs with desired features.
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Figure6. The genotypes of the “good” members of population all exhibit gene combinations, X,
which are not exhibited by the genotypes of the “bad” members. These gene combinations are the
ones of interest in genetic engineering.

2. Building blocks

Thus, weestablish that different building blocks definedifferent design state spaces
(which are, in their turn, the subsets of the entire basic design space). More form-
ally we assume that for the design space of interest a set of composite building
blocks exists which is sufficient to build any design of interest from it (or which
are sufficient to build a significant part of any of these designs of interest).

We search for these building blocks using the consequence of the assumption
madein theintroduction about frequenciesof composite componentsusage: on av-
erage the sampling set of designswith the desired characteristics (the* good” ones)
contains more of such composite building blocks than the sampling set of designs
that do not have these characteristics (the “bad” ones). In some casesitiseven true
in adeterministic sense - that only the designs which can be built completely from
some set of composite building blocks possess the objective characteristics, al the
rest of the entire basi ¢ state space does not have them. One can easily come up with
corresponding exampl es.

Inthe next sectionwe describe an evol utionary a gorithm which generates” good”
and “bad” sampling sets using the current set of building block (set of elementary
block at the beginning) and use genetic engineering concepts to determine new
composite blocks which are closer to the “targeted” ones than the current set of
building blocks. These two steps proceed in cycle while the “good” sampling set
converges to the sampling set from the desired design state space and the set of
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Figure7. Theassembly (transformation) rules used in the example.

complex building blocks comes closer and closer to the targeted set.

If the basic assumption about more frequent use of some composite building
blocksto generate the particular class of designsis not true for some problem then
the targeted representation for this problem does not exist and the algorithm which
is proposed below will not generate an improved representation but will be equi-
valent to the agorithm for solving the routine design problem (Gero and Kazakov,
1995) and will simply generate the improved designs.

If the sequence of assembly actionsis coded as areal vector then the problem
of finding the complex building blocks becomes the problem of finding the key
patternsin the coding vector - the combinations of codeswithin it which are likely
to be associated with the property of interest in the designs. The vast arsena of
pattern recognition methods can be used to solve this problem. Essentially they are
just search methods for subsets in a coding sequence which on average are more
frequently observed in abjects with desired characteristics than in the rest of the
population.

Let usillustrate the execution of the cyclejust outlined using asimple 2-dimensional
graphical example. We will describeit in more detail later but for now onit is suf-
ficient to say that there is only one elementary block here - the square and that a
design is assembled from cubes using the 8 rules shown in Figure 7. Any design
can be coded asaseguence of theserules used to assembleit. Assumewearetrying
to produce a design which has the maximum number of holesin it and that each
design contains not more than 20 squares. We start the cycle by generating a set of
coding sequences and corresponding designs Figure 8. Then we natice that anum-
ber (4) of thedesigns havethe maximal number of holes(designs1, 2,4, and 7 - the
“good” sampling set) contain the composite building block A and that for three of
them their coding sequences contain the pattern {2, 8, 5}. We also notice that only
afew (none in this case) of the designs without holes (designs 3,5,8 and 10 - the
“bad” sampling set) contain thisblock and none contain this patternin their coding
seguence. Then we can generate the next population of coding sequencesusing the
identified sequence {2, 8, 5} asanew rulewhich uses the composite building block
A inthe design. Assuming that we employ some optimization method to generate
this new popul ation we can expect that the “ good” sampling set from the new pop-
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Figure8. Theidentification of the pattern {2, 8, 5} and corresponding composite building block A
in the genotypes of “good” designs.

ulation is better than the previous one (that is, the designs which belong to it have
on average more holesthan the onesfrom the previous* good” sampling set). Then
we again try to identify the patterns which are more likely to be found in designs
from this “good” sampling set than from the “bad” one. This time these patterns
may contain the previously identified patters as a component. Then we generate a
new population of designs using these additional pattern sequences of rules as an
additional assembly rule and so on.

The sizes of the sampling setsin redlistic systemsis likely to be much larger
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than the ones in this example and much more sophisticated techniques (Pearson
and Miller, 1992) should be employed to single out these key patterns.

