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Abstract. This paper presents a formal approach to the evolution of a representation for
use in a design process. The approach adopted is based on concepts associated with genetic
engineering. An initial set of genes representing elementary building blocks is evolved
into a set of complex genes representing targeted building blocks. These targeted build-
ing blocks have been evolved because they are more likely to produce designs which ex-
hibit desired characteristics than the commencing elementary building blocks. The tar-
geted building blocks can then be used in a design process. The paper presents a formal
evolutionary model of design representations based on genetic algorithms and uses pattern
recognition techniques to execute aspects of the genetic engineering. The paper describes
how the state space of possible designs changes over time and illustrates the model with
an example from the domain of two-dimensional layouts. It concludes with a discussion
of style in design.

1. Introduction

There is an increasing understanding of the role that a design language and its rep-
resentation play in the efficiency and efficacy of any design process which uses
that language (Coyne et al., 1990; Gero et al., 1994). A recurring issue is what
is the appropriate granularity of a language. If building blocks which constitute
the elements of a design map onto a design language then the question becomes
what is an appropriate scale for those building blocks in terms of the final design.
At one extreme we have parameterised representations where the structure of a
design is fixed, all the variables which go to define a design are predefined and
what is left is to determine the values of those variables. This defines a very small
design space, small in terms of all the possible designs which might be able to be
produced for that design situation. At the other extreme we have elementary build-
ing blocks which can be combined in a very large variety of ways and which, as a
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Figure 1. ��� is the design space produced by all the possible combinations of the elementary build-
ing blocks, ��� is the design space produced by all the combinations of the values of the parameterised
variables, ��� is the design space of interesting designs for the design situation.

consequence define a very large design space, the vast part of which covers designs
which are likely to be uninteresting in terms of the current design situation. The
designs produced by the parameterised design representations are a subset of those
capable of being produced by the elementary building block representation, Fig-
ure 1. Examples of building block representations include constructive systems
such as design grammars as exemplified by shape grammars (Stiny, 1980b). Ex-
amples of parameterised variable representations include a wide variety of design
optimization formulations (Gero, 1985).

The advantage of the use of the elementary building blocks representation is
the coverage of the entire design space they provide, whereas the advantage of the
parameterised variable representation is the efficiency with which a solution can
be reached.

We present here a formal approach which generates a targeted representation
of a design problem. A targeted representation is the one which closely maps on to
the problem at hand. As an example consider a layout planning problem in archi-
tectural design. One representation may be at the material molecular level, where
molecules can be combined to make a variety of materials and particular combina-
tions in space produce physical objects; here the potential solution space includes
designs which bear no relations to architecture. A targeted representations may be
to represent rooms such that the potential solution space primarily includes designs
which are all recognizably architectural layouts.

In order to simplify our analysis we consider designs which are assembled from
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Figure 2. The set of building blocks for Froebel’s kindergarten gifts (Stiny, 1980b).

some finite collection of spatial elements (we call them building blocks or compon-
ents) along with assembly rules. It is assumed that the assembly rules do not affect
the components - the design object is a union of non-overlapping building blocks.
We start with some set of building blocks which we call elementary components. It
is assumed that they cannot be decomposed into any smaller ones. We call a set of
building components and assembly rules a representation of the design problem
and the set of elementary components and corresponding rules the basic represent-
ation. We call it a representation because it implicitly defines the set of all designs
(design state space) which can be produced using this set of building blocks and
assembly rules.

The kindergarten gifts of Froebel (Stiny, 1980b) is a typical example of such
types of design problem. One of many possible elementary representations and as-
sembly rules for it is shown in Figures 2 and 3. One can easily extend it by adding
further elementary building blocks and/or further assembly rules.

