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Abstract:  This paper introduces the concept of responsive design. It elaborates this 
concept as an approach to free form, adaptable, automated design applying 
physically based modeling techniques to the design process. Our approach 
attempts to bridge the gap between totally automated design and the free form 
brainstorming designers normally employ. We do this by automating the initial 
placement and sizing of design elements, with an interactive engine that 
appears alive and highly responsive. We present a method for applying these 
techniques to architectural space layout planning, and preliminary 
implementation details for a prototype system for developing rectangular,  
two-dimensional, single-story floor plans. 

1. INTRODUCTION 

During schematic building design, an architect develops an overall aesthetic 
motivation for the building, while trying to arrange individual spaces so they meet 
the adjacency and area requirements specified in the functional program. The 
process is often thought of in terms of sculpture, where a design is molded, formed, 
and massaged. Architects view a building design as constantly evolving and 
rearranging while they modify existing designs and discover new ones. There has 
been much research in the past few decades into ways to automate the design 
process, but most suffer from a lack of intuitive user interaction and a discontinuity 
with the design language of architects. Architects typically resist using these tools 
because they tend to be inflexible, prescribing designs rather than allowing the 
architect to discover designs. 
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Now, imagine a drawing of a floor plan that is constantly moving, shifting and 
changing as the designer works on it. If a room is moved out of the building 
envelope, the building closes in and repairs the hole. If the room is replaced in a 
different location, the rooms around it adjust to make space for the new addition 
while remaining the size they need to be. The drawing responds to these changes by 
managing adjacency and area requirements, allowing the architect to concentrate on 
design. One could call this responsive design. 

As we envision it, responsive design is a process that allows a designer to easily 
make decisions whose consequences immediately propogate throughout the design. 
Such a responsive design process would be automated, natural, intuitive, flexible, 
and interactive. It would be automated in that given a set of design intentions, a 
design solution can be produced. It would be natural in that design elements and 
intentions are specified in the working language of the designer rather than a low-
level representation. It would be intuitive in that the individual elements and the 
overall design act in expected ways. It would be flexible in that designs are easily 
modifiable and the design process does not specify the “best” design, but enables 
designs to emerge. Finally, it would be interactive in that responses to user inputs 
happen in real time. 

We are attempting to create a methodology for a responsive design process by 
applying physically based techniques to architectural space planning. Although we 
believe that responsive design can be applied to many graphic design domains, space 
planning is a relatively simple and well-studied area in which to begin to understand 
and apply the complexities of this methodology. 

In our approach the architect defines programmatic objectives in the usual 
manner, which are then modeled as physical objects and forces used in a dynamic 
physical simulation. We model spaces as masses, with adjacencies between spaces 
modeled as springs connecting the masses. Objectives specified in the architectural 
program are translated into forces applied to the masses. A dynamic simulation 
proceeds allowing the mass-spring system to quickly reach equilibrium. The 
designer then modifies and adds objectives by directly manipulating the graphic 
model rather than by re-specifying design objectives in the language of the 
underlying system. The mass-spring representation allows the graphic model to 
immediately adapt to those changes. It is important to note that we do not intend to 
simulate the actual behavior of building elements, but to simulate the way architect’s 
may view and interact with design elements during their conception. One way to 
think about this approach is that it simulates the design behavior of voids rather than 
the actual behavior of solids. 

It can be argued that given enough computing resources, it may be possible for 
most design methods to be made responsive. The mathematical and computational 
requirements in physically based modeling are much more extensive than those 
required by 3D graphics, so why use this approach? First, physical laws are 
ingrained in all of us, whether or not we know the mathematics behind them. Our 
minds and bodies know the physics of structure and motion, otherwise we would not 
be able to survive. Even though we do not think of spaces and walls as being alive 
and moveable, spaces that move based on design intentions and that act like physical 
objects should be intuitive to the user. Second, working with a model whose motion 
is a result of mass-spring interaction should give somewhat the same feeling as 
working with a deformable substance such as clay. Third, it is conceptually simple 
from the user’s point of view. Rather than having to define a long list of highly 
specific knowledge-based rules, the designer can think in terms of where a space 
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wants to be, which is translated by the system into a force that moves the space. The 
underlying dynamic computation is complex, but the conceptual interface can be 
fairly simple and intuitive. Finally, it provides a means for finding a locally 
optimum design solution. 

