
1

Making Designs Come Alive: Using Physically Based
Modeling Techniques in Space Layout Planning

Scott A. Arvin, Donald H. House
Visualization Laboratory, Department of Architecture,
Texas A&M University, College Station, TX. USA

Keywords: physically based space layout, physically based design, responsive design,
space layout planning, computer-aided design, human-computer interaction.

Abstract: This paper introduces the concept of responsive design. It elaborates this
concept as an approach to free form, adaptable, automated design applying
physically based modeling techniques to the design process. Our approach
attempts to bridge the gap between totally automated design and the free form
brainstorming designers normally employ. We do this by automating the initial
placement and sizing of design elements, with an interactive engine that
appears alive and highly responsive. We present a method for applying these
techniques to architectural space layout planning, and preliminary
implementation details for a prototype system for developing rectangular,
two-dimensional, single-story floor plans.

1. INTRODUCTION

During schematic building design, an architect develops an overall aesthetic
motivation for the building, while trying to arrange individual spaces so they meet
the adjacency and area requirements specified in the functional program. The
process is often thought of in terms of sculpture, where a design is molded, formed,
and massaged. Architects view a building design as constantly evolving and
rearranging while they modify existing designs and discover new ones. There has
been much research in the past few decades into ways to automate the design
process, but most suffer from a lack of intuitive user interaction and a discontinuity
with the design language of architects. Architects typically resist using these tools
because they tend to be inflexible, prescribing designs rather than allowing the
architect to discover designs.

246

Now, imagine a drawing of a floor plan that is constantly moving, shifting and
changing as the designer works on it. If a room is moved out of the building
envelope, the building closes in and repairs the hole. If the room is replaced in a
different location, the rooms around it adjust to make space for the new addition
while remaining the size they need to be. The drawing responds to these changes by
managing adjacency and area requirements, allowing the architect to concentrate on
design. One could call this responsive design.

As we envision it, responsive design is a process that allows a designer to easily
make decisions whose consequences immediately propogate throughout the design.
Such a responsive design process would be automated, natural, intuitive, flexible,
and interactive. It would be automated in that given a set of design intentions, a
design solution can be produced. It would be natural in that design elements and
intentions are specified in the working language of the designer rather than a low-
level representation. It would be intuitive in that the individual elements and the
overall design act in expected ways. It would be flexible in that designs are easily
modifiable and the design process does not specify the “best” design, but enables
designs to emerge. Finally, it would be interactive in that responses to user inputs
happen in real time.

We are attempting to create a methodology for a responsive design process by
applying physically based techniques to architectural space planning. Although we
believe that responsive design can be applied to many graphic design domains, space
planning is a relatively simple and well-studied area in which to begin to understand
and apply the complexities of this methodology.

In our approach the architect defines programmatic objectives in the usual
manner, which are then modeled as physical objects and forces used in a dynamic
physical simulation. We model spaces as masses, with adjacencies between spaces
modeled as springs connecting the masses. Objectives specified in the architectural
program are translated into forces applied to the masses. A dynamic simulation
proceeds allowing the mass-spring system to quickly reach equilibrium. The
designer then modifies and adds objectives by directly manipulating the graphic
model rather than by re-specifying design objectives in the language of the
underlying system. The mass-spring representation allows the graphic model to
immediately adapt to those changes. It is important to note that we do not intend to
simulate the actual behavior of building elements, but to simulate the way architect’s
may view and interact with design elements during their conception. One way to
think about this approach is that it simulates the design behavior of voids rather than
the actual behavior of solids.

It can be argued that given enough computing resources, it may be possible for
most design methods to be made responsive. The mathematical and computational
requirements in physically based modeling are much more extensive than those
required by 3D graphics, so why use this approach? First, physical laws are
ingrained in all of us, whether or not we know the mathematics behind them. Our
minds and bodies know the physics of structure and motion, otherwise we would not
be able to survive. Even though we do not think of spaces and walls as being alive
and moveable, spaces that move based on design intentions and that act like physical
objects should be intuitive to the user. Second, working with a model whose motion
is a result of mass-spring interaction should give somewhat the same feeling as
working with a deformable substance such as clay. Third, it is conceptually simple
from the user’s point of view. Rather than having to define a long list of highly
specific knowledge-based rules, the designer can think in terms of where a space

. Making Designs Come Alive: Using Physically Based Modeling
Techniques in Space Layout Planning

247

wants to be, which is translated by the system into a force that moves the space. The
underlying dynamic computation is complex, but the conceptual interface can be
fairly simple and intuitive. Finally, it provides a means for finding a locally
optimum design solution.