Targeted representations
A great variety of designs can be produced within a basic representation. Usually
the designer is interested in some particular class of designs. Assume we have some
additional set of composite building blocks and an additional set of assembly rules
to handle them. We can calculate the number of these composite building blocks
which can be found in all possible designs in that particular class and the number of
elementary building blocks used to build the rest of these designs (each elementary
building block should be counted only once as a member of composite building
or elementary building block, the largest composite blocks are counted first and
the elementary blocks are counted last). Then we can calculate the frequency of
usage of these composite building blocks and elementary building blocks in the
entire design space. The same values can be calculated for all designs which have
the property or properties we are interested in. If the frequency of the usage of the
composite building blocks is much higher for the designs of interest than for all
designs built from the elementary building block and the frequency of elementary
components usage is much lower than that of the composite building blocks for
the design space of interest then we can use the composite building blocks instead
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Figure 3. The set of six assembly rules for Froebel’s kindergarten gifts.

of elementary one to produce designs of interest with much higher probability. In
other words a representation exists which maps into the area of interest of the entire
design space. Let us call it the targeted representation for the particular class of
designs. Obviously different targeted representations can be produced which cor-
respond to different sets of composite building blocks. We characterize these rep-
resentations by their “complexity” which is defined recursively as: 0-complexity
for the basic representation, 1-complexity for the representation whose building
blocks are assembled from elementary building blocks, 2-complexity for the rep-
resentation whose building blocks are assembled from the building blocks of 0-
complexity and 1-complexity, etc. Assume an evolution occurs in an abstract space
of complex representations: initially only elementary building blocks exist then
a cycle proceeds when a new set of composite building blocks is produced from
the ones which are currently available. Then a representation of i-complexity (and
building blocks of i-complexity) simply means that composite building blocks of
this representation have been produced during � -th step of this evolution.

Different composite building blocks of the same � -complexity may contain dif-
ferent numbers of elementary building blocks: for example, assume some build-
ing block of 3-complexity contains 3 elementary building blocks and one of the
composite building blocks of 4-complexity is assembled from 2 building blocks of
3-complexity and thus contains 6 elementary components and another one is as-
sembled from one block of 3-complexity and one block of 0-complexity and thus
contains 4 elementary components. It is also clear that because there are different
ways to assemble the same composite building block it may be produced multiple
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(a)

(b) (c)

Figure 4. The set of composite building blocks of different complexity for building a staircase; (a)
1-complexity, (b) and (c) 2-complexity.

times in representations of different complexity level during the evolution.
The search for a reasonably good design using the basic representation is very

difficult because significant part of the search effort is wasted in the search of un-
useful parts of the design space. If the targeted representation is used instead of ele-
mentary one the probability of producing designs of interest becomes much higher,
the design space becomes smaller and the design problem less complicated and
easier to deal with. The approach presented in this article automatically generates
the hierarchy of more and more complex building blocks (in general); ones which
are more and more close to the targeted representations which are capable of pro-
ducing better and better designs.

Assume we work with the representation of the kindergarten blocks shown in
Figures 2 and 3 and are trying to design a two-level building with walking ac-
cess from one floor to the next. The search for a design with this property is quite
difficult because only a very small fraction of all feasible objects exhibits it and
the probability of discovering the combination of building blocks which makes a
staircase during the search is low. However, if we add a composite object of 1-
complexity (Figure 4) and corresponding assembly rules Figure 5 to the repres-
entation we increase this probability, and if we add a composite building block with
2-complexity (Figure 4) then this probability increases further.

Genetic engineering
Genetic engineering, as used in this paper, is derived from genetic engineering no-
tions related to human intervention in the genetics of natural organisms. In the ge-
netics of natural organisms we distinguish three classes: the genes which go to
make the genotype, the phenotype which is the organic expression of genotype,
and the fitness of the phenotype in its environment. When there is a unique identi-
fiable fitness which is performing particularly well or particularly badly amongst
all the fitness of interest we can hypothesize that there is a unique cause for it and
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Figure 5. The set of additional assembly rules for handling composite building blocks.

that this unique cause can be directly related to the organism’s genes which ap-
pear in a structured form in its genotype. Genetic engineering in concerned with
locating those genes which produce the fitness under consideration and in modify-
ing those genes in some appropriate manner. This is normally done in a stochastic
process where we concentrate on populations rather than on individuals.

