Embracing the Post-digital

Dominik Holzer
Spatial Information Architecture Lab (Sial), RMIT University, Melbourne Australia
dominik.holzer@rmit.edu.au

Abstract
This paper discusses ways for designers to reconnect their design methodologies with the process of making. The paper takes a critical standpoint on the way architects have integrated digital tools and computational processes in their design over the past three to four decades. By scrutinising the support designers can derive from their virtual design-space it is debated in how far this may be complemented by sensory information-feedback from the physical design-space. A studio-based design project is used to illustrate how students have approached this issue to address aspects of building performance in a post-digital way. Moving between digital and physical models without difficulty, the students were able to study the effects geometrical changes on sustainability-performance in real time.

1. Introduction

Decades after its initial use in the media and its adoption in everyday life, the description 'digital' still maintains a notion of newness, correctness or even 'betterness'. The idea that every little piece of information we use, the medium that carries it and even the tools that process it can be based on a binary logic of ones and zeros adds the notion of order and control. In addition to that we associate 'digital' with speed, precision and unlimited possibilities of sharing standarised information with others.

As for architects, there has been a substantial transition in dealing with the 'digital'. Whilst embracing computational tools to digitally reproduce their traditional (manual) work-methodology in the early CAD days, architects have engaged in a more philosophical discourse about the digital. This has consequently lead to a move away from materiality and a deeper engagement with the virtual to address the challenges of the information age. As a by-product of this transition which started in the mid 1990s, and assisted by modelling software borrowed from ‘digital’-animation, architects began to experiment with shapes and structures that did not follow conventional rules of materiality and physics. This movement was soon proclaimed as ‘blob architecture’ and it was later described as 'happy accident'. In retrospect, few projects from this era have been realised. The main reason for this may be the level of complexity of these projects, combined with a lack of knowledge by architects on how their non-standard designs would perform and how to actually build them. At the same time it illustrates the fixation of many architects on visual aspects of design and their appetite for the spectacular.

In parallel to the above mentioned development, we have seen a drastic change in the way designers and design-consultants work. The hegemony of paper based

---

1 see Perella, S. “Hypersurface architecture and the question of interface” Interfacing Realities, V2 Publishers Rotterdam, pp Z23, 1995
design and physical model-making has gradually been taken over by the possibilities offered by digital tools for drafting, representation and simulation. These developments have certainly brought benefits to designers and their consultants to augment their capabilities. Over the past decades, engineers have become confident in the use of digital processes to analyse and test specific aspects of building performance. Architects on the other hand have become more dependent on engineers as their own digital modeling tools do not allow them to derive basic feedback of building performance for their design. This, and the lack of sensory information-feedback from haptic investigation with physical models has lead to the fact that architects have increasingly isolated themselves from the process of making.

2. Design heuristics

Back in the early 1970s when Negroponte first described the use of computational tools in the arts, he noted that the creative thinking of a designer can get affected by the ‘machine’ and he explored how human-machine interaction can assist in a plethora of decision making processes in a design environment. As consequence of his observations Negroponte urged designers to draw a distinction between heuristics of form and heuristics of method and to find ways of taking advantage of digital technology to pursue both of these. Whilst heuristics of form relates more to an investigation of space, geometry and structural systems, heuristics of method implies a far deeper investigation on how creative design processes unfold, how they can be made explicit, and how they can be shared with others.

In this 'digital' age architects rather seem to investigate heuristics of form through digital means to assist their drawing. This is taken to the point where morphological explorations of some architects push the limit of geometrical experimentations for the purpose of testing ‘what is possible’. Some investigations for the use of digital processes as form-generators have had positive side-effects to the development of the architectural profession. By introducing aspects of ‘time’ to their design-methodologies, architects and design-researchers have increasingly become involved in ‘thinking in processes’ and the exploration of dynamic systems. This has lead to a diverse design-culture which adopts techniques and methods of form finding from various backgrounds through the support of digital processing and simulation. The inclusion of computational tools for morphogenesis has allowed designers to learn letting go of total control over their design process and to allow the computer to surprise them with unexpected results. In addition to this, the more playful use of design software has enabled us to generate a plethora of design variations for comparison and selection. The designer’s perception about the end-result of his/her investigation has shifted. We are no longer pursuing the idea of producing ‘the perfect design’ but we are now able with little or no extra effort to producing a series of possible solutions to choose from.

---

Why is this such an important step, and why do we need to progress beyond it?

The way we have previously applied digital processes for our design in CAD has rather alienated us from our intuitive design-methods. Most of the current standard design-tools are of a prescriptive nature as they ask users to perform tasks in a certain way. We are now in search for tools that will allow us to interact more intuitively with our digital and non-digital design-space. After interviewing a multitude of expert designers over three decades, Lawson asserts that computational tools can only become real design partners in our profession if they link into cognitive processes that support our creative design thinking. Central to this is the ability of juggling different ideas simultaneously and to confidently deal with uncertainty. Polanyi argues that emotional affection is often crucial to the development of hunches and informed guesses in creative acts of discovery. In this context he describes in more detail how acts of discovery involving conceptual and sensory information lead to the build-up of what he calls ‘tacit’-knowledge that is highly personal. Lawson has picked up this argument and he has researched its relevance in design practice.