Our approach combines the advantages of automation and manual flexibility by
producing a locally optimum space layout solution from an initial arrangement of
spaces, and then letting the designer design. An approach that provides a globally
optimum solution can be inflexible and may not be as useful to designers.

Preliminary results of using physically based techniques on simple floor plans
indicate that this responsive approach is extremely promising. We have to date been
focusing our efforts on a pilot study, developing this approach for single story,
rectangular spaces. But even on simple models it feels natural and fun to move
spaces around to try out many designs. The ease and speed of generating and
manipulating new designs allow new and more interesting ideas to emerge that
would be more difficult to discover with non-responsive approaches.

2. BACKGROUND

There exists a wide body of research into automated space planning methods.
We present here just a few of those methods that contrast with ours. We then
describe the concept of physically based modeling and review some of basic
components used in physically based simulations.

2.1 Automated Space Planning

Architectural space layout problems tend to be ill-defined (Yoon, 1992, p. 8) and
over-constrained. Problems that are not well-defined are ill-defined (Simon, 1973),
in that the initial constraints on the problem are not fully formulated. Resolving ill-
defined problems is a process of searching for and refining a set of design
constraints. Problems that are over-constrained have too many possible solutions
(Balachandran and Gero, 1987). Automated space planning systems need a method
of providing a good solution from a large set of possible solutions, and a method of
allowing the designer to modify the set of design constraints to continuously refine
the problem definition.

Some approaches to automated space layout planning use an iterative process of
constructive initial placement, in which spaces are positioned one at a time (Liggett
and Mitchell, 1981; Flemming and Chien, 1995). In these approaches, an ordering
function is needed to determine which space to position first.

Some approaches are generative in nature, in that they seek to produce all or a
large number of the possible designs within a design space. Some examples are
evolutionary design techniques (Jo and Gero, 1998; Gero and Kazakov, 1998), and
shape grammars (Flemming, 1987).

Methods of producing optimal space plans have been the focus of many
approaches such as Liggett and Mitchell (1981).

Constraints have been used in architectural design (Gross, 1986) in, for example,
three-dimensional solid modeling (Tobin, 1991; Martini, 1995), and space layout
planning (Yoon, 1992).

248

One of the most notable and extensive research projects in recent years is the
“Software Environment to support the Early phases in building Design,” or SEED
(Flemming and Woodbury, 1995). SEED partitions the schematic design problem
into a variety of modules, one of which is SEED-Layout (Flemming and Chien,
1995). SEED-Layout supports design space exploration through an iterative,
constraint based approach that can be either manual or automated. It also supports a
case-based approach where previous designs can be used to produce new designs.

2.2 Physically Based Modeling

Physically based modeling is a subfield of computer graphics and visualization.
It attempts to represent dynamic motion and changes in geometry by modeling
objects as mechanical elements that behave according to the laws of physics.
Dynamics are most often derived by the use of forward numerical simulation over
discrete time intervals. In a forward simulation, the system is moved from its state at
the current time to its state at the next discrete time step, using forces to determine
accelerations, and thus changes in velocity during the time step, and velocities to
determine translations. The process of making this forward extrapolation is called
numerical integration. An excellent introduction to the concepts of physically based
modeling and a practical guide to the implementation of these concepts in the
computer is given in Witkin and Baraff (1997).

Physically based modeling has been used to model the realistic behavior of rigid
bodies (Barzel and Barr, 1988; Baraff, 1989) as well as deformable models
(Terzopoulos et. al., 1987). Others have recently begun to use dynamics in
geometric design. Qin and Vemuri (1998) and Mandal, et. al. (1997) use physically
based techniques to interactively manipulate smooth surfaces of arbitrary topology.
In their approach, a user defines the points of an initial control mesh, which are
manipulated by applying synthesized forces until the desired shape is achieved.

Harada et. al. (1995) use a physically based approach to allow for discrete and
continuous manipulation of generalized floor planning problems. They demonstrate
their approach on architectural floor plans represented as rectangular dissections, as
well as circuit board layout and page layout.

There are three key concepts in physically based modeling needed to understand
the rest of this paper. These are the spring-mass-damper modeling element, and the
notions of colliding and resting contact between objects.

x0 x1

d01

k01

r01

f0 f1

m0 m1

Figure 1. Two masses connected with a spring and a damper.

Figure 1 shows a simple spring-mass-damper system. It consists of two points

with mass m0 and m1 connected by a spring with spring constant k01 and a dashpot
with damping constant d01. The spring exerts forces on the two masses with

. Making Designs Come Alive: Using Physically Based Modeling
Techniques in Space Layout Planning

249

magnitude proportional (with proportionality constant k01) to the difference between
the rest length r01 of the spring and its current length. The direction of the force will
be along the line connecting the point masses. As the masses move farther from each
other, the spring applies a force to try to move them closer, and as they move closer
the spring tries to separate them. The dashpot is attached in parallel with the spring,
and acts like the hydraulic piston on a screen door closer. It damps the motion of the
masses by producing forces proportional (with proportionality constant d01) to their
relative velocity towards or away from each other, thus reducing the kinetic energy
introduced by the spring forces.