Our approach combines the advantages of automation and manual flexibility by 
producing a locally optimum space layout solution from an initial arrangement of 
spaces, and then letting the designer design. An approach that provides a globally 
optimum solution can be inflexible and may not be as useful to designers. 

Preliminary results of using physically based techniques on simple floor plans 
indicate that this responsive approach is extremely promising. We have to date been 
focusing our efforts on a pilot study, developing this approach for single story, 
rectangular spaces. But even on simple models it feels natural and fun to move 
spaces around to try out many designs. The ease and speed of generating and 
manipulating new designs allow new and more interesting ideas to emerge that 
would be more difficult to discover with non-responsive approaches. 

2. BACKGROUND 

There exists a wide body of research into automated space planning methods. 
We present here just a few of those methods that contrast with ours. We then 
describe the concept of physically based modeling and review some of basic 
components used in physically based simulations. 

2.1 Automated Space Planning 

Architectural space layout problems tend to be ill-defined (Yoon, 1992, p. 8) and 
over-constrained. Problems that are not well-defined are ill-defined (Simon, 1973), 
in that the initial constraints on the problem are not fully formulated. Resolving ill-
defined problems is a process of searching for and refining a set of design 
constraints. Problems that are over-constrained have too many possible solutions 
(Balachandran and Gero, 1987). Automated space planning systems need a method 
of providing a good solution from a large set of possible solutions, and a method of 
allowing the designer to modify the set of design constraints to continuously refine 
the problem definition. 

Some approaches to automated space layout planning use an iterative process of 
constructive initial placement, in which spaces are positioned one at a time (Liggett 
and Mitchell, 1981; Flemming and Chien, 1995). In these approaches, an ordering 
function is needed to determine which space to position first. 

Some approaches are generative in nature, in that they seek to produce all or a 
large number of the possible designs within a design space. Some examples are 
evolutionary design techniques (Jo and Gero, 1998; Gero and Kazakov, 1998), and 
shape grammars (Flemming, 1987). 

Methods of producing optimal space plans have been the focus of many 
approaches such as Liggett and Mitchell (1981). 

Constraints have been used in architectural design (Gross, 1986) in, for example, 
three-dimensional solid modeling (Tobin, 1991; Martini, 1995), and space layout 
planning (Yoon, 1992). 
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One of the most notable and extensive research projects in recent years is the 
“Software Environment to support the Early phases in building Design,” or SEED 
(Flemming and Woodbury, 1995). SEED partitions the schematic design problem 
into a variety of modules, one of which is SEED-Layout (Flemming and Chien, 
1995). SEED-Layout supports design space exploration through an iterative, 
constraint based approach that can be either manual or automated. It also supports a 
case-based approach where previous designs can be used to produce new designs. 

2.2 Physically Based Modeling 

Physically based modeling is a subfield of computer graphics and visualization. 
It attempts to represent dynamic motion and changes in geometry by modeling 
objects as mechanical elements that behave according to the laws of physics. 
Dynamics are most often derived by the use of forward numerical simulation over 
discrete time intervals. In a forward simulation, the system is moved from its state at 
the current time to its state at the next discrete time step, using forces to determine 
accelerations, and thus changes in velocity during the time step, and velocities to 
determine translations. The process of making this forward extrapolation is called 
numerical integration. An excellent introduction to the concepts of physically based 
modeling and a practical guide to the implementation of these concepts in the 
computer is given in Witkin and Baraff (1997). 

Physically based modeling has been used to model the realistic behavior of rigid 
bodies (Barzel and Barr, 1988; Baraff, 1989) as well as deformable models 
(Terzopoulos et. al., 1987). Others have recently begun to use dynamics in 
geometric design. Qin and Vemuri (1998) and Mandal, et. al. (1997) use physically 
based techniques to interactively manipulate smooth surfaces of arbitrary topology. 
In their approach, a user defines the points of an initial control mesh, which are 
manipulated by applying synthesized forces until the desired shape is achieved. 

Harada et. al. (1995) use a physically based approach to allow for discrete and 
continuous manipulation of generalized floor planning problems. They demonstrate 
their approach on architectural floor plans represented as rectangular dissections, as 
well as circuit board layout and page layout. 

