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Abstract  
The A-buffer (anti-aliased, area-averaged, accumulation 
buffer) is a general hidden surface mechanism suited to 
medium scale virtual memory computers. It resolves visi- 
bility among an arbitrary collection of opaque, tran- 
sparent, and intersecting objects. Using an easy to com- 
pute Fourier window (box fl ter),  it increases the effective 
image resolution many times over the Z-buffer, with a 
moderate increase in cost. The A-buffer is incorporated 
into the REYES  3-D rendering system at Lucasfilm and 
was used successfully in the "Genesis Demo" sequence in 
Star Trek II. 
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1. Introduction 

There are many hidden surface techniques known to com- 
puter graphics. A designer of a 3-D image synthesis sys- 
tem must balance the desire for quality with the cost of 
computation. The A-buffer method, a descendant of the 
well-known Z-buffer, has proven to deliver moderate to 
good quality images at moderate cost. At  each pixel, 
sufficient information is available to increase the effective 
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resolution of the image several times over that  of a simple 
Z-buffer. 

2. Historical Perspective 

The A-buffer belongs to the class of hidden surface algo- 
rithms called "scanline". The REYES (Renders Every- 
thing You Ever Saw) system, of which the A-buffer is a 
part, is a scanline renderer, but scanline order is not 
required by the A-buffer. 

The first scanline algorithms[7] did perspective, clipping, 
sorting, visibility determination, and "filtering" all at the 
same time. They resolved visibility at one point per 
pixel, and aliased terribly, although our standards were 
different then. In 1974, E. Catmull described the Z-buffer 
method[2]. A Z-buffer is a screen-sized array of pixels 
and Z's. Objects, in no particular order, are examined to 
determine which pixels they cover. At  each covered 
pixel, the perspective Z depth of the object is determined 
and compared with the Z in the array. If the new Z is 
closer, then the new Z, and the objeet 's shade at this 
point, replaces the array's  Z and pixel. This development 
started the trend toward modularizing the rendering pro- 
cess, as a Z-buffer could comprise the visibility section of 
almost any kind of renderer. Although extremely fast 
and simple, the Z-buffer aliases too much and cannot 
render transparent objects correctly. 

The aliasing problems of the Z-buffer can be softened 
somewhat by modifying it from a point sampler to a line 
sampler so that  visibility is determined over horizontal 
segments of scanlines[1]. In this way the line Z-buffer is 
very similar to the classical polygon algorithms of Wat- 
kins and others[7]. Polygons are sliced horizontally as in 
Watkins, but no X sorting is done. Instead, polygon seg- 
ments conditionally overwrite others based on Z depth. 
The segment boundaries do not have to be coincident 
with pixel boundaries. This added information clears up 
aliasing of nearly vertical edges. However, nearly hor- 
izontal edges still alias and dropouts of small objects still 
occur.  

In 1978, E. Catmull introduced the "ul t imate" visibility 
method[3], a full polygon hidden surface process, based 
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on Weiler-Atherton[8], at each pixel. Dropouts are pre- 
cluded, as every sliver is accounted for. The color of the 
resulting pixel is simply the weighted average of all the 
visible polygon fragments. This can be extremely expen- 
sive. It is so expensive that  it 's primary use is in 2-D ani- 
mation of a few fairly large polygons. In that  applica- 
tion, most pixels are completely covered by some polygon, 
where the hidden surface process has a trivial solution. 
Pixels needing the full power of the visibility resolver are 
rare, and so the total  cost per frame is acceptable. 

polygon against another becomes a simple boolean opera- 
tion. The mask is similar in several ways to the mask of 
Fiume, Fournier and Rudolph[4], although both were 
developed independently. 

Silhouettes of objects still exhibited coarse intensity 
quantization effects, so the actual screen area of 
subpixel-sized polygons was kept with the mask. When- 
ever possible, the actual area is used instead of the bit 
count in the mask. 

3. Goals  and C o n s t r a i n t s  

The visibility techniques described above span a wide 
range of computational expense and image quality. What  
is needed is a method that  combines the simplicity and 
speed of the Z-buffer with the two dimensional anti- 
aliasing benefits of Catmull 's  full polygon process at each 
pixel. 

The method must support all conceivable geometric 
modeling primitives: polygons, patches, quadrics, fractals, 
and so forth. It must handle transparency and intersect- 
ing surfaces (and transparent intersecting surfaces). It 
must do all this while being fast enough for limited pro- 
duction using a DEC VAX 11/780. 