Organisms which perform well (or badly) in the fitness of interest are segreg-
ated from these organisms which do not exhibit that fitness or do so only in a min-
imal sense. This bifurcates the population into two groups. The genotypes of the
former organisms are analysed to determine whether they exhibit common char-
acteristics which are not exhibited by the organisms in the latter group (Figure 6).
If they are disjunctive, these genes are isolated on the basis that they are respons-
ible for the performance of the fitness of interest. In natural genetic engineering
these isolated genes are either the putative cause of positive or negative fitness. If
negative then they are substituted for by “good” genes which do not generate the
negative fitness. If they are associated with positive fitness they are reused in other
organisms. It is this later purpose which maps on to our area of interest.

One can interpret the problem of finding the targeted set of building blocks
as an analog of the genetic engineering problem: finding the particular combin-
ations of genes (representing elementary building blocks) in genotypes which are
responsible for the properties of interest of the designs and regular usage of these
gene clusters to produce designs with desired features.
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Figure 6. The genotypes of the “good” members of population all exhibit gene combinations, X,
which are not exhibited by the genotypes of the “bad” members. These gene combinations are the
ones of interest in genetic engineering.

2. Building blocks

Thus, we establish that different building blocks define different design state spaces
(which are, in their turn, the subsets of the entire basic design space). More form-
ally we assume that for the design space of interest a set of composite building
blocks exists which is sufficient to build any design of interest from it (or which
are sufficient to build a significant part of any of these designs of interest).

We search for these building blocks using the consequence of the assumption
made in the introduction about frequencies of composite components usage: on av-
erage the sampling set of designs with the desired characteristics (the “good” ones)
contains more of such composite building blocks than the sampling set of designs
that do not have these characteristics (the “bad” ones). In some cases it is even true
in a deterministic sense - that only the designs which can be built completely from
some set of composite building blocks possess the objective characteristics, all the
rest of the entire basic state space does not have them. One can easily come up with
corresponding examples.

In the next section we describe an evolutionary algorithm which generates “good”
and “bad” sampling sets using the current set of building block (set of elementary
block at the beginning) and use genetic engineering concepts to determine new
composite blocks which are closer to the “targeted” ones than the current set of
building blocks. These two steps proceed in cycle while the “good” sampling set
converges to the sampling set from the desired design state space and the set of
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Figure 7. The assembly (transformation) rules used in the example.

complex building blocks comes closer and closer to the targeted set.
If the basic assumption about more frequent use of some composite building

blocks to generate the particular class of designs is not true for some problem then
the targeted representation for this problem does not exist and the algorithm which
is proposed below will not generate an improved representation but will be equi-
valent to the algorithm for solving the routine design problem (Gero and Kazakov,
1995) and will simply generate the improved designs.

If the sequence of assembly actions is coded as a real vector then the problem
of finding the complex building blocks becomes the problem of finding the key
patterns in the coding vector - the combinations of codes within it which are likely
to be associated with the property of interest in the designs. The vast arsenal of
pattern recognition methods can be used to solve this problem. Essentially they are
just search methods for subsets in a coding sequence which on average are more
frequently observed in objects with desired characteristics than in the rest of the
population.