There are three key concepts in physically based modeling needed to understand 
the rest of this paper. These are the spring-mass-damper modeling element, and the 
notions of colliding and resting contact between objects. 

x0 x1
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m0 m1

 

Figure 1. Two masses connected with a spring and a damper. 
 
Figure 1 shows a simple spring-mass-damper system. It consists of two points 

with mass m0 and m1 connected by a spring with spring constant k01 and a dashpot 
with damping constant d01. The spring exerts forces on the two masses with 
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magnitude proportional (with proportionality constant k01) to the difference between 
the rest length r01 of the spring and its current length. The direction of the force will 
be along the line connecting the point masses. As the masses move farther from each 
other, the spring applies a force to try to move them closer, and as they move closer 
the spring tries to separate them. The dashpot is attached in parallel with the spring, 
and acts like the hydraulic piston on a screen door closer. It damps the motion of the 
masses by producing forces proportional (with proportionality constant d01) to their 
relative velocity towards or away from each other, thus reducing the kinetic energy 
introduced by the spring forces. 

Colliding contact occurs between two objects at that instant in time when they 
touch each other, and have a non-zero relative velocity towards each other. Collision 
detection is the process of determining if and when two objects collide. Collision 
response is the process of determining the result of a collision. (Moore and 
Wilhelms, 1988) Two bodies are in resting contact if they are touching each other, 
the relative velocity between the two bodies is zero, and the relative acceleration of 
the bodies is zero. (Witkin and Baraff, 1997) 

3. PROBLEM 

Our problem is how to create a responsive design system within the domain of 
architectural space planning. Space layout planning can itself be broken down into 
two problems, determining topological or qualitative properties, and determining 
geometric or quantitative properties (Jo and Gero, 1998; Flemming, 1989). The 
topological problem is one of determining the relationship between individual 
spaces, without regard to the dimensions of any building elements. The geometric 
problem is one of determining the physical dimensions of the building elements. 
Both of these problems need to be solved in any approach to space planning. 

Our solution to this problem arises out of taking a physically based viewpoint. 
We treat each space as a solid with mass. Design objectives are treated as forces that 
are applied to these spaces, and collision detection is used to keep the spaces from 
overlapping. One of the primary advantages of using a physically based approach is 
that it is possible for all design objectives to have an effect on the final location of 
plan elements. 

4. IMPLEMENTATION 

In applying physically based techniques to space planning, the first problem is 
how to represent the elements of a space plan such that forces can be made to act on 
them. The second problem is how to represent architectural design objectives as 
forces that can be applied to these elements. It is useful to think of design objectives 
as wants or needs. For example, space A “wants” to be next to space B, or space C 
“needs” to be 200 square feet in area. It then becomes easier to understand and 
define the physical forces needed to accomplish the design objectives. Figure 2 
shows a single space with forces acting on its elements. Arrows labeled with a 
represent forces applied to the space location, and that may change the way this 
space relates to another. Arrows labeled with b represent forces applied to the 
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polygonal edges of the space boundary, and that may change the geometric position 
of the edges. 

a1

a3

a2

b2

b3 b1

b6
b4

a: Forces applied to the
space location.

b:  Forces applied to the
polygonal edges of
the space boundary.

b5

 

Figure 2. Simple space with forces acting on its elements. 
 

In this section we present the details for implementing a physically based space 
planning system. We discuss how to represent spaces with polygonal boundaries and 
nodes that can be used in a dynamic simulation, how to represent design objectives 
as  forces that can be applied to nodes, and the process for resolving a space plan 
from a given set of design objectives. 

4.1 Node types 

A node is a point in space on which a force can be applied. The data structure 
representing a node in our implementation contains values for mass, position, and 
velocity, as well as a force accumulator and other geometric information that may be 
required for each node type. Each unique node type has its own graphic 
representation. Nodes are typically connected to other nodes by springs. The type of 
the node determines how its movement, and the movement of the node to which it is 
connected, is constrained. The two types of nodes we use are the point node and the 
line node. 

x(t) x(t)

f
f

x(t+∆t)

x(t+∆t)

f′

n

d

a                                               b  

Figure 3. Node types. 