6. T h e  A - b u f f e r  A l g o r i t h m  

The A-buffer works with two different data  types: "pixel- 
structs" (distinct from pixels) and "fragments". A pixel- 
struct is two 32-bit words (figure 2), one containing a Z 
depth and the other either a color or a pointer. A frag- 
ment (figure 3) is for the most part  a polygon clipped to a 
pixel boundary. Pixelstructs occur in an array the size 
and shape of the final image (like the Z-buffer). In 
REYES, the array is paged in software to save virtual 
memory space. If a pixel is simple, i.e. completely 
covered, the Z value is positive and the pixelstruct con- 
tains a color. Otherwise, the Z value is negative and the 
pointer points to a list of fragments sorted front-to-back 
by frontmost Z. 

4. S t r a t e g y  

The rendering system (REYES) in which the visibility 
processor was to reside began to take shape in mid 1981. 
Adaptive subdivision[5] (splitting geometric primitives 
until "fiat" on  the  s c r e e n  ) would produce a common 
intermediate form: polygons. Everything would be con- 
verted to polygons in approximately scanline order, as the 
picture developed. The polygons would be thrown away 
after the visibility resolver had finished with them and 
their memory space would be used for polygons to be 
created later. To reduce the scope and complexity of the 
visibility resolver, polygons would be clipped to pixel 
boundaries. The visibility resolver would only have to 
deal with one pixel at a time. 

In a virtual memory computer, like the VAX, code space 
is not a serious limitation, so it was decided to optimize 
the algorithm for the common cases and write potentially 
voluminous code for the unusual situations. 
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Figure  1. P ixe l  bi t  mask .  

float z; /* negative Z */ 
fragment_ptr fiist; /* never null */ 

(or) 

float z; /* positive Z */ 
byte r, g, b; /* color */  
byte a; /* coverage */ 

Figure  2. P ixe l s t ru c t  definit ion.  

5. G e o m e t r y  inside the  pixel  

The geometric information inside a complex pixel is vital 
to the correct display of the pixel. Pictures produced by 
REYES had to be free of aliasing artifacts. The aliasing 
deficiencies of the simple Z-buffer precluded its use. More 
resolution inside the pixel was called for, but a full 
polygon intersector/clipper was too expensive. After 
some experimentation, a 4x8 bit mask (figure 1) was 
selected to represent the subpixel polygons. Clipping one 

fragment_ptr next; 
short int r, g, b; /* 
short_int opacity; /* 
short_int area; /* 
short_int object_tag; /* 
pixelmask m; /* 
float zmax, zmin; /* 

Figure  3. F r a g m e n t  

color, 12 bit */ 
1 - transparency */ 
12 bit precision */ 
from parent surface */ 
4x8 bits */  
positive */ 

definit ion.  
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The following discussion contains several symbols which 
we define here: 

M 4x8 bit mask 
A area (0..1) 
C color (r, g, b) 
Op ac i ty  1 - transmission fraction 
o~ coverage, usually area times opacity[6] 

Sorting in Z is necessary for two reasons. Proper calcula- 
tion of transparency requires all visible transparent sur- 
faces to be sorted in Z. The other benefit of a Z-sort is 
that fragments from the same geometric primitive tend to 
cluster together in the list and so can be merged. For 
example, a bicubic patch may be turned into several 
polygons. These polygons are all from the same continu- 
ous parent surface, but they may be chopped into frag- 
ments in an unpredictable order (depending on screen 
orientation, etc.) (figure 4). Merging two or more frag- 
ments simplifies the data structure and reclaims the space 
used by the merged-in fragments. If the result is opaque 
and completely covers the pixel we cannot with certainty 
reclaim hidden fragments, as they may be part of an 
incomplete intersecting surface. 

The process of merging fragments is fairly straightfor- 
ward. Fragments are merged if and only if they have the 
same object tag and they overlap in Z. This test is per- 
formed whenever a new fragment is added to a pixel- 
struct list. Object tags are integers assigned to continu- 
ous non-self-intersecting geometric primitive objects, like 
spheres and patches. The tag is augmented by a bit indi- 
cating whether the surface faces forward or backward, so 
as to prevent improper merging on silhouettes. If the 
fragments do not overlap on the screen (M 1 n M2 = 0) 
then the bitmasks are or'ed, the colors blended 

C---- C 1 X A 1 -{- C 2 X A 2 

and the areas added. If they overlap (which is highly 
abnormal), they are split into three parts. 