Let us illustrate the execution of the cycle just outlined using a simple 2-dimensional
graphical example. We will describe it in more detail later but for now on it is suf-
ficient to say that there is only one elementary block here - the square and that a
design is assembled from cubes using the 8 rules shown in Figure 7. Any design
can be coded as a sequence of these rules used to assemble it. Assume we are trying
to produce a design which has the maximum number of holes in it and that each
design contains not more than 20 squares. We start the cycle by generating a set of
coding sequences and corresponding designs Figure 8. Then we notice that a num-
ber (4) of the designs have the maximal number of holes (designs 1, 2, 4, and 7 - the
“good” sampling set) contain the composite building block 	 and that for three of
them their coding sequences contain the pattern

��

������� � . We also notice that only
a few (none in this case) of the designs without holes (designs 3,5,8 and 10 - the
“bad” sampling set) contain this block and none contain this pattern in their coding
sequence. Then we can generate the next population of coding sequences using the
identified sequence

��
����
��� � as a new rule which uses the composite building block	 in the design. Assuming that we employ some optimization method to generate
this new population we can expect that the “good” sampling set from the new pop-
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design 1

{1,12,2,8,5,4,4,2,8,5,7}

good

design 2

{1,2,1,8,2,8,5,5,6,6,8,1}

good

design 3

{3,2,2,6,5,8,2,1,4,4,3,1}

bad

design 4

{6,4,1,2,8,5,4,2,8,5,3,3}

good

design 5

{3,4,8,2,8,1,6,5,7,3,}

bad

{2,3,2,3,4,3,5,6,5,1,6,2}

design 6

neutral

design 7

good

{3,1,8,5,5,6,4,6,1,1,3,3}

bad

{1,6,4,2,7,3,4,8,6,1,6,2}

design 8 

neutral
{6,4,1,2,3,4,5,2,1,7,4}

design 9

bad

{2,3,7,5,1,2,8,3,1,6,2,1}

Composite building block A

design 10 

{2,8,5}

Figure 8. The identification of the pattern ������������� and corresponding composite building block �
in the genotypes of “good” designs.

ulation is better than the previous one (that is, the designs which belong to it have
on average more holes than the ones from the previous “good” sampling set). Then
we again try to identify the patterns which are more likely to be found in designs
from this “good” sampling set than from the “bad” one. This time these patterns
may contain the previously identified patters as a component. Then we generate a
new population of designs using these additional pattern sequences of rules as an
additional assembly rule and so on.

The sizes of the sampling sets in realistic systems is likely to be much larger
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than the ones in this example and much more sophisticated techniques (Pearson
and Miller, 1992) should be employed to single out these key patterns.

3. Evolving building blocks

For a more formal analysis of the evolution of the building blocks we use the shape
grammar formalism (Stiny, 1980a). It consists of an ordered set of initial shapes
and an ordered set of shape transformation rules which are applied recursively. A
particular design � within the given grammar is completely defined by a control
vector � which defines the initial shape and transformation rules applied at each
stage of recursive shape generation. According to the discussion in the Introduc-
tion we consider a particular class of shape grammar similar to the kindergarten
grammar (Stiny, 1980b), where any shape is a non-overlapping union of building
blocks and feasible shape transformations are addition, replacement or deletion of
the building blocks.

Let  "! ��#�$���#�%&��'�'�'(��#�) � be a set of * currently available building blocks, and+ ! ��,�$���,-%.��'�'�'(��,�/ � be a set of 0 assembly rules applicable to these blocks.
Then the control vector ��12! ��# 1 ��, 1 % ��, 13 ��'�'�'(��, 14 � � , # 1657 ,

, 18 5 + , 9:!<; ��'�'�'=��> 1 ,�?!<; ��'�'�'(��@ defines the population of
@

designs �BA�� 1DC , �E!F; ��'�'�'=��@ .
The length of the control vector

� �G1H� , > 1 is a variable.
If we add new complex building block#�)�IJ% !K�EA ��# )-IJ% ��,

)-IJ%% ��, )�IJ%3 �L'�'�'���, )�IJ%M � C and new assembly rules,./NIJ%���'�'�'(��, /OI2PRQ�SUT
for its handling then we get a new extended set of rules+ ! +WV 8YX %(Z P[Q�S\T ��,�/OI 8 � ,  <!] V ��#�)-I?% � , *^!K*:_K; and 0`!a0b_Wc )�IJ% .