Point Node. A point node is the simplest type. The data structure for a point 
node stores typical node information, and it is displayed as a dot. A force applied to 
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it is not constrained in any way. Figure 3a shows a point node with position x(t) at 
time t, with a constant force f applied to it, and no initial velocity. x(t) is accelerated 
in the direction of f so that at time t+∆t it is at position x(t+∆t). 

In our implementation we use point nodes to define the center of spaces.  
Line Node. A line node defines an infinite line passing through a point. Any 

forces applied to a line node are constrained to act perpendicular to the line it 
defines, thus preserving its orientation. The data structure for each line node 
contains unit direction and unit normal vectors in addition to the typical node 
information. A position and a direction are all that are needed to define a line; the 
additional normal vector is stored so as not to repeat its calculation. A line node is 
displayed as a dot with a short bar going through it parallel to the direction vector. 
Figure 3b shows a line node with unit direction d, unit normal n, and position x(t) at 
time t, with a constant force f applied to it, and no initial velocity. f is constrained to 
act along n by 

 
where the ⋅ operator  is the dot product of two vectors. x(t) is accelerated in the 
direction of n so that at time t+∆t it is at x(t+∆t). 

In our implementation we use line nodes to define the polygonal edges of space 
boundaries. They could also be used to define linear spaces such as corridors. 

4.2 Polygonal shapes 

Shapes are limited to polygons with non-crossing edges and are defined as an 
ordered list of line nodes, each connected to a common center node. Figure 4 shows 
an arbitrary n-sided polygon, with center node c, edge line nodes e, and vertices v. 
Each vertex vi can be found as the intersection of the direction vectors of ei and ei⊕1, 
where the operator ⊕ is addition modulo n. 
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Figure 4. An arbitrary polygonal shape represented with edge line nodes. 
 
Although this may seem like a complicated way to represent a shape, when used 

to define the boundary of a space it allows us to apply forces to individual segments 
without having to worry about maintaining their orientation. The typical task in 
space planning is to move a wall, not to move the end points of a wall. If a shape 

,)(' nnff ⋅=
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were represented with point nodes at its vertices, in order to maintian orientation any 
force applied to one vertex would have to be separated into components that are 
applied to its surrounding vertices. For non-orthogonal shapes, computing the 
necessary components could get unnecessarily complicated. Figure 5a shows a 
rectangle represented with vertex point nodes. A force applied to one of its vertices 
as shown results in the non-orthogonal polygon shown in Figure 5b. Figure 5c 
shows a rectangle represented with edge line nodes. Forces f1 and f2 applied to its 
edges are constrained to yield f1′ and f2′, which act normal to each edge, resulting in 
the maintained rectangular shape shown in Figure 5d. 

b                                       d

a                                      c

 f  f1′  f1

 f2′

 f2

 

Figure 5. A rectangle represented with vertex point nodes and edge line nodes. 

4.3 Spaces 

A space defines any arbitrary area or volume. The data structure representing a 
space contains a common center node to define its location, and a polygon to define 
its boundary. These values are optional, to be able to define any generalized space. 
For example, a space used to represent the outside would not need a defined position 
or shape, and could be used when a building space needs to relate to the outside. 

A space may also contain any number of child spaces. Child spaces may, in turn, 
contain their own set of child spaces. In this way, a hierarchy of spaces of arbitrary 
depth can be defined, similar to that described by Flemming and Chien (1995). A 
parent space and its child spaces defines a self-contained physical system, and the 
relationship between the parent and its children is defined by the parent boundary. If 
a parent boundary exists, as in Figure 6a, the system of child spaces needs to be 
contained within that boundary. If a parent boundary does not exist, as in Figure 6b, 
the solution of the system of child spaces will define the parental boundary. This 
spatial structure allows the definition of a wide variety of spaces, and allows for 
spatial hierarchies of arbitrary depth. 

The location of the center node relative to the edges is not important to the 
polygonal representation, but is important in determining space adjacencies. For 
simple shapes the geometric center or center of mass is fine, but for more 
complicated shapes a more appropriate center may need to be defined by the 
designer. 
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a                                                                 b  

Figure 6. Parent space with and without a defined boundary. 