3. Evolving building blocks

For amoreformal analysisof the evolution of the building blockswe use the shape
grammar formalism (Stiny, 1980a). It consists of an ordered set of initial shapes
and an ordered set of shape transformation rules which are applied recursively. A
particular design = within the given grammar is completely defined by a control
vector v which defines the initial shape and transformation rules applied at each
stage of recursive shape generation. According to the discussion in the Introduc-
tion we consider a particular class of shape grammar similar to the kindergarten
grammar (Stiny, 1980b), where any shapeis a non-overlapping union of building
blocks and feasible shape transformations are addition, replacement or deletion of
the building blocks.

Let B = {bg, by,...,b,} beaset of n currently available building blocks, and
R = {ro,r1,...,rn} beaset of m assembly rules applicable to these blocks.
Then the control vector v' = {b', i, 75,...,ry },b' € B, € R, j=1,..., N,
i =1,..., M definesthe population of M designsz(vi),i=1,..., M.
The length of the control vector {v'}, N; isavariable.

If we add new complex building block
bppr = a({o7FL, Pt rp L)) and new assembly rules
Tty -« - Tpntt fOrits handling then we get a new extended set of rules
R=RU;_ypm+1 {rmyj}, B=BU{byyi},n=n+1landm =m+ 1"t
Now we can produce the design = (v) which corresponds to the vector v whose
components belong to the extended B and R. Note that the additional building
blocks and assembly rules are generated recursively: they are completely defined
in terms of the previous R and B.

We assumethat the design problem has a quantifiable objective vector-function
Fy(z),k=1,...,pand can beformulated as optimization problem

F(z(v)) = F(v) — max (1)

The problem (1) over the representation with afixed set of building compon-
ents and assemble rules can be solved using any of optimization methods (Gero
and Kazakov, 1995) but the stochastic algorithms like genetic algorithms (Hol-
land, 1975) and simulated annealing (Kirkpatrick et al., 1983) look most prom-
ising at the moment. We have chosen the genetic algorithm.

The evolutionary method has the following structure :

Algorithm
(0). Initialization. Set counter of iteration & = 0. Takethe set of elementary build-
ingblocks B = {by, . .., b, } and corresponding assembly rules R. Generate some
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random population of v*%, calculate z (v*°) and F(z (v*°)). Set therelativethresholds
for the design’sranking 0 < A, < A, < 1; they are used during an evolution
stage to divide the design into “good”, “bad” and “neutral” sampling sets, that is,
the parts of population which exhibit (4,) best, (4;) worse and intermediate rel-
ativefitnesslevel.

(2) Evolution of complex building blocks. For every component of the objective
function F}, divide the population into 3 groups :

“ good" ( F} (ac) > maX;=1,M Fy, (xz) — Ag* (maxz-zl,M Fy, (a:z) —minizLM Fk(xz)) s
“bad” ( Fk (.L) < minizl,M Fk (L2)+ Ab * (maxz-zl,M Fk (Lz) - minizl,M Fk ('Lz)) y
and “neutral” (the rest of population). o .

Determine J combinations by,1.; = «({b/, v}, r{,...,m;}),j = 1,...,J of the
current building blocks which distinguish the “good” sampling set from the “ bad”
one statistically significantly using any one of the pattern recognition algorithms.
Add it to the current set of building blocks B = B U;=1,7 {b,,+;}. Add corres-
ponding new assembly rulesto R.

(2) Generation of new population. Compute new population using availablein-
formation about current population v**+! = G/((v**, x(v**), F(2(v"F)). Thecom-
ponents of v***! belong to the new extended B and R. The G depends on the op-
timization method employed. If the genetic algorithm has been chosen then vi-*+1
isto be calculated using standard crossover and mutation operations. Because the
updated grammar includes the grammar from the previous generation the search
method guarantees that the new population is better than the previousone (at |east
no worse) and the new “good” sampling set is closer to sampling set of the design
state space of interest.

(3) Repeat steps (1) and (2) until the stop conditions are met.

The stop conditions usually are the termination or slowing down of the im-
provement in ' and/or the end of new building blocks generation.