3. Defining the ‘Post-digital’

Having to work with a computer tool that does not represent knowledge the way you do may cause considerable interference in your thinking.

We can follow from the above statement that the designer’s interaction with computational software is a highly personal matter. If we individually learn to understand and develop the rules of engagement between our own design thinking and the support we derive from digital processes we can progress the status quo to develop our own distinctive design methodology and foster it by digital means. In this process we are neither stigmatising the use of one nor the other, but we are exploring our personal boundaries for applying them in synergy as a matter of course. This is a post-digital approach.

4. Studio-based investigation

In order to test the above theory, the author has conducted a design-studio at RMIT University where students were asked to explore the ‘aesthetics of performance’ and to investigate the various implications of using both analogue and digital design methods to achieve this goal.

During the first half of the semester, architecture students developed their personal design methodology on the basis of simple small-scale projects. The purpose of these tasks was for students to gain ‘rule-of thumb feedback’ about rudimental design questions related to structural, acoustic, and environmental performance. The students were asked to advance the aesthetic and formal aspects of their individual projects with each of the above performance criteria in mind. By doing so, the focus did not lie in the formal definition of the end result, but on the process of negotiating and integrating performative aspects of building design in a concurrent way. Each

---

7 see Polanyi, M. The Tacit Dimension, Doubleday, Garden City, New York, 1967
8 see Lawson, B. What Designers Know, Elsevier Architectural Press, Oxford, 2004
student had to find his/her own balance in applying digital 3D design-tools, scripting, physical modeling, or a combination of the three to achieve this goal. Nearly all students chose to address this task mainly through physical model making. When asked for a reason they responded that they were unable to find adequate digital tools that would assist them to test the performance quickly and intuitively enough to act as design driver to generate their simple structures and shapes (figure 1).

Figure 1. Simple structural and acoustic models

In the second half of the semester, students were working on a building-related sustainability project which included the generation of sun shading options for achieving maximum daylight entry with minimum solar gain for a façade. Once the students were aware of the basic implications various shading options bring to bare, they were encouraged to start designing with shading performance in mind. This implies a step away from understanding shading as a technical add-on to a façade, to creating shading options which strongly influence the appearance of a building. In the beginning of the exercise most students were again relying on their physical model-making skills to gain tacit knowledge about the relation between shading options, sun angles and the shadows that were cast. They built basic models from cardboard and placed a spot-light to simulate correct sun-angles. While progressing from basic to more elaborate models, they found their design method to be limited by the time-constraints of building new physical models and the lack of precise performance-feedback from them. The observation could be made that once students had reached a point where they wanted to explore more complex, non repetitive shading options, or shading devices for irregularly shaped buildings, they were willing to extend their investigation into the virtual world. In contrast to the earlier investigation with structural and acoustic models, they did find digital tools for testing environmental performance (in particular Ecotect™) that allowed them to intuitively connect their design thinking to knowledge representation.

In many cases this occurred by first re-creating their latest physical model computationally to compare it to the virtual one. This was undertaken to gain confidence in the accuracy of the tool they were using and their capability to simulate a real-life scenario computationally. Once this was achieved, students then continued their design process by creating several versions of their models and testing their shading-performance and material usage in real time. This way they could extract valuable information about the effects of geometrical alterations to optimize building performance in an iterative process (figure 2).
Figure 2. Sustainability project, digital exploration

The uptake of digital technology as design-driver varied from student to student as did the goals that could be achieved by it. Whereas some students used their digitally augmented models to have more options to choose from, others used them to refine one specific design solution and others again used them to extract bill of quantities to compare material usage to shading efficiency. The immediacy of gaining feedback from daylight analysis under varying conditions was of greatest importance to advance the design in all cases. As a final step students used rapid prototyping to produce a physical model once the digital investigation had given them satisfying results. The step back from the digital to a physical model appeared to be necessary to assure them the validity of their exercise. The physical model still seemed to reveal aspects that otherwise might have been overlooked in their virtual counterpart. When asked about the reason for this, students argued that their bodily movement around the model while simultaneously analysing their design as a whole offered them a better understanding of the outcome.

5. Conclusions

What mattered in developing a project in a post-digital way was that the following: Students could instantly comprehend the sustainability-task, produce hands-on physical models with simple materials, address performance issues by positioning physical spot-lights and then managed to reproduce the models virtually and to run basic daylight-analysis software. Through instant versioning and by flipping back and forth between the analogue and the digital models they advanced their design with constant performance checks and finally they were able to compare the effects of geometrical changes on the building-performance in real time. (figure 3).

Figure 3. Sustainability project: transition physical-digital-physical

Acknowledgement:

Work from studio participants: Chris Seaman, Yuhong Wrong, Kate Milligan, and Allison Claney