4.4 Objectives 

We define a design objective as something that a designer wants to happen, 
specifically, any intention that influences geometry. It could be argued that any 
intention that determines the position of any object could be called an objective, but 
for the purposes of our approach we limit objectives to those intentions that affect 
the position of one space relative to another or that affect the location of walls. 

We use the term objective instead of constraint to avoid confusion with the term 
used in physically based constrained dynamics. In constrained dynamics, a 
constraint is a condition that, once met, continues to be met throughout a dynamic 
simulation (Barzel and Barr, 1988; Witkin and Kass, 1989). One example is an area 
constraint, where any applied forces that may act to change the area of a polygon 
will be counteracted to ensure that the area remains the same. Constrained dynamics 
is not a process of constraint satisfaction, but one of constraint maintenance. If an 
area is not as it should be, constrained dynamics will not act to change it to the 
correct area. 

Design objectives need to be translated into forces that act on the nodes. They 
are separated into two categories, topological objectives and geometric objectives, in 
keeping with the two problems in space planning noted earlier. Topological 
objectives apply forces to the center of a space, and geometric objectives apply 
forces to the polygonal edges of space boundaries. Any design objective that affects 
the position of any element in an architectural plan can probably be translated into 
force objectives. Here, we will only give details for the few that we found to be 
necessary to demonstrate the concept of responsive physically based space planning. 

Adjacency Objective. An Adjacency Objective is a type of topological 
objective. It connects the center nodes of two spaces with a spring, and applies 
forces to those nodes depending upon the distance between them. Using circular 
spaces as an example, the rest length of the spring may be the sum of the radii of 
each space. If the spaces are not located next to each other, the spring will produce 
forces on each space node that attempt to move them together. The spring constant 
defines the strength of the adjacency, and is initially set on a scale of 0.0 to 1.0 
relative to other adjacency spring constants.   Table 1 shows how descriptive terms 
for adjacency relationships might be mapped into numerical values for spring 
constants. 
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  Table 1. Adjacency Spring Constants 
Adjacency requirement Spring constant 

Immediate 1.0 
Important 0.7 

Convenient 0.3 
Unimportant 0.0 

 
Area Objective. An Area Objective is a type of geometric objective. Recall that 

a space may contain a polygon that defines the space boundary, and that a polygon is 
defined as an ordered list of line nodes. An area objective acts to maintain the area 
of the boundary polygon. The center node of the space becomes the center node of 
the polygon, and a spring connects this node with each edge line node. The rest 
lengths of the springs are used to maintain the correct area of the boundary polygon 
and are set to the perpendicular distance from the center node to the line node. 

4.5 Dynamic Simulation 

Once a set of spaces and objectives has been defined, a dynamic simulation is 
allowed to run to produce a layout solution. In our current implementation, the initial 
location of each space’s center node is chosen at random. The dynamic simulation 
itself proceeds in two phases due to the separate tasks of the general space layout 
problem. First, the relationship between spaces needs to be resolved, and then the 
position of walls separating the spaces needs to be resolved. In our approach they 
cannot be solved at the same time. For this reason, the first phase is to run the 
simulation with only topological objectives being applied. Once a topological 
simulation has reached equilibrium, the second phase is started, in which geometric 
objectives are applied. Once a geometric simulation has reached equilibrium, the 
designer can begin to analyze and interact with the design by modifying existing 
objectives and adding new ones. 

Although this may sound like the two steps are turning objectives on and off, in 
our current approach all of the objectives are being applied at all times. The only 
difference between the two modes is in the boundary shape used in collision 
detection and response, as described below.  

4.5.1 Topological resolution 

The first phase in solving a space layout is to determine the location of each 
space relative to all other spaces. Any force acting on space centers will affect the 
position of the entire space. Using the objectives we have descibed previously, 
adjacency objectives are the only forces that have an effect. For collision detection, 
boundary shapes are treated as circles and are able to slide around each other if 
necessary. If polygonal boundary shapes were used, boundary corners may catch 
each other and keep one space from being able to move to the other side of another. 
The dynamic simulation runs until the system is in equilibrium, which is defined as 
the point in time when all velocities are zero. 

