
FLOATING BUBBLES

An agent-based system for layout planning

HAO HUA and TING-LI JIA
ETH, Zurich, Switzerland
Southeast University, Nanjing, P. R. China
hhua@student.ethz.ch

Abstract. This program converts bubble diagram into an agent-based
system for architectural design. The program suggests a model for
layout planning based on bubble diagram which explicitly describes the
adjacency requirements in architecture. Generally there is a basic set of
rules for every agent dealing with adjacency topology and also an alter-
native set for other objectives. Then this basic program is developed
into several generative tools for different design tasks. They imply that
the agent-based system is effi cient for elementary spatial arrangement
and it could generate a wide range of complex solutions.

Keywords. Agent-based modeling; layout planning; bubble diagram.

1. Introduction

“Floating bubble” program comes from the bubble diagram, however, its
mechanism differs from the conventional ways in which architects use the
diagram in design. The main feature of bubble diagram is that it extracts adja-
cency requirements out of numerous objectives and constraints in architec-
tures and it illustrates the specifi cations by 2D graphs which could be easily
understood. The fl oating bubble program does follow the two features of
the bubble diagram, while the primary purpose of the program is to produce
complex forms with restrictions.

The program actually converts the bubble diagram into an agent-based
system through programming. It is not only a research on methods but also
oriented to architectural design practices which demand effi ciency and fl ex-
ibility. The program reproduced master plans for a research on Chinese tra-

B. Dave, A. I. Li, N. Gu, H.-J. Park (eds.), New Frontiers: Proceedings of the 15th International Confer-
ence on Computer-Aided Architectural Design Research in Asia CAADRIA 2010, 175–183. ©2010, Asso-
ciation for Research in Computer-Aided Architectural Research in Asia (CAADRIA), Hong Kong

H. HUA AND T.-L. JIA176

ditional courtyards and also yielded a series of solutions with corresponding
3D-models in Clouds Collective project (fi gure 1). These projects imply the
agent-based system can evolve into a basic model for layout planning and it
offers unpredictable diversity in solutions.

Figure 1. Clouds Collective project.

2. Backgrounds

By means of computation there are a wide range of methods to generate
layouts according to the adjacent relationships between rooms. One method
is optimisation on the basis of state space search, for instance, the approach
to “optimum layout of single-storey building” by Peter Manning and the
programs by Whitehead and Eldars. They usually work on a data structure
representing a range of solutions on regular grids and search for a best state
employing special strategies. William Mitchell termed these methods with
“automated spatial synthesis” in his Computer-aided architectural design
(1977) which offers a list of strategies: generate and test, heuristic search pro-
cedures, analytical procedures, etc. Actually many of them were not always
competent except for using advanced algorithms such as genetic algorithm.
While the IMAGE system (Weinzapfel and Handel, 1975) discussed in the
book (fi gure 2) may connect to many contemporary concepts such as agent-
based modeling, evolution strategy and being self-adaptive.

Figure 2. IMAGE system by Weinzapfel and Handel, 1975.

In fact this alternative method is similar to an active bubble diagram.
Signifi cantly, bubble diagram has indicated that layout planning task can be
divided into the arrangements of relationships between one bubble (room)
and another, a “divide and conquer” strategy. Thus a direct method for layout

FLOATING BUBBLES 177

planning is to construct a dynamic system in which every bubble fl oats for its
own adjacency confi gurations. Here comes the method of agent-based mod-
eling. It’s a little surprising that the primary advantage of the method is not the
effi ciency on solving the adjacency problem but is the potential of producing
complex forms since it extracts order from chaotic initialisation.

3. Basic model of fl oating bubble

As an agent-based concept the system is made up of autonomous agents, each
of them (in a bubble shape) presents a room (or a space extent). Furthermore,
every bubble carries its own adjacency confi gurations as well as its specifi ed
area. A square matrix is employed to hold all adjacency information. Every
element aij in the matrix can hold a Boolean value which denotes “whether
bubble i needs to be adjacent to bubble j.” Whereas aij can also hold a real
number indicating different levels of adjacency.

The system exposes adjacency relationships explicitly just as bubble
diagram: a line connecting a pair of bubbles means the two bubbles should
be next to each other; otherwise the system doesn’t concern the relationship
between them. These connections could also be weighted then the bubble
diagram becomes a weighted graph.

