PARAMETRIC SURFACES AND ARCHITECTURE: Concepts, Design, and Production

MAURO CHIARELLA
Centro de Informática y Diseño
Facultad de Arquitectura, Diseño y Urbanismo
Universidad Nacional del Litoral
Santa Fe - República Argentina.
chiarell@fads.unl.edu.ar

Abstract. By incorporating parametric surfaces and spline entities into the shape modelling computer systems, new design and production graphic tools have been created in the conceptual and poetic field of architecture; thus allowing an intuitive approach to the fast production of complex shapes with a minimum amount of data and specific knowledge. The analogous production systems (constrained by the material resources and constructive procedures present in the local existing technologies) are challenged by design and virtual simulation systems, suggesting new relationships between the architectural features and their representation: the creation of a symbolic and dynamic information space where the representation affects the identity of what is being represented. Taking into account this current challenge, we have decided to work in the mixture, without reciprocal exclusions or substitutions, proposing some work alternatives to approach the issue under discussion in the Architecture Workshop.

1. Geometry And Architecture

Some departure hypotheses are enunciated that try to describe the situation regarding which the new relationships are generated between geometry and architecture starting from a historical coexistence of means that crosses the moments of creation, development and production of the discipline:

- The post-mechanical thing cohabits with the pre-industrial thing.
- The systems of digital creation challenge the similar production systems in being able to sum up and to materialize many of the ideas that are manifested virtually.
- New relationships on the architectural thing and their representation. The creation of a symbolic and dynamic space of information where the representation usurps the identity of that represented.
- Re-definition of concepts like reality, perception and memory. Eclipsed by concepts like cyberspace, cyberception and the synthetic image.
The systems CAD-CAM-CAE redefine the pre-figuration instances and representation of the disciplines linked to the design. They condition and they transform processes of production and construction, they modify their operational methodology forcing to leave the strictly graphic thing, enlarging horizons.

2. Problematic

The fast rise of computing in the last decades has made it possible for architects to work massively and in a graphic and intuitive way with mathematical representations of three-dimensional geometry, such as the NURBS. These organic surfaces of free shapes defined by vectorial curves have allowed access to a rapid generation of complex shapes with a minimum amount of data and of specific knowledge.

The ancestral inertia of the architectural matter and the inability of the materials traditionally employed in construction to assume and to manifest the demands that outline the space and conceptual searches of the present appear like one of the challenges of the coexistence of the post-mechanical technologies with the pre-industrial ones (Kolarevich, 2003). The systems of digital creation challenge the similar production systems in being able to sum up and to materialize many of the ideas generated virtually.

The great development of modelling achieved by the digital media and the limitations in the technical and building areas and in the existence of materials which are coherent with the resultant shapes reveal a considerable distance between the systems of ideation and simulation characteristic of the computing era and the analogous systems of production inherited from the slow industrial development. This distance has been shortened by CAD/CAM systems, which are, however, not very accessible to the architectural field.

If we incorporate these developments of means dissimilar to the limitations characteristic of the resources of materiality and constructive procedures of the existent local technologies and we approach the challenge of a pedagogy of the design of an ordinary Shop of Architecture in the context of a public university, we will be forced to put into practice some strategies of contingencies for the broadening of the mentioned problem.

3. NURBS Surfaces

The incorporation of the parametric surfaces and the entities spline in the computer systems of modelling in ways have supposed the creation of a new graphic tool that
not only covers the hole that has left the classic geometry, but allows a quick
generation in complex ways with a minimum quantity of data.

Curved Bezier, B-Spline and of Continuous Polygons, were developed to build
digital versions of the design lines used to draw the crossed sections of helmets of
ships, airplane fuselages and designs of the automobile industry. The necessity to
establish a rigorous geometric control of the graphic layout of curved lines with
free journeys in the configuration in the way of the ships and vehicles, derived of
the respective studies of aerodynamics and hydrodynamics, justified their
development and use thoroughly facilitating a later application to the field of the
design in general.

The industrial design incorporates them early but I specify the ergonomics in
the same way and later on the architectural design finds the solution to a problem
of space representation that up to now had almost always been in a handmade and
intuitive way.

At the moment, most of the programs of 3D modelling have NURBS to build
models of surfaces. One of the contributions but important for the design in general
has been facilitating to operate, to control and to design with algorithms that
overcome the complexity of the traditional Cartesian equations carrying it out alone
from the graph and with an intuitive handling of the geometry. This way it has
become possible for many designers and students to do without the knowledge
characteristic of the structures of geometric-mathematics that sustain them. The
fact has generated among the students of architecture favourable situations in some
cases and counteractive in many of them.

3.1 REVERSE ENGINEERING

It is known with this denomination to the process that, recovering the handmade
tradition, it leaves an unique model sculpted by the designer for next to be reproduced
in series by technical means. These means at the moment are composed of outlying,
computer, and program CAD-CAE-CAM. A digitalizer 3D travel in an automatic
way the surface of the prototype or scale model to scale, according to the programmed
trajectory, it stores the coordinated x,y,z of the points of the surface. A program
vectorizer transforms the cloud of points in a surface with geometry CAD. Later
on the mesh of finite elements CAE is generated and after making many times the
resistant calculations for MEF, they carry out in CAD the opportune corrections
that allow a correct operation. Lastly the technological requirement CAM is
introduced that allow to program the machines required to manufacture the different
components.