Now we can produce the design �BA�� C which corresponds to the vector � whose
components belong to the extended  and

+
. Note that the additional building

blocks and assembly rules are generated recursively: they are completely defined
in terms of the previous

+
and  .

We assume that the design problem has a quantifiable objective vector-functiond M Ae� C , fg!<; ��'�'�'h�ji and can be formulated as optimization problem

d A��BA�� ChC ! d A�� C6kmlon-p (1)

The problem (1) over the representation with a fixed set of building compon-
ents and assemble rules can be solved using any of optimization methods (Gero
and Kazakov, 1995) but the stochastic algorithms like genetic algorithms (Hol-
land, 1975) and simulated annealing (Kirkpatrick et al., 1983) look most prom-
ising at the moment. We have chosen the genetic algorithm.

The evolutionary method has the following structure :
Algorithm
(0). Initialization. Set counter of iteration fo!]q . Take the set of elementary build-
ing blocks  <! ��# $ ��'�'�'(��# ) � and corresponding assembly rules

+
. Generate some
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random population of � 1 Z $ , calculate �EA�� 1 Z $ C and
d A��BA�� 1 Z $ C(C . Set the relative thresholds

for the design’s ranking qsrt	vu^rt	xwyrz; ; they are used during an evolution
stage to divide the design into “good”, “bad” and “neutral” sampling sets, that is,
the parts of population which exhibit ( 	 w ) best, ( 	 u ) worse and intermediate rel-
ative fitness level.
(1) Evolution of complex building blocks. For every component of the objective
function

d M divide the population into 3 groups :
“good” (

d M A�� CN{|lon-p 1 X %(Z } d M A�� 1 C�~ 	 w�� A lon-p 1 X %(Z } d M A�� 1 C.~�l���� 1 X %hZ } d M Ae� 1 C(C ,
“bad” (

d M A�� C r l���� 1 X %(Z } d M Ae� 1 C _�	 u�� A lon-p 1 X %(Z } d M Ae� 1 C-~�l���� 1 X %hZ } d M A�� 1 C(C ,
and “neutral” (the rest of population).
Determine � combinations

#�)�I 8 !`�BA ��# 8 ��, 8$ ��, 8 % ��'�'�'h��, 8MY� � C , 9�!�; ��'�'�'=� � of the
current building blocks which distinguish the “good” sampling set from the “bad”
one statistically significantly using any one of the pattern recognition algorithms.
Add it to the current set of building blocks  �!t V 8(X %hZ ����#�)�I 8 � . Add corres-
ponding new assembly rules to

+
.

(2) Generation of new population. Compute new population using available in-
formation about current population � 1 Z M I?% !a�^A(A�� 1 Z M � �EAe� 1 Z M C � d A��EA�� 1 Z M ChC . The com-
ponents of �G1 Z M IJ% belong to the new extended  and

+
. The � depends on the op-

timization method employed. If the genetic algorithm has been chosen then � 1 Z M I?%
is to be calculated using standard crossover and mutation operations. Because the
updated grammar includes the grammar from the previous generation the search
method guarantees that the new population is better than the previous one (at least
no worse) and the new “good” sampling set is closer to sampling set of the design
state space of interest.
(3) Repeat steps (1) and (2) until the stop conditions are met.

The stop conditions usually are the termination or slowing down of the im-
provement in

d
and/or the end of new building blocks generation.