Boolean values are used to describe the connections with bubbles (value
of “true” denotes “two bubbles need to be adjacent” and there will be a line
connecting them, fi gure 3) in the basic fl oating bubble program. This data
structure helps connection lines to examine the current adjacent situation (see
fi gure 3, wide black connection lines suggest two bubbles have not been adja-
cent, gray ones already adjacent) and to witness the history of adjacent situa-
tions. (The history is essential for adding perturbation to the system when it’s
stuck).

Figure 3. Three stages in the basic fl oating bubble system.

H. HUA AND T.-L. JIA178

In the dynamic system showed above, every bubble behaves based on its
own rules in a changing environment composed by other bubbles. The system
is initialised randomly (fi rst picture in fi gure 3) and will not stop evolving
until all connection lines turn to gray (which means all of the adjacency
requirements are satisfi ed, see the third picture in fi gure 3). This programming
approach makes the bubble diagram live and subsequently make the program
be easier to be understood compared with many other complicated spatial
synthesis solutions. While it’s must be emphasised that this program doesn’t
only aims to solve spatial problem but also to exploit the diversity of the forms
resulting from the adjacent confi gurations.

Most generally, all the rules for agents lie in two main categories: a basic
set of rules dealing with adjacency topology and an alternative set for other
specifi ed objectives.

The basic set is the essence of the system. The principle is to generate a
structure emerging from “unfi xed but stable” balance between several forces.
Thus there must be at least two types of “forces”: one drives a bubble moving
towards other bubbles that it must be adjacent to; the other keeps an agent
not overlapped with all other ones. The two forces are against each other,
however, they are the very source building a system contributing to an unpre-
dictable structure (layout) when it reaches equilibrium.

Figure 4. Forces betweens agents.

Two types of forces (attraction and push) are illustrated in Figure 4 (instead
of circles, rectangles are used to present the extents of the agents). As is shown
in the fi gure, attraction force drives two agents to be closer, more rigorously,
a vector corresponding to an agent moves in this way:

∂Vi / ∂t = kaij[(s – 1)Vi + (1 – s)Vj] (1)

Vi and Vj are the vectors describing the positions of agent i and agent j
respectively, aij denotes the weight of the connection between the two agent
(aij = 0 means that the two agents needn’t to be adjacent then there will be no
attraction between them), k is a positive constant. Notice that if s = 0 then
equation (1) becomes:

FLOATING BUBBLES 179

∂Vi / ∂t = kaij(Vj – Vi) (2)

In this case the attraction force will not vanish until the two vectors of a
pair of agents are equal. We can also make the forces disappear once the two
agents touch each other, just assign a special value to s:

s = (ri + rj) / ||Vi – Vj|| (3)

ri and rj denote the corresponding radiuses of the two agents.
The equations above just take account of one of the adjacency require-

ments of agent i, the overall effect on the vector is:

∂Vi / ∂t = ∑n
j=1 kaij[(sij – 1)Vi + (1 – sij)Vj] (4)

sij is the same item as the s in (1), while it is unique to every pair of agents.
On the other hand the push effect on the agent i can be described as:

∂Vi / ∂t = lS (Vi – Vj) / ||Vj – Vi|| (5)

S equals to the area in which a pair of agents overlap and l is a positive con-
stant. We can see that there are both attraction and push forces for the bubbles
in the same time; this is a key characteristic making the agent system evolve
towards balance.

4. Improved model

Unfortunately the original system seldom works for it always gets “stuck”: all
the bubbles stop moving but some adjacency requirements are still not satis-
fi ed. In other words, the system always becomes “mature” before it develops
its form adequately. Figure 5 shows this situation according to eight inde-
pendent executions of the system: horizontal axis is the time axis and vertical
value denotes the current number of unsatisfi ed adjacency requirements in the
system.

This disadvantage can be considered as an innate consequence of the
mechanisms of the agent system. Notice that all agents are moving for them-
selves (local optima) then it’s reasonable that global target is diffi cult to be
hit. It is a fatal problem since the system never satisfi es all the requirements
during dozens of executions.