4. Example

Evolving thetargeted representation

As an example we take the problem of the generation of a 2-dimensional block
designon auniform planar grid (derived from (Gero and Kazakov, 1995)). Thereis
just one elementary component here - asquare and the eight assembly rules (trans-
formation rules in terms of a shape grammar) which are shown in Figure 7. If the
position where the current assembly rule tries to place the next square is already
taken then all the squares aong this direction are shifted to allow the placement of
new sguare. Itisassumed that the transformationrul e at the:-th assembling stageis
applied to the elementary block added during the (i — 1)-th stage. The characterist-
icsof interest are geometric properties of the generated design. In order to demon-
strate the idea, assume that the generated design can not consist of more than 32



12 John S. Gero AND Vladimir A. Kazakov

TOTAL FRACTION OF COMPLEX GENES

0.1 ! ! ! ! ! ! ! !
0 20 40 60 120 140 160 180

80 100
GENERATIONS

Figure9. The fraction of composite building blocks in the total pool of building blocks used to
assembl e the popul ation vs. generation number. The objectivefunction hastwo components: thearea
of closed holes and the number of connections between holes and the outside space. The initial set
of building blocks contains only elementary building blocks. Evolution proceeds until it naturally
dies off.

elementary components. We generate a new popul ation during the stage (2) of the
Algorithm using the modification of the simplegenetic algorithmtailored to handle
multidimensional objective functions (Gero and Kazakov, 1995). We implement
avery smple pattern recognition algorithm based on the statistical frequency ana-
lyses of double and triple element building blocks with a high cut-off threshold
for the acceptance of the patterns. For more complex systems more sophisticated
techniqueis needed.

During the first iteration we begin with the set of building blocks which con-
tainsonly the elementary onesand search for the designs with maximal area of en-
closed holes and maximal number of connections between the holes and outside
space. The evolution was allowed to proceed until a stable condition was reached.
Theresult are shownin Figures9 and 10. By plotting the fraction of the complex
building blocks in the total pool of building blocks used to assemble the popula-
tion at different generations Figure 9, one can see how complex building blocks
become dominant and how its fraction reaches a stable level after 110-120 itera-
tions. The fractions of building blocks of different complexity in the total pool at
different generation are shown in Figure 10. One can see that during the first 40
generations the total fraction of composite building blocks arises monotonically.
For thefirst 10 generationsthisriseis completely provided by theincreasing num-
ber of 1-complexity composite building blocks in the population. Then (from 15
to 30 generations) the fraction of 1-complexity blocks remains stable but the num-
ber of 2-complexity building blocksincreasesand providesthe continuing increase
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Figure10. The fraction of composite building blocks with different complexitiesin the total pool
of the building blocks used to assembl e the popul ation vs. generation number. This figure showsthe
building blocks of different complexities which are summed to produce the total fraction shownin
Figure 9.

in the total fraction of composite building blocks. From generations 40 to 70 this
total fraction is stable with approximately half of building blocks of 1-complexity
and half of 2, 3 and 4-complexities. Then the number of 1-complexity blocks and
total number of complex blocks declines sharply and from 70 until 110 generation
atransitional process occurswith acomplex redistribution of populations between
representations with different complexities. At the end of this period the building
blocksof 8-complexity saturate the popul ation when thefractions of the other com-
plex building blocks are shifted towards a noise level only. One of the evolution
paths in the space of complex building blocksis shownin Figure 11 (a). Some of
the designs produced are shown in Figure 11 (b). Here arrows show which pre-
viously evolved composite building blocks are used to assemble the new building
block. The 0-complexity block and its contributions are omitted. As we aready
noted composite blocks of the same complexity level sometimes have different
numbers of elementary components. Coincidently, the 5-complexity block is re-
produced again in the representations of 6-, 7- and 8- complexities and is one of
the dominant blocks at the end of the evolutionary process.

Using tar geted representation.