Colliding contact occurs between two objects at that instant in time when they
touch each other, and have a non-zero relative velocity towards each other. Collision
detection is the process of determining if and when two objects collide. Collision
response is the process of determining the result of a collision. (Moore and
Wilhelms, 1988) Two bodies are in resting contact if they are touching each other,
the relative velocity between the two bodies is zero, and the relative acceleration of
the bodies is zero. (Witkin and Baraff, 1997)

3. PROBLEM

Our problem is how to create a responsive design system within the domain of
architectural space planning. Space layout planning can itself be broken down into
two problems, determining topological or qualitative properties, and determining
geometric or quantitative properties (Jo and Gero, 1998; Flemming, 1989). The
topological problem is one of determining the relationship between individual
spaces, without regard to the dimensions of any building elements. The geometric
problem is one of determining the physical dimensions of the building elements.
Both of these problems need to be solved in any approach to space planning.

Our solution to this problem arises out of taking a physically based viewpoint.
We treat each space as a solid with mass. Design objectives are treated as forces that
are applied to these spaces, and collision detection is used to keep the spaces from
overlapping. One of the primary advantages of using a physically based approach is
that it is possible for all design objectives to have an effect on the final location of
plan elements.

4. IMPLEMENTATION

In applying physically based techniques to space planning, the first problem is
how to represent the elements of a space plan such that forces can be made to act on
them. The second problem is how to represent architectural design objectives as
forces that can be applied to these elements. It is useful to think of design objectives
as wants or needs. For example, space A “wants” to be next to space B, or space C
“needs” to be 200 square feet in area. It then becomes easier to understand and
define the physical forces needed to accomplish the design objectives. Figure 2
shows a single space with forces acting on its elements. Arrows labeled with a
represent forces applied to the space location, and that may change the way this
space relates to another. Arrows labeled with b represent forces applied to the

250

polygonal edges of the space boundary, and that may change the geometric position
of the edges.

a1

a3

a2

b2

b3 b1

b6
b4

a: Forces applied to the
space location.

b: Forces applied to the
polygonal edges of
the space boundary.

b5

Figure 2. Simple space with forces acting on its elements.

In this section we present the details for implementing a physically based space
planning system. We discuss how to represent spaces with polygonal boundaries and
nodes that can be used in a dynamic simulation, how to represent design objectives
as forces that can be applied to nodes, and the process for resolving a space plan
from a given set of design objectives.

4.1 Node types

A node is a point in space on which a force can be applied. The data structure
representing a node in our implementation contains values for mass, position, and
velocity, as well as a force accumulator and other geometric information that may be
required for each node type. Each unique node type has its own graphic
representation. Nodes are typically connected to other nodes by springs. The type of
the node determines how its movement, and the movement of the node to which it is
connected, is constrained. The two types of nodes we use are the point node and the
line node.

x(t) x(t)

f
f

x(t+∆t)

x(t+∆t)

f′

n

d

a b

Figure 3. Node types.

Point Node. A point node is the simplest type. The data structure for a point
node stores typical node information, and it is displayed as a dot. A force applied to

. Making Designs Come Alive: Using Physically Based Modeling
Techniques in Space Layout Planning

251

it is not constrained in any way. Figure 3a shows a point node with position x(t) at
time t, with a constant force f applied to it, and no initial velocity. x(t) is accelerated
in the direction of f so that at time t+∆t it is at position x(t+∆t).

In our implementation we use point nodes to define the center of spaces.
Line Node. A line node defines an infinite line passing through a point. Any

forces applied to a line node are constrained to act perpendicular to the line it
defines, thus preserving its orientation. The data structure for each line node
contains unit direction and unit normal vectors in addition to the typical node
information. A position and a direction are all that are needed to define a line; the
additional normal vector is stored so as not to repeat its calculation. A line node is
displayed as a dot with a short bar going through it parallel to the direction vector.
Figure 3b shows a line node with unit direction d, unit normal n, and position x(t) at
time t, with a constant force f applied to it, and no initial velocity. f is constrained to
act along n by

where the ⋅ operator is the dot product of two vectors. x(t) is accelerated in the
direction of n so that at time t+∆t it is at x(t+∆t).

In our implementation we use line nodes to define the polygonal edges of space
boundaries. They could also be used to define linear spaces such as corridors.