One method to solve this problem is to introduce mutation, or perturba-
tion into the system, which is guided by the “memory” of wide black lines
(presents unsatisfi ed adjacency requirements, see fi gure 3). If one adjacency
requirement stays unsatisfi ed for a long time then it drives one connected
agent jumping towards another connected agent. This action breaks the
current balance and usually brings chaos to the system, however, it creates

H. HUA AND T.-L. JIA180

vital opportunities for the whole system to get out of stuck situation. This
mechanism also contributes to the complex forms of the fi nal solutions.

As is shown in fi gure 6 there are many disturbances in the number of
unsatisfi ed requirements compared with the fl at patterns in fi gure 5. The new
pattern indicates that the system is struggling between local and global objec-
tives, is breaking balances and making gradual achievements. The result is
that the improved system is always able to reach equilibrium though the proc-
esses take more time.

5. Alternative systems

The system demands an alternative set of rules dealing with a wide range of
particular requirements besides adjacency issue, for instance, some principles
in plans of Chinese traditional courtyards.

Figure 5. Records of eight executions of the original program. Horizontal axis is the time axis
and vertical value denotes the current number of unsatisfi ed adjacency requirements in the

system.

Figure 6. Records of the improved program.

FLOATING BUBBLES 181

In spite of a great number of different types of courtyards in China, there
are several common rules in planning, for example, primary courtyards are
usually located around the center of a cluster of courtyards, which is consistent
with traditional ethic culture. So new rules are added to the alternative set to
make “important” courtyards much easier to get a central location than other
ones. Usually the new rules are not opposite to basic rules, while it’s necessary
to negotiate between the two sets of rules to improve the performance of the
system.

In another project, Clouds Collective, the system arranges spatial structure
in a two-storey museum design. The rules in the alternative set deal with rela-
tionships between the rooms in different layers. For example, the two main
exhibition halls in two layers are supposed to be overlapped (in top view) to
get a vast space.

In addition, a BIM solution (Autodesk Revit) is connected to this system
via Revit API for an integrated design fl ow: First, models of elements are
created and modifi ed in Revit manually (fi gure 10), then these models are
imported into the bubble system; after the system gets a solution, the plan and
3D model of the solution are produced automatically (fi gures 11, 12).

Employing this method every agent in the system holds full 3D informa-
tion. This project suggests a design mode that designers can both work with

Figure 7. Courtyards in Dali, China
 (http://blog.sina.com.cn/s/reader_4c8dfded01000e9b.html, 2008-09-18).

Figure 8. Three stages of the generative process.

H. HUA AND T.-L. JIA182

their modeling software and benefi t from automated spatial arrangement of
generative system.

6. Conclusion

These applications stemming from the basic fl oating bubble system indicate
that effi cient is agent-based system for layout planning in terms of adjacency
topology. Moreover, these systems don’t lose the compatibility to combine
other objectives such as transportation, shape constraints, space order and so
on. As a result, more generative tools can be developed from the basic fl oat-

Figure 9. Two-storey layout arrangement, Clouds Collective project.

Figure 10. Modes of elements by Revit.

Figure 11. Plans of a solution.

FLOATING BUBBLES 183

ing bubble system. It is also reasonable that other agent-based programs could
take the rules from bubble system as an attachment to their own systems, for
it is sometimes true that adjacency issue is not the concentration of architects
but a basic consideration in designs.

After all, in contrast to classic methods of searching a good state base on
grids, fl oating bubble system leads to diversity rather than deterministic solu-
tions, and towards complexity rather than fi nite forms.

References
Hensel M. and Menges A.: 2008, Versatility and vicissitude: performance in morpho-ecological

design, Wiley-Academy, London.
Li, B.: 2007, A generic house design system based on multiagents: expertise of generating archi-

tectural plan, in G. Yu, Q. Zhou and W. Dong (edss), CAADRIA 2007, Nanjing, 191–198.
Manning, P.: 1964, An approach to the optimum layout of single-storey buildings, The archi-

tect’s journal information library, 17, 1373–1380.
Mitchell, William John.: 1977, Computer-aided architectural design, Van Nostrand Reinhold,

New York, 425–474.
Ruch, J.: 1978, Interactive space layout: a graph theoretical approach, Design automation con-

ference proceedings 15, IEEE/ACM, SIGDA, 152–157.
Weinzapfel, G. and Handel, S.: 1975, IMAGE: computer assistant for architectural design, in

C. Eastman (ed.), Spatial synthesis in computer-aided building design, Wiley, New York,
61–68.

Figure 12. 3-D model of the solution.