The set of targeted building blocks evolved during this processis then used as an
initial set of building blocks during the second experiment when we produce the
designs with maximal total area of holes inside and maximal number of connec-
tions between these holes inside the structure. Here the fitnesses are close to but
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Figure1l. (a) Anexample of the evolutionary pathsin the evolution of acomplex building block,
(b) some of the designs produced using the set of evolved complex blocks.
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Figure12. Thefraction of composite building block in the total pool of building block used to as-
sembl e the population vs. generation number . In this experiment the objective function is the num-
ber of closed holes and the number of connection between the closed holes inside the structure. The
initial set of building blocksis inherited from the first experiment and is the targeted representation.

not the same as those used to evolve the targeted representation. This experiment
isused to test whether the targeted representation islikely to be used morethan the
original, elementary building blocks. If the targeted representation is used rather
than the elementary building blocks then we have achieved our goal of evolving a
representation can be used to produce designs which exhibit desired characterist-
ics more readily. The results are shown in Figures 12 and 13. One can see that
thefraction of the composite building blocksused to produce these designsreaches
the saturation level during thefirst few iterations. The visible redistributions of the
population between the composite building blocks of 5, 6 and 7-complexities are
purely superficial - thisredistribution occurs between the same composite building
blocks which are present in all these representations. Evolution of the representa-
tion does not occur during this experiment - no new complex building block were
evolved. This can be interpreted as an indication of closeness of the targeted rep-
resentationsfor both problems. So if the targeted representation is evolved for one
set of objectivesthen it can be usefully applied to any of the abjective setswhich
are only dightly different to it.

Effects of incomplete evolution

In this experiment we repeat the first iteration but stop the evolution prematurely
after only 60 generations. After thiswerepeat the seconditeration using theevolved
incompl ete set of composite building blocks. The resultsare shownin Figures 14
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Figure13. The fraction of composite building blocks with different complexitiesin the total pool
of the building block used to assemble the population vs. generation number in the experiment.
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Figure14. Thefraction of composite building block in the total pool of building block used to as-
sembl ethe popul ation vs. generation number . In thisexperiment the obj ectivefunctionisthe number
of closed holes and the number of connections between the closed holesinside the structure. Theini-
tial set of building blocksisinherited from first iteration which has been prematurely terminated at
generation 60.

and 15. In this case the evolution of the representation continues for about a fur-
ther 10 generations and we end up with the same set of evolved composite building
blocks. The saturation of the population with the composite building blocksisalso
completed after these 10 generations. Thus, one can start to evolve a representa-
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Figure15. The fraction of composite building blocks with different complexitiesin the total pool
of the building block used to assemblethe population vs. generation number in the third experiment.

tion for one set of objectivesand then continue it for another closely related set of
objectives.

If we commence by treating the problem as one of finding improved designs
then from a computational viewpoint thisform of evolution speeds up the conver-
gence to improved designs by up to 15% (in terms of the number of generations
required) when compared with standard genetic algorithms. It appearsthat the use
of atargeted representation can lead to the production of designswhich arelocally
optimal.

However, if we usethe completion evol ution approach presented in the second
experiment we get further improvementsin performance. We will leaveto the Dis-
cussion section further discussion of the other advantages of the approach presen-
ted.

5. Discussion

The analysisjust presented can be easily extended to include general object gram-
mars of types different to the kindergarten grammar. The proposed approach can
be considered as an implementation of the simplest version of the genetic engin-
eering approach to the generic design problem. From the technical point of view
the algorithm presented is a mixture of a stochastic search method (which may be
a genetic algorithm) and a pattern recognition technique.

The genetic engineering approach can be applied in a similar fashion to the
problem of thegeneration of a“ suitable” shapegrammar (Gero and Kazakov, 1995)
where the complex building blocks correspond to the evolved grammar rules.
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Asaready mentioned in the analysis of the numerical experiment, the evolved
representationsare highly redundant - the same compositebuilding blocksareevolved
many times along the different branches of the evolutionary trees. Theredundancy
level of the current set of composite building blocks can be reduced in a humber
of different ways. The simplest is just to delete al the redundant copies from the
current set. In the general case, we have to find the minimal representation of the
subspace which can be generated using the current set of complex building blocks.

The introduction of ideas and methods from genetic engineering into design
systems based on genetic algorithms opens up a number of avenues for research
into both evol utionary-based desi gn synthesisand into modified genetic al gorithms.
In design systems based on such modified genetic algorithmsit is possible to con-
sider two directions.