4.2 Polygonal shapes

Shapes are limited to polygons with non-crossing edges and are defined as an
ordered list of line nodes, each connected to a common center node. Figure 4 shows
an arbitrary n-sided polygon, with center node c, edge line nodes e, and vertices v.
Each vertex vi can be found as the intersection of the direction vectors of ei and ei⊕1,
where the operator ⊕ is addition modulo n.

e0

e1

e2
e3

e4

e5

v0

v1

v2

v3

v4

v5

c

Figure 4. An arbitrary polygonal shape represented with edge line nodes.

Although this may seem like a complicated way to represent a shape, when used

to define the boundary of a space it allows us to apply forces to individual segments
without having to worry about maintaining their orientation. The typical task in
space planning is to move a wall, not to move the end points of a wall. If a shape

,)(' nnff ⋅=

252

were represented with point nodes at its vertices, in order to maintian orientation any
force applied to one vertex would have to be separated into components that are
applied to its surrounding vertices. For non-orthogonal shapes, computing the
necessary components could get unnecessarily complicated. Figure 5a shows a
rectangle represented with vertex point nodes. A force applied to one of its vertices
as shown results in the non-orthogonal polygon shown in Figure 5b. Figure 5c
shows a rectangle represented with edge line nodes. Forces f1 and f2 applied to its
edges are constrained to yield f1′ and f2′, which act normal to each edge, resulting in
the maintained rectangular shape shown in Figure 5d.

b d

a c

 f f1′ f1

 f2′

 f2

Figure 5. A rectangle represented with vertex point nodes and edge line nodes.

4.3 Spaces

A space defines any arbitrary area or volume. The data structure representing a
space contains a common center node to define its location, and a polygon to define
its boundary. These values are optional, to be able to define any generalized space.
For example, a space used to represent the outside would not need a defined position
or shape, and could be used when a building space needs to relate to the outside.

A space may also contain any number of child spaces. Child spaces may, in turn,
contain their own set of child spaces. In this way, a hierarchy of spaces of arbitrary
depth can be defined, similar to that described by Flemming and Chien (1995). A
parent space and its child spaces defines a self-contained physical system, and the
relationship between the parent and its children is defined by the parent boundary. If
a parent boundary exists, as in Figure 6a, the system of child spaces needs to be
contained within that boundary. If a parent boundary does not exist, as in Figure 6b,
the solution of the system of child spaces will define the parental boundary. This
spatial structure allows the definition of a wide variety of spaces, and allows for
spatial hierarchies of arbitrary depth.

The location of the center node relative to the edges is not important to the
polygonal representation, but is important in determining space adjacencies. For
simple shapes the geometric center or center of mass is fine, but for more
complicated shapes a more appropriate center may need to be defined by the
designer.

. Making Designs Come Alive: Using Physically Based Modeling
Techniques in Space Layout Planning

253

a b

Figure 6. Parent space with and without a defined boundary.

4.4 Objectives

We define a design objective as something that a designer wants to happen,
specifically, any intention that influences geometry. It could be argued that any
intention that determines the position of any object could be called an objective, but
for the purposes of our approach we limit objectives to those intentions that affect
the position of one space relative to another or that affect the location of walls.

We use the term objective instead of constraint to avoid confusion with the term
used in physically based constrained dynamics. In constrained dynamics, a
constraint is a condition that, once met, continues to be met throughout a dynamic
simulation (Barzel and Barr, 1988; Witkin and Kass, 1989). One example is an area
constraint, where any applied forces that may act to change the area of a polygon
will be counteracted to ensure that the area remains the same. Constrained dynamics
is not a process of constraint satisfaction, but one of constraint maintenance. If an
area is not as it should be, constrained dynamics will not act to change it to the
correct area.

Design objectives need to be translated into forces that act on the nodes. They
are separated into two categories, topological objectives and geometric objectives, in
keeping with the two problems in space planning noted earlier. Topological
objectives apply forces to the center of a space, and geometric objectives apply
forces to the polygonal edges of space boundaries. Any design objective that affects
the position of any element in an architectural plan can probably be translated into
force objectives. Here, we will only give details for the few that we found to be
necessary to demonstrate the concept of responsive physically based space planning.

Adjacency Objective. An Adjacency Objective is a type of topological
objective. It connects the center nodes of two spaces with a spring, and applies
forces to those nodes depending upon the distance between them. Using circular
spaces as an example, the rest length of the spring may be the sum of the radii of
each space. If the spaces are not located next to each other, the spring will produce
forces on each space node that attempt to move them together. The spring constant
defines the strength of the adjacency, and is initially set on a scale of 0.0 to 1.0
relative to other adjacency spring constants. Table 1 shows how descriptive terms
for adjacency relationships might be mapped into numerical values for spring
constants.