Mfront-only ~ Mfront n "~'Mback 

Mback_only ~ Mback n ~Mfron t 

Moverlap ----- Mfront n Mback 

The contribution of the front fragment is computed, 

Otfront ~ Afront_only -{- OpacitYfron t X Aoverla  p 

the col'ors blended, 

C ----- Otfron t X Cfron  t q- (1 - O~front) X Cback  

and the area computed. 

Aback-only 
A ~ A f r o n  t -k Aback X 

Aback__only "k Aoverla p 

When no more fragments are to be sent to a pixelstruct, 
the pixelstruct's color is determined and written into the 
picture. Generally, the pixel will be fully covered by 
some object and a few pixel-sized fragments will remain. 
If any fragments are present, a recursive packing process 
is invoked. 

2 

11 

O 

12 

F igure  4. T y p i c a l  f r a g m e n t  arr ival  order.  

7. P a c k i n g  f r a g m e n t s  

Area-averaging means the color of a pixel is computed by  
the area-weighted average of the colors of the visible sur- 
faces contained in the pixel. The problem is, then, how 
to determine the visible fragments and visible parts of 
fragments. 

To understand the method used in the A-buffer, consider 
the following simplified example. Assume, for the 
moment, no transparency and no intersecting surfaces. If 
the fragment at the front of the list covers the pixel, we 
are done; otherwise, it covers part of the pixel. We 
divide the pixel into two parts, inside and outside, using 
the fragment's mask. The contribution of the inside part 
is the color of the fragment weighted by its area. The 
contribution of the outside part is some yet to be 
discovered color weighted by the complement of the 
fragment's area. 

C ~ Cin X Ai n + Cou t X (1 - A i n  ) 

The yet to be discovered color is found by recursively cal- 
ling the packing routine with the outside mask to 
represent the rest of the pixel and a pointer to the next 
item in the fragment list. 

We can now describe the method in more detail. We 
start the packing process with a full 32 bit search mask 
to represent the entire pixel. Fragments are considered 
only if they overlap the search mask. When all or part of 
a fragment is found within the search mask, the search 
mask part of the pixel is partitioned using the fragment 
mask. 

Min ~ Msearch n Mf 

Mout ~--- Msearch n ~ ,Mf  
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If Mou t ~ 0 we use a recursive call with Mou t as the 
search mask to find the color of the rest of the searched 
area. If the fragment is transparent, a recursive call 
using Min as a search mask is used to find the color of 
the surfaces behind the fragment to be filtered by the 
color of the fragment. 

Cin  ---- Opac i ty f  X Cf + (1 - Opaclty¢) X Cbehind 
The composite coverage is computed similarly. 

O/in = Opac i ty f  X O/f + (1 - Opacity¢) X O/behind 

Otherwise, the color of the fragment suffices for Cin. 
When we have the colors of the inside and outside regions 
we blend them weighted by their coverage. 

O/in X Cin  -{- O¢ou t X Cou t 
Creturned = 

O/in -F O/out 
For all but the first fragment on the list, we use the 
number of one bits in a mask to estimate area. 

Now for intersections. 

Pixels where intersecting surfaces are visible usually 
number in the dozens or hundreds in a typical 512x512 
resolution picture. Also, the antialiasing along the line of 
intersection is not quite as critical as that on a silhouette, 
for example, because the contrast is often lower. These 
observations suggest we can get by with simple approxi- 
mations. 

Since no orientation information (vertices or plane equa- 
tions) is kept in a fragment, we define an intersection to 
occur when the object tags differ and the fragments over- 
lap in Z. This works satisfactorily in all but a few cases. 
Since we don't  know exactly how much of the frontmost 
fragment is visible, we estimate it from the minimum and 
maximum Z values (figure 5). 

ZmaXnext- Z m l n f r o n  t 
Vis f ron  t = 

(Zmax - Zmln)front + (Zmax - Zmin)nex t 

Since part of the front fragment obscures the next frag- 
ment and vice versa, we need to estimate the weighting 
factor to be used to blend the two fragment's colors. 

o/in = Vi s f ron t  X OpacitYfron t 

4- (1 -- Vis f ron t )  X (1 - O/next ) 

EY E 

Figure 5. 

Zminnext Zmaxfront 

Visfr°nt I 

Zminf~ont Zmaxnext 
Z D 

Visible fraction of  front fragment.  