Thefirstisto treat the sequence of the geneswhichresultsin certain behaviours
or fitness performancesasaform of ‘ emergence’, emergence of the schemarepres-
ented by that gene sequence. The use of the genetically engineered complex genes
changesthe properties over time of the state spaces which are being searched. This
allows us to consider the process as being related to design exploration modelled
in a closed world. The precise manner in which the probabilities associated with
states in the state space change is not yet known. Clearly, thisis aso a function
of whether a fixed length genotype encoding is used or not. If a variable length
genotype encoding is used with the genetically engineered complex genes then
the shape of the state space remains fixed but the probabilities associated with the
states within it change. If a fixed length genotype encoding is used with the ge-
netically engineered complex genes then the shape of the state space changesin
addition to the probabilities associated with states in the state space.

The second isto treat the genetically engineered complex genes as ameans of
developing a representation for potential designs. A fundamental part of design-
ing isthe determination of an appropriate representation of the componentswhich
are used in the structure (Gero, 1990) of the design. This is part of that aspect
of designing called ‘formulation’, ie the determination of the variables, their re-
lationships and the criteria by which resulting designs will be evaluated. In most
computer-aided design systemsthe components map directly on to variables. Fur-
ther, in such systemsthe variabl esare specified at the outset, as aconsequencethere
isan unspecified mapping between the sol utions capabl e of being produced and the
variables chosen to represent the ideas which are to be contained in the resulting
designs. Thegenetic engineering approach described providesameans of automat-
ing the representation part of the formulation process. The level of granularity is
determined by the stability condition of the evolutionary processor can be determ-
ined by the user. The targeted building blocks provide a high-level starting point
for al later designswhich areto exhibit therequired characteristicsasevidencedin
the earlier designs. It isthislatter requirement whichis met by thisformal method.

Thefollowing simple picture can be used to summarize the model describedin
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this paper. A group of children are playing with the “Lego” game using not more
than 50 squares. They join them together and want to build the object with the
largest number of closed spaces inside. After each child has built his or her ob-
ject the supervisor tries to find acombination of squares which is present in many
of the best designs but is present in none or only in afew of unsatisfactory designs.
Then he makesthis combination permanent by gluing its componentstogether and
adds a bunch of such permanent combinations to the pool of building elements
availableto the children. Then the children make another set of objects using these
new building blocks as well as an old ones. The supervisor tries to find another
“good” composite block and the processisrepeated. Thus, two steps occur in each
cycle: first children make aset of new designsfrom currently available blocks and
combination of blocks and second the supervisor tries to single out the additional
combination of blocksthat should be employed. If there are no such combinations
which distinguish “good” design from the “bad” ones then we will not get new
combinations but only the improved designs.

Style

The choice of particular variables and configurations of variablesis a determin-
ant of the style of the design (Simon, 1975). The label ‘style’ can be used in at
least two ways: either to describe a particular process of designing or as a means
of describing arecognizable set of characteristics of adesign. Thus, it is possible
to talk about the *Gothic’ style in buildings or the ‘high tech” style of consumer
goods. Precisely what goes to make up each of these styles is extremely difficult
to articul ate even though we abl e to recognize each of these styles with very little
difficulty. An appropriate question to pose is: how can we understand what pro-
duces a style during the formulation stage of a designing process? This brings us
back to the concepts described in this paper.

‘The history of taste and fashion is the history of preferences, of various acts
of choice between different alternatives...... [But] an act of choiceisonly of
symptomatic significance, is expressive of something only if we can really
want to treat styles as symptomatic of something else, we cannot do without
some theory of the alternatives' (Gombrich, quoted from (Simon, 1975)).

If we use a particular style as the fitness of interest then it should be possible
to utilise the genetic engineering approach described in this paper to determine if
thereis aunique set of genes or gene combinations which is capable of being the
progenitors of that style. For this to occur satisfactorily a richer form of pattern
recognition will be needed than that alluded to here. We will need to be able to
determineawider variety of gene schemasin the genotypes of those designswhich
exhibit the desired style.

The use of genetic engineering in evolving schemas of interest opens up a po-
tential subsymbolic model of emergence including the emergence of domain se-
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mantics (Gero and Jun, 1995). Style can be considered as a form of domain se-
mantics. Thisisof particular interest in design synthesissince, if domain semantics
can be captured in aform such as described in this paper, then they can be readily
used to synthesize designs which exhibit those semantics and even that style. This
isanal ogousto theinduction of ashape grammar which capturesthe characteristics
of designer’sstyle.
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