254

 Table 1. Adjacency Spring Constants
Adjacency requirement Spring constant

Immediate 1.0
Important 0.7

Convenient 0.3
Unimportant 0.0

Area Objective. An Area Objective is a type of geometric objective. Recall that

a space may contain a polygon that defines the space boundary, and that a polygon is
defined as an ordered list of line nodes. An area objective acts to maintain the area
of the boundary polygon. The center node of the space becomes the center node of
the polygon, and a spring connects this node with each edge line node. The rest
lengths of the springs are used to maintain the correct area of the boundary polygon
and are set to the perpendicular distance from the center node to the line node.

4.5 Dynamic Simulation

Once a set of spaces and objectives has been defined, a dynamic simulation is
allowed to run to produce a layout solution. In our current implementation, the initial
location of each space’s center node is chosen at random. The dynamic simulation
itself proceeds in two phases due to the separate tasks of the general space layout
problem. First, the relationship between spaces needs to be resolved, and then the
position of walls separating the spaces needs to be resolved. In our approach they
cannot be solved at the same time. For this reason, the first phase is to run the
simulation with only topological objectives being applied. Once a topological
simulation has reached equilibrium, the second phase is started, in which geometric
objectives are applied. Once a geometric simulation has reached equilibrium, the
designer can begin to analyze and interact with the design by modifying existing
objectives and adding new ones.

Although this may sound like the two steps are turning objectives on and off, in
our current approach all of the objectives are being applied at all times. The only
difference between the two modes is in the boundary shape used in collision
detection and response, as described below.

4.5.1 Topological resolution

The first phase in solving a space layout is to determine the location of each
space relative to all other spaces. Any force acting on space centers will affect the
position of the entire space. Using the objectives we have descibed previously,
adjacency objectives are the only forces that have an effect. For collision detection,
boundary shapes are treated as circles and are able to slide around each other if
necessary. If polygonal boundary shapes were used, boundary corners may catch
each other and keep one space from being able to move to the other side of another.
The dynamic simulation runs until the system is in equilibrium, which is defined as
the point in time when all velocities are zero.

Collision detection and response during this phase can be simulated with the use
of stiff springs between overlapping spaces. Although this method is inaccurate, in
that some spaces may still overlap, it is adequate for determining topological
relationships.

. Making Designs Come Alive: Using Physically Based Modeling
Techniques in Space Layout Planning

255

4.5.2 Geometric resolution

Once the dynamic simulation for space resolution has reached equilibrium, space
boundaries are switched from a circular to a polygonal representation. Collision
detection and response then act to keep spaces from overlapping, resulting in an
arrangement that is very close to a recognizable building floor plan.

Collision detection and response are much more complicated for geometric
resolution than for topological resolution. Overlapping spaces are unacceptable, so
accurate collision response is required. Especially important and problematic is
dealing with resting contacts. Although it would seem that resting contacts would be
easy to deal with, their handling is one of the more difficult problems in physically
based modeling (Witkin and Baraff. p. D49).

To simulate resting contacts, forces must be applied to each object that is in
contact with another object so that the contact will be maintained during the next
time step. Although colliding contacts can be solved in turn for each individual
contact, all resting contacts must be solved together. For a body in resting contact
with two other bodies, the resting forces need to account for both contacts.

In our approach we use constrained dynamics to maintain resting contacts
(Witkin and Baraff, 1997). Once two spaces are determined to be in resting contact,
a distance constraint is applied between the parallel edge line nodes of the
contiguous boundary edges. As noted in section 4.4, this constraint acts to maintain
the distance between the two nodes. Constraint forces are then solved as a complete
system.

4.6 User Interaction

Currently, the definition of spaces for a design project is accomplished with a
text file. In the future we will implement an interface to interactively input and edit
design spaces and objectives.

The method of interacting with objects in a physical simulation is different from
that used to edit static graphic objects. In a typical CAD application, a user moves an
object by directly changing the position of the object. In a forward physical
simulation, the inputs to a system are forces, and the outputs are positions and
velocities. Directly changing the position of an object is inconsistent with this notion
of simulation.

One method of moving objects in a physical simulation is to attach a temporary
zero length spring between the mouse’s cursor position and the object being moved.
This spring then applies a force on the object in the direction of the mouse’s
position. This approach is not usually satisfying to the user, because the cursor
position and the object position are not the same during the editing process.