4. Example

Evolving the targeted representation
As an example we take the problem of the generation of a 2-dimensional block
design on a uniform planar grid (derived from (Gero and Kazakov, 1995)). There is
just one elementary component here - a square and the eight assembly rules (trans-
formation rules in terms of a shape grammar) which are shown in Figure 7. If the
position where the current assembly rule tries to place the next square is already
taken then all the squares along this direction are shifted to allow the placement of
new square. It is assumed that the transformation rule at the � -th assembling stage is
applied to the elementary block added during the A�� ~ ; C -th stage. The characterist-
ics of interest are geometric properties of the generated design. In order to demon-
strate the idea, assume that the generated design can not consist of more than 32
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Figure 9. The fraction of composite building blocks in the total pool of building blocks used to
assemble the population vs. generation number. The objective function has two components: the area
of closed holes and the number of connections between holes and the outside space. The initial set
of building blocks contains only elementary building blocks. Evolution proceeds until it naturally
dies off.

elementary components. We generate a new population during the stage (2) of the
Algorithm using the modification of the simple genetic algorithm tailored to handle
multidimensional objective functions (Gero and Kazakov, 1995). We implement
a very simple pattern recognition algorithm based on the statistical frequency ana-
lyses of double and triple element building blocks with a high cut-off threshold
for the acceptance of the patterns. For more complex systems more sophisticated
technique is needed.

During the first iteration we begin with the set of building blocks which con-
tains only the elementary ones and search for the designs with maximal area of en-
closed holes and maximal number of connections between the holes and outside
space. The evolution was allowed to proceed until a stable condition was reached.
The result are shown in Figures 9 and 10. By plotting the fraction of the complex
building blocks in the total pool of building blocks used to assemble the popula-
tion at different generations Figure 9, one can see how complex building blocks
become dominant and how its fraction reaches a stable level after 110-120 itera-
tions. The fractions of building blocks of different complexity in the total pool at
different generation are shown in Figure 10. One can see that during the first 40
generations the total fraction of composite building blocks arises monotonically.
For the first 10 generations this rise is completely provided by the increasing num-
ber of 1-complexity composite building blocks in the population. Then (from 15
to 30 generations) the fraction of 1-complexity blocks remains stable but the num-
ber of 2-complexity building blocks increases and provides the continuing increase
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Figure 10. The fraction of composite building blocks with different complexities in the total pool
of the building blocks used to assemble the population vs. generation number. This figure shows the
building blocks of different complexities which are summed to produce the total fraction shown in
Figure 9.

in the total fraction of composite building blocks. From generations 40 to 70 this
total fraction is stable with approximately half of building blocks of 1-complexity
and half of 2, 3 and 4-complexities. Then the number of 1-complexity blocks and
total number of complex blocks declines sharply and from 70 until 110 generation
a transitional process occurs with a complex redistribution of populations between
representations with different complexities. At the end of this period the building
blocks of 8-complexity saturate the population when the fractions of the other com-
plex building blocks are shifted towards a noise level only. One of the evolution
paths in the space of complex building blocks is shown in Figure 11 (a). Some of
the designs produced are shown in Figure 11 (b). Here arrows show which pre-
viously evolved composite building blocks are used to assemble the new building
block. The 0-complexity block and its contributions are omitted. As we already
noted composite blocks of the same complexity level sometimes have different
numbers of elementary components. Coincidently, the 5-complexity block is re-
produced again in the representations of 6-, 7- and 8- complexities and is one of
the dominant blocks at the end of the evolutionary process.

Using targeted representation.
The set of targeted building blocks evolved during this process is then used as an
initial set of building blocks during the second experiment when we produce the
designs with maximal total area of holes inside and maximal number of connec-
tions between these holes inside the structure. Here the fitnesses are close to but
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(a)
(b)

Figure 11. (a) An example of the evolutionary paths in the evolution of a complex building block,
(b) some of the designs produced using the set of evolved complex blocks.
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Figure 12. The fraction of composite building block in the total pool of building block used to as-
semble the population vs. generation number . In this experiment the objective function is the num-
ber of closed holes and the number of connection between the closed holes inside the structure. The
initial set of building blocks is inherited from the first experiment and is the targeted representation.