Collision detection and response during this phase can be simulated with the use 
of stiff springs between overlapping spaces. Although this method is inaccurate, in 
that some spaces may still overlap, it is adequate for determining topological 
relationships. 
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4.5.2 Geometric resolution 

Once the dynamic simulation for space resolution has reached equilibrium, space 
boundaries are switched from a circular to a polygonal representation. Collision 
detection and response then act to keep spaces from overlapping, resulting in an 
arrangement that is very close to a recognizable building floor plan. 

Collision detection and response are much more complicated for geometric 
resolution than for topological resolution. Overlapping spaces are unacceptable, so 
accurate collision response is required. Especially important and problematic is 
dealing with resting contacts. Although it would seem that resting contacts would be 
easy to deal with, their handling is one of the more difficult problems in physically 
based modeling (Witkin and Baraff. p. D49).  

To simulate resting contacts, forces must be applied to each object that is in 
contact with another object so that the contact will be maintained during the next 
time step. Although colliding contacts can be solved in turn for each individual 
contact, all resting contacts must be solved together. For a body in resting contact 
with two other bodies, the resting forces need to account for both contacts. 

In our approach we use constrained dynamics to maintain resting contacts 
(Witkin and Baraff, 1997). Once two spaces are determined to be in resting contact, 
a distance constraint is applied between the parallel edge line nodes of the 
contiguous boundary edges. As noted in section 4.4, this constraint acts to maintain 
the distance between the two nodes. Constraint forces are then solved as a complete 
system. 

4.6 User Interaction 

Currently, the definition of spaces for a design project is accomplished with a 
text file. In the future we will implement an interface to interactively input and edit 
design spaces and objectives. 

The method of interacting with objects in a physical simulation is different from 
that used to edit static graphic objects. In a typical CAD application, a user moves an 
object by directly changing the position of the object. In a forward physical 
simulation, the inputs to a system are forces, and the outputs are positions and 
velocities. Directly changing the position of an object is inconsistent with this notion 
of simulation. 

One method of moving objects in a physical simulation is to attach a temporary 
zero length spring between the mouse’s cursor position and the object being moved. 
This spring then applies a force on the object in the direction of the mouse’s 
position. This approach is not usually satisfying to the user, because the cursor 
position and the object position are not the same during the editing process. 

A second method, and the one that we favor, is to temporarily set the mass of the 
edited object to infinity, and then directly change the position of the object. All 
dynamic calculations using mass involve multiplication by the mass inverse, so the 
value of each object’s mass inverse is stored instead of its mass. To set a mass to 
infinity, we simply set the mass inverse to zero, making the object unresponsive to 
any forces acting on it. Thus, while the user is moving a point it cannot be moved by 
the dynamics. Once the user lets go of the object the mass inverse is set to its 
previous value and the simulation proceeds as usual. 
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4.7 Implementation Details 

Software development was done on 
a Silicon Graphics O2 workstation 
running Irix 6.3, with a 200 MHz R5000 
processor, and 192 MB RAM.  

Programming was done in object-
oriented C++, using OpenGL for the 
graphics, and the FLTK user-interface 
toolkit (FLTK, 1999). 

Ordinary Differential Equations 
were solved using Runge-Kutta fourth 
order numerical integration. 

Table 2 lists some of the constants 
we used in our force computations. 

5. RESULTS 

During the development of the dynamics for our physically based approach to 
space planning, we used the architectural program shown in Figure 7, from an 
example by Karlen (1993). During the early stages of development, we needed a 
program that was fairly small but which contained many adjacency requirements. It 
needed to be small because the emphasis in early development was in getting the 
dynamics between individual spaces to work. It needed to have many adjacency 
requirements so that many locally optimal solutions were possible. A small number 
of adjacency requirements would yield a small number of solutions. 

University Career
Counseling Center Sq.Ft.