A second method, and the one that we favor, is to temporarily set the mass of the
edited object to infinity, and then directly change the position of the object. All
dynamic calculations using mass involve multiplication by the mass inverse, so the
value of each object’s mass inverse is stored instead of its mass. To set a mass to
infinity, we simply set the mass inverse to zero, making the object unresponsive to
any forces acting on it. Thus, while the user is moving a point it cannot be moved by
the dynamics. Once the user lets go of the object the mass inverse is set to its
previous value and the simulation proceeds as usual.

256

4.7 Implementation Details

Software development was done on
a Silicon Graphics O2 workstation
running Irix 6.3, with a 200 MHz R5000
processor, and 192 MB RAM.

Programming was done in object-
oriented C++, using OpenGL for the
graphics, and the FLTK user-interface
toolkit (FLTK, 1999).

Ordinary Differential Equations
were solved using Runge-Kutta fourth
order numerical integration.

Table 2 lists some of the constants
we used in our force computations.

5. RESULTS

During the development of the dynamics for our physically based approach to
space planning, we used the architectural program shown in Figure 7, from an
example by Karlen (1993). During the early stages of development, we needed a
program that was fairly small but which contained many adjacency requirements. It
needed to be small because the emphasis in early development was in getting the
dynamics between individual spaces to work. It needed to have many adjacency
requirements so that many locally optimal solutions were possible. A small number
of adjacency requirements would yield a small number of solutions.

University Career
Counseling Center Sq.Ft.

Reception 250
Interview Station 220
Director 140
Staff 180
Seminar Room 300
Rest Rooms 200
Work Area 120
Coffee Station 50
Guest Apartment 350

Immediate Adjacency
Important Adjacency
Reasonably Convenient
Unimportant
Remote

Figure 7. Sample Adjacency Matrix [Redrawn from (Karlen 1993), p. 22]

Table 2. Dynamic constants.
Adjacency spring constant 0.0–20.0
Shape spring constant 500.0
Edit spring constant 500.0
Spring dashpot 2.0
Coefficient of Restitution 0.0
Viscosity 10.0

. Making Designs Come Alive: Using Physically Based Modeling
Techniques in Space Layout Planning

b

d

c

a

10

20

30

40

50

60

70

80

90

frame 0

Figure 8. Sample Topological Resolution

258

Figure 8 shows a sample topological resolution using the program in Figure 7.
Figure 8a and 8b show each space boundary drawn with its required area and with
random initial positions, Figure 8b displaying boundaries drawn as rectangles with
random proportions, and Figure 8a displaying boundaries drawn as circles. Recall
that during topological resolution, circles are used in collision detection. It is
difficult to show the dynamic movement with static images, but Figure 8d shows
every tenth frame from the dynamic simulation, with frame 90 showing the spaces in
equilibrium. The entire sequence took three seconds to compute and display, so the
illusion to the user is of smooth natural motion. Notice that most of the movement
occurs between frames 0 and 10 when the spaces are coming together, and that any
movement after that is a result of the spaces rearranging themselves and coming to
equilibrium. With some initial positions it is possible for the system to almost be at
equilibrium when one space manages to move onto the other side of another, and the
whole system rearranges itself. Figure 8c shows the final topological solution with
the boundaries drawn as rectangles again. Although some of the boundaries overlap,
this in not important during topological resolution and the overlaps will be resolved
during geometric resolution.

a b c

d e f

Figure 9. Sample Geometric Resolutions

Figure 9 shows six samples of geometric resolutions using the same
architectural program. Initial proportions for each space were maintained from
sample to sample, but initial positions were randomized. Final topological
relationships were not edited manually. For these results, topological resolution was
not performed before geometric resolution, so these do not represent locally optimal
topological solutions. Note in Figure 9f that some wasted space is possible. This
problem can be overcome by finding the shortest distance between parallel lines

. Making Designs Come Alive: Using Physically Based Modeling
Techniques in Space Layout Planning

259

across the opening that needs to be closed, and attaching a spring between the line
nodes for those lines.

Note the variety of designs produced from a simple set of objectives. The only
objectives active in producing these samples are adjacency and rectangular area
objectives. The addition of other objectives such as non-rectangular shape, parental
shape, and alignment objectives, among others, should allow the architect to have a
great amount of control over the design of space plans.

6. DISCUSSION

We feel that our prototype system provides a convincing demonstration of the
attractiveness of the responsive design approach and the use of physically based
methods in implementing this approach. It is difficult to convey, in a paper, the
experience of working with our system. But, it really does evoke the feeling that one
is working with a “living” design, one that responds to the user in ways consistent
with programmatic objectives while still providing a high degree of intuitive
designer control. We are surprised and pleased at the variety of designs that present
themselves from random initial positions. Even when the number of spaces is small
(3 or 4), it is enjoyable to rearrange them to see what happens. The fact that the
physically based objectives do most of the work allows one to easily explore many
design possibilities.