not the same as those used to evolve the targeted representation. This experiment
is used to test whether the targeted representation is likely to be used more than the
original, elementary building blocks. If the targeted representation is used rather
than the elementary building blocks then we have achieved our goal of evolving a
representation can be used to produce designs which exhibit desired characterist-
ics more readily. The results are shown in Figures 12 and 13. One can see that
the fraction of the composite building blocks used to produce these designs reaches
the saturation level during the first few iterations. The visible redistributions of the
population between the composite building blocks of 5, 6 and 7-complexities are
purely superficial - this redistribution occurs between the same composite building
blocks which are present in all these representations. Evolution of the representa-
tion does not occur during this experiment - no new complex building block were
evolved. This can be interpreted as an indication of closeness of the targeted rep-
resentations for both problems. So if the targeted representation is evolved for one
set of objectives then it can be usefully applied to any of the objective sets which
are only slightly different to it.

Effects of incomplete evolution
In this experiment we repeat the first iteration but stop the evolution prematurely
after only 60 generations. After this we repeat the second iteration using the evolved
incomplete set of composite building blocks. The results are shown in Figures 14
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Figure 13. The fraction of composite building blocks with different complexities in the total pool
of the building block used to assemble the population vs. generation number in the experiment.
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Figure 14. The fraction of composite building block in the total pool of building block used to as-
semble the population vs. generation number . In this experiment the objective function is the number
of closed holes and the number of connections between the closed holes inside the structure. The ini-
tial set of building blocks is inherited from first iteration which has been prematurely terminated at
generation 60.

and 15. In this case the evolution of the representation continues for about a fur-
ther 10 generations and we end up with the same set of evolved composite building
blocks. The saturation of the population with the composite building blocks is also
completed after these 10 generations. Thus, one can start to evolve a representa-
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Figure 15. The fraction of composite building blocks with different complexities in the total pool
of the building block used to assemble the population vs. generation number in the third experiment.

tion for one set of objectives and then continue it for another closely related set of
objectives.

If we commence by treating the problem as one of finding improved designs
then from a computational viewpoint this form of evolution speeds up the conver-
gence to improved designs by up to ; ��� (in terms of the number of generations
required) when compared with standard genetic algorithms. It appears that the use
of a targeted representation can lead to the production of designs which are locally
optimal.

However, if we use the completion evolution approach presented in the second
experiment we get further improvements in performance. We will leave to the Dis-
cussion section further discussion of the other advantages of the approach presen-
ted.

5. Discussion

The analysis just presented can be easily extended to include general object gram-
mars of types different to the kindergarten grammar. The proposed approach can
be considered as an implementation of the simplest version of the genetic engin-
eering approach to the generic design problem. From the technical point of view
the algorithm presented is a mixture of a stochastic search method (which may be
a genetic algorithm) and a pattern recognition technique.

The genetic engineering approach can be applied in a similar fashion to the
problem of the generation of a “suitable” shape grammar (Gero and Kazakov, 1995)
where the complex building blocks correspond to the evolved grammar rules.
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As already mentioned in the analysis of the numerical experiment, the evolved
representations are highly redundant - the same composite building blocks are evolved
many times along the different branches of the evolutionary trees. The redundancy
level of the current set of composite building blocks can be reduced in a number
of different ways. The simplest is just to delete all the redundant copies from the
current set. In the general case, we have to find the minimal representation of the
subspace which can be generated using the current set of complex building blocks.

The introduction of ideas and methods from genetic engineering into design
systems based on genetic algorithms opens up a number of avenues for research
into both evolutionary-based design synthesis and into modified genetic algorithms.
In design systems based on such modified genetic algorithms it is possible to con-
sider two directions.

The first is to treat the sequence of the genes which results in certain behaviours
or fitness performances as a form of ‘emergence’, emergence of the schema repres-
ented by that gene sequence. The use of the genetically engineered complex genes
changes the properties over time of the state spaces which are being searched. This
allows us to consider the process as being related to design exploration modelled
in a closed world. The precise manner in which the probabilities associated with
states in the state space change is not yet known. Clearly, this is also a function
of whether a fixed length genotype encoding is used or not. If a variable length
genotype encoding is used with the genetically engineered complex genes then
the shape of the state space remains fixed but the probabilities associated with the
states within it change. If a fixed length genotype encoding is used with the ge-
netically engineered complex genes then the shape of the state space changes in
addition to the probabilities associated with states in the state space.