Reception 250
Interview Station 220
Director 140
Staff 180
Seminar Room 300
Rest Rooms 200
Work Area 120
Coffee Station 50
Guest Apartment 350

Immediate Adjacency
Important Adjacency
Reasonably Convenient
Unimportant
Remote

 

Figure 7. Sample Adjacency Matrix [Redrawn from (Karlen 1993), p. 22] 

Table 2. Dynamic constants. 
Adjacency spring constant 0.0–20.0 
Shape spring constant 500.0 
Edit spring constant 500.0 
Spring dashpot 2.0 
Coefficient of Restitution 0.0 
Viscosity 10.0 
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Figure 8. Sample Topological Resolution 
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Figure 8 shows a sample topological resolution using the program in Figure 7. 
Figure 8a and 8b show each space boundary drawn with its required area and with 
random initial positions, Figure 8b displaying boundaries drawn as rectangles with 
random proportions, and Figure 8a displaying boundaries drawn as circles. Recall 
that during topological resolution, circles are used in collision detection. It is 
difficult to show the dynamic movement with static images, but Figure 8d shows 
every tenth frame from the dynamic simulation, with frame 90 showing the spaces in 
equilibrium. The entire sequence took three seconds to compute and display, so the 
illusion to the user is of smooth natural motion. Notice that most of the movement 
occurs between frames 0 and 10 when the spaces are coming together, and that any 
movement after that is a result of the spaces rearranging themselves and coming to 
equilibrium. With some initial positions it is possible for the system to almost be at 
equilibrium when one space manages to move onto the other side of another, and the 
whole system rearranges itself. Figure 8c shows the final topological solution with 
the boundaries drawn as rectangles again. Although some of the boundaries overlap, 
this in not important during topological resolution and the overlaps will be resolved 
during geometric resolution. 

a                                               b                                               c

d                                               e                                               f  

Figure 9. Sample Geometric Resolutions 

Figure 9 shows six samples of geometric resolutions using the same 
architectural program. Initial proportions for each space were maintained from 
sample to sample, but initial positions were randomized. Final topological 
relationships were not edited manually. For these results, topological resolution was 
not performed before geometric resolution, so these do not represent locally optimal 
topological solutions. Note in Figure 9f that some wasted space is possible. This 
problem can be overcome by finding the shortest distance between parallel lines 
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across the opening that needs to be closed, and attaching a spring between the line 
nodes for those lines. 

Note the variety of designs produced from a simple set of objectives. The only 
objectives active in producing these samples are adjacency and rectangular area 
objectives. The addition of other objectives such as non-rectangular shape, parental 
shape, and alignment objectives, among others, should allow the architect to have a 
great amount of control over the design of space plans. 

6. DISCUSSION 

We feel that our prototype system provides a convincing demonstration of the 
attractiveness of the responsive design approach and the use of physically based 
methods in implementing this approach. It is difficult to convey, in a paper, the 
experience of working with our system. But, it really does evoke the feeling that one 
is working with a “living” design, one that responds to the user in ways consistent 
with programmatic objectives while still providing a high degree of intuitive 
designer control. We are surprised and pleased at the variety of designs that present 
themselves from random initial positions. Even when the number of spaces is small 
(3 or 4), it is enjoyable to rearrange them to see what happens. The fact that the 
physically based objectives do most of the work allows one to easily explore many 
design possibilities. 

We proposed earlier that a responsive design process would be automated, 
natural, interactive, intuitive, and flexible. We feel that using a physically based 
approach to creating a responsive design system meets these criteria very well. Our 
results show that our approach is clearly automated and flexible. Design solutions 
are created automatically from a small set of design objectives, and the system is 
very flexible in that design objects can be easily manipulated, allowing new designs 
to emmerge. Our approach is for the most part intuitive in that design elements act in 
expected ways, although some of the springyness of objects may be a little 
unexpected. Our current implementation is highly interactive and results are 
produced in real time, but whether or not this will hold for more complicated designs 
is an open question. The last criterion for responsive design is that designers work 
with elements and intentions in their natural design language rather than through a 
low-level representation. How our approach fits this criterion is also an open 
question. An interactive interface that enables designers to specify objectives 
directly on the graphic elements of a space plan should provide for natural 
interaction. However, requiring the designer to have an extensive understanding of 
the underlying physical model will hinder the feeling of natural interaction.  

Within our prototype system, the quality of interaction when rearranging spaces 
is, for the most part, as we envisioned it to be. When editing a space plan, the 
designer is able to move spaces around easily to quickly try out new designs. 
Because of the use of springs and forces, the spaces are very springy feeling. We 
feel that this can be attractive, in that some springyness adds to the feeling that the 
plan is alive, but that when it is too noticable it interfers with the interaction. This 
problem is, however, easily solved by the use of appropriate spring and damping 
constants. 