We proposed earlier that a responsive design process would be automated,
natural, interactive, intuitive, and flexible. We feel that using a physically based
approach to creating a responsive design system meets these criteria very well. Our
results show that our approach is clearly automated and flexible. Design solutions
are created automatically from a small set of design objectives, and the system is
very flexible in that design objects can be easily manipulated, allowing new designs
to emmerge. Our approach is for the most part intuitive in that design elements act in
expected ways, although some of the springyness of objects may be a little
unexpected. Our current implementation is highly interactive and results are
produced in real time, but whether or not this will hold for more complicated designs
is an open question. The last criterion for responsive design is that designers work
with elements and intentions in their natural design language rather than through a
low-level representation. How our approach fits this criterion is also an open
question. An interactive interface that enables designers to specify objectives
directly on the graphic elements of a space plan should provide for natural
interaction. However, requiring the designer to have an extensive understanding of
the underlying physical model will hinder the feeling of natural interaction.

Within our prototype system, the quality of interaction when rearranging spaces
is, for the most part, as we envisioned it to be. When editing a space plan, the
designer is able to move spaces around easily to quickly try out new designs.
Because of the use of springs and forces, the spaces are very springy feeling. We
feel that this can be attractive, in that some springyness adds to the feeling that the
plan is alive, but that when it is too noticable it interfers with the interaction. This
problem is, however, easily solved by the use of appropriate spring and damping
constants.

The responsive feeling of our system depends upon the rate at which calculations
can be done and the display updated. The frame rate is the rate at which one

260

compute and display cycle is completed. During the final stages of geometric
resolution, this frame rate can get a little slow, sometimes approaching non-
interactive rates. This is due to two factors. First, accurately detecting and
responding to collisions requires that the simulation clock be stopped at the time of
collision and the response calculated. Finding the exact time of colliding contact
requires a binary search, each stage of which requires a solution to the system’s
dynamic equations. Second, the handling of resting contacts requires the calculation
of constraint forces at each resting contact, which requires the solution of a large set
of simultaneous equations describing the constraint dynamics. However, although
each of these problems is computationally intensive, their time complexity is at
worst a low order polynomial. This makes us hopeful that increasing computer
speeds, along with the application of appropriate approximation methods will allow
us to achive responsive performance, even for complex building designs, in the
reasonably near future.

It is in the nature of the space planning problem is that it is NP-complete, but we
do not claim to be able to produce solutions that are globally optimal. Instead, we
look for local optima and depend on the designer to recognize when a solution is
weak and to make appropriate changes by hand to guide the system into a more
optimal configuration. We also feel that we can get some reduction in time
complexity by the use of a hierarchical approach. When using hierarchical spaces,
such as those discussed in section 4.3, solving for the location of a space is
dependent only on the parent and sibling spaces, and is not dependent on every other
space in the hierarchy, thus reducing the global problem into a set of smaller,
simpler problems.

7. FUTURE WORK

Since the responsive design approach to doing space planning is a previously
unexplored concept, it raises many new questions and presents many opportunities
for future work. Some of these are obvious and require answers and elaboration in
order to make this approach truly useful to space planners. Other questions are of a
more fundamental nature.

In the immediate short term, we plan to explore:
– What other kinds of design intentions can be translated into physically based

design objectives? Some examples may be daylighting, view, non-rectangular
shapes, etc.

– How can this approach be modified to handle circulation? Might the use of
line nodes to define corridor space “centers” be a promising solution?

– How can this approach be extended to three dimensions in order to handle
multi-story plans?

– What are appropriate values to set for the spring constants? Is it possible to
find a range of values that apply to all design situations, or will the designer
have to know how to set their own values?

– What are the interface issues in inputing and manipulating design elements?
– What is an effective way of displaying the various forces on a space so that

they are meaningful to designers and allow them to understand the conflicting
nature of a set of design objectives?

. Making Designs Come Alive: Using Physically Based Modeling
Techniques in Space Layout Planning

261

To validate and more firmly ground our work we plan to explore the following

fundamental questions:
– Does our physically based approach truly fit the intended characteristics of

responsive design?
– How does this approach fit into the architectural programming process?
– How does this approach fit into the overall architectural design process, and

how can it be integrated with other aspects of schematic design and design
development?

– How does this approach affect the quality of designs that a designer
produces? Is it better than existing methods in allowing designers to discover
new designs? Will it aid designers from getting fixated on a single design?

– Although this approach is not intended to produce globally optimum
solutions, it should benefit the designer to be able to start from a more
optimal solution than those we are able to currently provide. How can
optimization methods be applied to this approach?