The second is to treat the genetically engineered complex genes as a means of
developing a representation for potential designs. A fundamental part of design-
ing is the determination of an appropriate representation of the components which
are used in the structure (Gero, 1990) of the design. This is part of that aspect
of designing called ‘formulation’, ie the determination of the variables, their re-
lationships and the criteria by which resulting designs will be evaluated. In most
computer-aided design systems the components map directly on to variables. Fur-
ther, in such systems the variables are specified at the outset, as a consequence there
is an unspecified mapping between the solutions capable of being produced and the
variables chosen to represent the ideas which are to be contained in the resulting
designs. The genetic engineering approach described provides a means of automat-
ing the representation part of the formulation process. The level of granularity is
determined by the stability condition of the evolutionary process or can be determ-
ined by the user. The targeted building blocks provide a high-level starting point
for all later designs which are to exhibit the required characteristics as evidenced in
the earlier designs. It is this latter requirement which is met by this formal method.

The following simple picture can be used to summarize the model described in
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this paper. A group of children are playing with the “Lego” game using not more
than 50 squares. They join them together and want to build the object with the
largest number of closed spaces inside. After each child has built his or her ob-
ject the supervisor tries to find a combination of squares which is present in many
of the best designs but is present in none or only in a few of unsatisfactory designs.
Then he makes this combination permanent by gluing its components together and
adds a bunch of such permanent combinations to the pool of building elements
available to the children. Then the children make another set of objects using these
new building blocks as well as an old ones. The supervisor tries to find another
“good” composite block and the process is repeated. Thus, two steps occur in each
cycle: first children make a set of new designs from currently available blocks and
combination of blocks and second the supervisor tries to single out the additional
combination of blocks that should be employed. If there are no such combinations
which distinguish “good” design from the “bad” ones then we will not get new
combinations but only the improved designs.

Style
The choice of particular variables and configurations of variables is a determin-
ant of the style of the design (Simon, 1975). The label ‘style’ can be used in at
least two ways: either to describe a particular process of designing or as a means
of describing a recognizable set of characteristics of a design. Thus, it is possible
to talk about the ‘Gothic’ style in buildings or the ‘high tech” style of consumer
goods. Precisely what goes to make up each of these styles is extremely difficult
to articulate even though we able to recognize each of these styles with very little
difficulty. An appropriate question to pose is: how can we understand what pro-
duces a style during the formulation stage of a designing process? This brings us
back to the concepts described in this paper.

‘The history of taste and fashion is the history of preferences, of various acts
of choice between different alternatives...... [But] an act of choice is only of
symptomatic significance, is expressive of something only if we can really
want to treat styles as symptomatic of something else, we cannot do without
some theory of the alternatives’ (Gombrich, quoted from (Simon, 1975)).

If we use a particular style as the fitness of interest then it should be possible
to utilise the genetic engineering approach described in this paper to determine if
there is a unique set of genes or gene combinations which is capable of being the
progenitors of that style. For this to occur satisfactorily a richer form of pattern
recognition will be needed than that alluded to here. We will need to be able to
determine a wider variety of gene schemas in the genotypes of those designs which
exhibit the desired style.

The use of genetic engineering in evolving schemas of interest opens up a po-
tential subsymbolic model of emergence including the emergence of domain se-
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mantics (Gero and Jun, 1995). Style can be considered as a form of domain se-
mantics. This is of particular interest in design synthesis since, if domain semantics
can be captured in a form such as described in this paper, then they can be readily
used to synthesize designs which exhibit those semantics and even that style. This
is analogous to the induction of a shape grammar which captures the characteristics
of designer’s style.
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