In our context and for architecture it is practically impossible to think of these
moments to appeal to this technological process, although it is possible to recover
the concept. A suggested work alternative is to carry out the modelling one digital
three-dimensional of our analogical space models by means of the conversion of
images raster to vector by means of two different registrations of information: (i) the first one is scanning in 2D the physical pattern and to obtain pixels images that we will convert to entities lines using a conventional vectorizer (corel trace, etc). The resulting file will carry him in the conventional programs of drawing to build the geometry 3D of the digital pattern; (ii) the second registration is carried out taking images with a digital camera of the analogical pattern to carry them then to programs of image treatment and three-dimensional reconstruction starting from the generation of points and a calculation based on the law of conical perspective. They correspond to the programs habitually used in architectural photogrammetric (for example, Photomodeler).

Both alternatives are justified in situations of formal complexity of the used geometry allowing us an approach of the physical and virtual processes of creation starting from the digitalization and vectorization of points that will serve in the generation of the geometry 3D for a three-dimensional patternmaker (Figure 1).

![Figure 1. Reverse Engineering and photogrammetric. Sculpture and landscape. Student: Paulo Chiarella](image)

3.2 RAPID PROTOTYPING

To allow to re-think changes at an early phase of the design process, articulating the resulting geometry to a materialization wanted in rapids and economic physical models is one of the contributions that base the use on the part of the architects of the tools of Rapid Prototyping used by the industrial engineers.
Among the different prototypes we differentiate the constructions of pieces for successive layers (2D) and directly in the space (3D) and we classify them according to the process of solidification of the material (liquid polymers solidified by the impact of a luminous sheaf; you castrate united by photo polymerized of badges of plastic semi-polymerized; materials in powder form; material sheets united by means of having hit, etc).

The Rapid Prototyping of built paper for successive layers, offers the possibility to make at one time relatively short and with a cost of development very low, diverse tests of geometries on the design object, confronting different space solutions and bringing near the processes of virtual initial searches of the modelling ones of the idea, to the materiality and construction in the resulting final way (Petric and Maver, 2003).

The creation of the first conceptual prototypes and the possibility of the physical manifestation in the way they operate in the industrial design reduce costs and time in the verification of a product. However, product arrives almost obsolete in the market, while in architecture it is intended as an instrument articulator of the virtual and physical phases of the design process influencing directly in the architectural graphic thought.

Figure 2. Unfolding NURBS surfaces and construction.
Chiarella y Asoc. Lamperti & Cía. Paraná 2001
3.3 UNFOLDING

An alternative of work proposal for a shop of architecture of a public university characterized by a relative popularity (150 students) and with different systematized levels is the boarding of technical of development and unfolding of geometric figures in surfaces 2D. This quick, economic and accessible method for many students allows by means of a court plotter or impression of ink and manual cuttings, to recompose in 3D the complex morphological syntaxes (very appealed at the moment) in different work scales.

Programming routines (autolisp in autoCAD), plug-ins of programs of modeling geometric (Expander for Rhinoceros) and you program or unfolding utilities (TouchCAD; Form Z; 3D Canvas; Javaview; Lamina Design) allow, by means of the import of three-dimensional models, the unfolding of the faces of the polyhedrons in plane surfaces to the way of the traditional Japanese art of the Origami. Although several utilities and some not very specific programs exist in the market that attend the development of figures 3D, each has its limits when carrying files and non conventional geometries because much of them was created for complementary necessities to the industrial design. For example to allow the development of encounters between metallic pipes and industrial accessories of low formal complexity. That is to say that alone they allow the development of plane surfaces or of simple bend (conical, cylindrical and tangential).

In the case of the surfaces NURBS (surfaces of double bend, therefore conceptually non developmentables) the unfolding of the complexity in warped ways is possible starting from the conversion to MESH. The resulting triangulation of faces when exporting models of defined surfaces for curved vectorial (NURBS) to the traditional one modelling polygonal of the programs CAD (MESH), it facilitates to approach the development of warped surfaces and of double bend which are impossible to project on the same plane without deformations. This conversion is very suggestive when re-thinking the materiality of the figure. The same one broken down in plane faces or ruled surfaces allows to speculate on the construction of the entirety in the way starting from the addition of the different planar pieces that compose it. The screens of glass of the museum Guggenheim of Bilbao and the developments of three-dimensional structures of companies like Bellapart-Spain, exemplify this concept.

4. The Architecture Workshop

In graphic architecture thought, geometry usually appears as an instrumental support for project speculation. Geometric procedures are presented as representational resources for the graphic testing of reflection and for the exposition of ideas in order to build a logical order as regards representation and formal prefiguration.
Geometry traditionally appears in the initial as well as in the final stages of the generative process of design, operating as a tool for order and synthesis, reassuring the definition of technological and spatial components.

The incorporation of the parametric surfaces to the traditional geometries Euclidean’s is manifested in the architecture shop like a necessity of the students to approach the manipulation of geometries in free ways in a marked intention of assuming a space thing of the present or simply for a seduction of the formal possibilities of the new instruments of modelling digital.

In the Shop of Architecture the pedagogy should assume the traditions of the occupation and to participate of the impulses of an innovative time and loaded with challenges. In the face of the concern of a certain frank use of the digital resources it is that intends to be defined some strategies that accompany the demands of the heuristic process and the expectations of the project avoiding that they are constituted in autonomous instruments where the representation usurps the identity of that represented.

Assuming the metaphor of living at the threshold of two ages (industrial-computing, analogical-digital, material-virtual) and the challenge of the new conceptual and operational tools in our field, we work in the mixture, with no exclusions or substitutions, proposing (by means of the development of informational complements) some alternatives of work to approach the issue are under discussion from the Architecture Workshop.

References