– How much of the underlying physical model should be revealed to designers?
Do they need to know about the underlying forces and the details of the
physically based system, or is it better for them to understand how it works
through the use of another metaphor?

– How can this approach be applied to other design domains?
– What other benefits are there in using a physically based approach? The

different forces applied by each objective may be used as a measure of the
effectiveness of a particular design, to be compared to other design schemes.

8. CONCLUSION

We have introduced the concept of responsive design, as a new paradigm within
which tools for architectural design may be developed. We have also demonstrated,
with a simple prototype system, that the concepts of physically based modeling
provide concrete principles around which to construct such tools. Our preliminary
results with the prototype indicate that useful physically based responsive design
tools can be built, and that these tools will be practical, enjoyable to use and
integrate well with the exploratory nature of the design development process.

ACKNOWLEDGEMENTS

This work was supported in part by an O. N. Mitchell, Jr. Endowed Fellowship
in Construction Management, the Visualization Laboratory and the Department of
Architecture in the College of Architecture Texas A&M University.

262

REFERENCES

Balachandran M., and Gero J. S., 1987, “Dimensioning of architectural floor plans under
conflicting objectives”, Environment and Planning B, 14:29-37.

Baraff D., 1989, “Analytical methods for dynamic simulation of non-penetrating rigid
bodies”, Computer Graphics, 23(3):223-232.

Barzel R., and Barr A. H., 1988, “A Modeling System Based on Dynamic Constraints”,
Computer Graphics, 22(4):179-188.

Flemming U., 1987, “The role of shape grammars in the analysis and creation of designs”,
Computability of Design, edited by Kalay Y. E. (John Wiley & Sons, New York):245-272.

Flemming U., 1989, “More on the representation and generation of loosely packed
arrangements of rectangles”, Environment and Planning B, 16:327-359.

Flemming U., and Chien S. F., 1995, “Schematic Layout Design in SEED Environment”,
Journal of Architectural Engineering, 1(4):162-169.

Flemming U., and Woodbury R., 1995, “Software Environment to Support Early Phases in
Building Design (SEED): Overview”, Journal of Architectural Engineering, 1(4):147-152.

FLTK, 1999, The Fast Light Tool Kit Home Page, <http://www.fltk.org>, accessed 1 March
1999.

Gero J. S., and Kazakov V. A., 1998, “Evolving design genes in space layout planning
problems”, Artificial Intelligence in Engineering, 12(3):163-176.

Gross M., Ervin S., Anderson J., and Fleisher, A, 1986, “Designing with constraints”,
Computability of Design, edited by Kalay Y. E. (John Wiley & Sons, New York):53-68.

Harada M., Witkin A., and Baraff D., 1995, “Interactive Physically-Based Manipulation of
Discrete/Continuous Models”, In Computer Graphics Proceedings, Proceedings of
SIGGRAPH 95, 199-208.

Jo J. H., and Gero J. S., 1998, “Space layout planning using an evolutionary approach”,
Artificial Intelligence in Engineering, 12(3):149-162.

Karlen M., 1993, Space Planning Basics (Van Nostrand Reinhold, New York).
Liggett R. S., and Mitchell W. J., 1981, “Optimal space planning in practice”, Computer-

Aided Design
Mandal C., Qin H, and Vemuri B. C., 1997, “Dynamic Smooth Subdivision Surfaces for Data

Visualization”, Proceedings of IEEE Visualization ’97, 371-377.
Martini K., 1995, “Hierarchical geometric constraints for building design”, Computer-Aided

Design, 27(3):181-191.
Moore M., and Wilhelms J., 1988, “Collision detection and response for computer

animation”, Computer Graphics, 22:289-298.
Qin H., and Vemuri B. C., 1998, “Dynamic Catmull-Clark Subdivision Surfaces”, IEEE

Transactions on Visualization and Computer Graphics, 4(3):215-229.
Simon H. A., 1973, “The structure of ill-structured problems”, Artificial Intelligence, 4:181-

201.
Terzopoulos D., Platt J., Barr A., and Fleischer K., 1987, “Elastically deformable models”,

Computer Graphics, 21(4).
Tobin K. L., 1991, “Constrain-Based Three-Dimensional Modeling as a Design Tool”, Reality

and Virtual Reality, 1991 ACADIA Proceedings, edited by G. Goldman and M. Zdepski,
193-209.

Witkin A., and Baraff D., 1997, Physically Based Modeling: Principles and Practice (ACM
SIGGRAPH 97 Course Notes, Course 19).

Witkin A., and Kass M., 1989, “Spacetime constraints”, Computer Graphics, 22:159-168.
Yoon K. B., 1992, A Constraint Model of Space Planning (Computational Mechanics

Publications, Southampton, UK).