Pack_under_mask (fragment_ptr, mask, r, g, b, a) 

if this is the last fragment on the list 
return fragment's color and coverage 

else 
find inside and outside masks 
if outside mask not empty 

find color and coverage of outside area 
(recursive call with outside mask) 

if fragment is transparent or overlaps in Z with next on list 
find color and coverage of what's behind 

(recursive call with inside mask) 
if nothing hidden behind the fragment affects its appearance 

return a blend of the fragment and the outside area 
else 

if Z's overlap with next fragment (maybe transparent) 
estimate visibility ratio 
estimate coverage of fragment 
blend fragment with what's behind it 
return blend of inside and outside 

else (just transparent) 
blend fragment with what's behind it 
return blend of inside and outside 

end 

Figure 6. Fragment packing procedure. 
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This is the sum of the unobscured part of the front frag- 
ment and the part of the front fragment filtered through 
the other fragment. Given these factors, we blend the 
front fragment with the other fragment within the inside 
mask. 

Cin ~ O/in X Cfron t -{- ( 1 -  O~in ) X Cnext 

Then we blend the inside and outside part. 

O/in X Cin ~ O~ou t X Cou t 
Creturned 

O/in -{- O~ou t 

A high level pseudocode description of the packer is given 
in figure 6. 

8. I m p l e m e n t a t i o n  de ta i l s  

The A-buffer is implemented in approximately 800 lines 
of C, including a substantial amount of debugging code. 
All arithmetic is done in fixed point (except for Z). There 
are two heavily used procedures inside the system that 
ought to be described in more detail. 

The first is the bitmask constructor, which is designed to 
work correctly given arbitrary polygons. It begins with a 
polygon that  has been clipped to a pixel boundary. The 
polygon bitmask is built up by exclusive or'ing together 
masks derived from the polygon's edges. Each polygon 
edge defines a trapezoid, bounded by the edge, the right 
side of the pixel, and the projection of the ends of the 
edge toward the right side of the pixel. (figure 7) The 
edge mask is constructed by or'ing together row masks 
taken from a table indexed by the quantized locations of 
the intercepts of the edge. The exclusive or of all these 
masks leaves one bits in the interior and zero bits else- 
where. All this sounds complicated, but it rarely involves 
more than eight boolean operations. 

OOOO~.Q_Q_.O_. 
O O ~ g $ O @  
0 0 # , , 4 0 0 0 0 0  
OOOOOOOO 

Figure 7. Polygon edge mask. 

The other process computes the coverage ("area") of a 
polygon mask. Since the VAX has no bit counting 
instructions, the method is to strip off four bits at a time 
and look up the bit count in a table. The whole pro- 
cedure can be put into a single C expression which gen- 
erates efficient machine code. 

9. Results 

The REYES system, incorporating the A-buffer, has been 
used to make thousands of pictures. Figure 8 shows a 
magnified silhouette of the top of a teapot. Note the 
softness of the edge, even though the box filtering limits 
the edge intensity ramp to one pixel width. The Utah 
teapot, which appears in figures 8 and 9, is constructed so 
that  its handle and spout penetrate its body. This is a 
common geometric modelling technique which avoids the 
explicit (and nearly intractable) calculation of the inter- 
section curve. Figure 9 is a closeup of the upper part of 
the handle. The color of pixels through which the inter- 
section curve passes is clearly a blend of the handle and 
body colors. Figure 10 is the "Genesis device". It is a 
collection of spheres, patches and polygons inside a par- 
tially transparent cylinder with quadrically modelled 
engines on the outside. Stars can be seen through the 
cylinder. All of figure 11, with the exception of the parti- 
cle system grass plants, was rendered by REYES. The 
background of the picture was computed at 1024 lines 
and the foreground at 2048 lines resolution. 

We have described a successful, relatively uncomplicated, 
anti-aliasing hidden surface mechanism. Like all visibility 
resolving methods, the A-buffer has its strengths, 
weaknesses, and limitations. It was designed to process 
the vast majority of pixels with minimum effort and max- 
imum precision, spending compute time only on excep- 
tional cases. On the other hand, the approximations used 
in the fragment intersection code can go astray if several 
surfaces intersect in the same pixel, and, of course, one 
cannot expect polygons smaller than the bitmask spacing 
to be sampled faithfully. Recognizing these limitations, 
we have found the A-buffer to be a practical, reliable 
means of producing synthetic images of high complexity. 
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Figure 8. Detail  o f  t eapot  si lhouette.  (4X) Figure 9. Detai l  o f  t eapot  handle  intersection. (8X) 

Figure 10. Genes lsdevlce .  (4X) Figure 11. Road  to  Po int  Reyes.  
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