The responsive feeling of our system depends upon the rate at which calculations 
can be done and the display updated. The frame rate is the rate at which one 
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compute and display cycle is completed. During the final stages of geometric 
resolution, this frame rate can get a little slow, sometimes approaching non-
interactive rates. This is due to two factors. First, accurately detecting and 
responding to collisions requires that the simulation clock be stopped at the time of 
collision and the response calculated. Finding the exact time of colliding contact 
requires a binary search, each stage of which requires a solution to the system’s 
dynamic equations. Second, the handling of resting contacts requires the calculation 
of constraint forces at each resting contact, which requires the solution of a large set 
of simultaneous equations describing the constraint dynamics. However, although 
each of these problems is computationally intensive, their time complexity is at 
worst a low order polynomial. This makes us hopeful that increasing computer 
speeds, along with the application of appropriate approximation methods will allow 
us to achive responsive performance, even for complex building designs, in the 
reasonably near future. 

It is in the nature of the space planning problem is that it is NP-complete, but we 
do not claim to be able to produce solutions that are globally optimal. Instead, we 
look for local optima and depend on the designer to recognize when a solution is 
weak and to make appropriate changes by hand to guide the system into a more 
optimal configuration. We also feel that we can get some reduction in time 
complexity by the use of a hierarchical approach. When using hierarchical spaces, 
such as those discussed in section 4.3, solving for the location of a space is 
dependent only on the parent and sibling spaces, and is not dependent on every other 
space in the hierarchy, thus reducing the global problem into a set of smaller, 
simpler problems. 

7. FUTURE WORK 

Since the responsive design approach to doing space planning is a previously 
unexplored concept, it raises many new questions and presents many opportunities 
for future work. Some of these are obvious and require answers and elaboration in 
order to make this approach truly useful to space planners. Other questions are of a 
more fundamental nature. 

In the immediate short term, we plan to explore: 
– What other kinds of design intentions can be translated into physically based 

design objectives? Some examples may be daylighting, view, non-rectangular 
shapes, etc. 

– How can this approach be modified to handle circulation? Might the use of 
line nodes to define corridor space “centers” be a promising solution? 

– How can this approach be extended to three dimensions in order to handle 
multi-story plans? 

– What are appropriate values to set for the spring constants? Is it possible to 
find a range of values that apply to all design situations, or will the designer 
have to know how to set their own values? 

– What are the interface issues in inputing and manipulating design elements? 
– What is an effective way of displaying the various forces on a space so that 

they are meaningful to designers and allow them to understand the conflicting 
nature of a set of design objectives? 
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To validate and more firmly ground our work we plan to explore the following 

fundamental questions: 
– Does our physically based approach truly fit the intended characteristics of 

responsive design? 
– How does this approach fit into the architectural programming process? 
– How does this approach fit into the overall architectural design process, and 

how can it be integrated with other aspects of schematic design and design 
development? 

– How does this approach affect the quality of designs that a designer 
produces? Is it better than existing methods in allowing designers to discover 
new designs? Will it aid designers from getting fixated on a single design? 

– Although this approach is not intended to produce globally optimum 
solutions, it should benefit the designer to be able to start from a more 
optimal solution than those we are able to currently provide. How can 
optimization methods be applied to this approach? 

– How much of the underlying physical model should be revealed to designers? 
Do they need to know about the underlying forces and the details of the 
physically based system, or is it better for them to understand how it works 
through the use of another metaphor? 

– How can this approach be applied to other design domains? 
– What other benefits are there in using a physically based approach? The 

different forces applied by each objective may be used as a measure of the 
effectiveness of a particular design, to be compared to other design schemes. 

8. CONCLUSION 

We have introduced the concept of responsive design, as a new paradigm within 
which tools for architectural design may be developed. We have also demonstrated, 
with a simple prototype system, that the concepts of physically based modeling 
provide concrete principles around which to construct such tools. Our preliminary 
results with the prototype indicate that useful physically based responsive design 
tools can be built, and that these tools will be practical, enjoyable to use and 
integrate well with the exploratory nature of the design development process.  
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