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COMPUTER METHODS IN ARCHITECTURAL PROBLEM
SOLVING: CRITIQUE AND PROPOSALS

Per Galle

While the development of modeling and drafting tools for computer-aided design has reached a state of
considerable maturity, computerized decision support in architectural sketch design is still in its infancy
after more than 20 years. The paper analyzes the difficulties of developing computer tools for
architectural problem solving in the early stages of design where decisions of major importance are made.
The potentials of computer methods are discussed in relation to design as a static system of information,
and to design as a dynamic creative process. Two key problems are identified, and on this background
current computer methods intended for use in architectural sketch design are critically reviewed. As a
result some guidelines are suggested for future research into computer-aided architectural problem
solving. The purpose of the paper is twofold: (1) to encourage research that will take this field into a state
of maturity and acceptance by practitioners, and (2) to provoke further debate on the question of how to
do it.

This article has been reprinted with permission of the publisher
from the    Journal of Architectural and Planning Research   , Volume 6,
Number 1, Spring 1989, pp. 34-54.
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INTRODUCTION

Computer-aided design in architecture can be viewed as a field comprising two rather disparate main
areas: computer-aided problem-solving (CAPS) and computer-aided modeling and presentation
(CAMP), i.e. representation and drafting of designs. Architectural problem-solving is thought of as the
search for and selection of basic solution alternatives that takes place in sketch design; typicafly
schematic space planning at the site or floor plan scale. While the development of practically useful
modeling and drafting tools seems to proceed smoothly [Baer et al (1979); Christiansson (1984)], this
cannot be said about CAPS which, after more than 20 years of experiments, still seems to appeal more
to researchers than to practitioners. This awkward situation prevents us from utilizing the expected
benefits of CAPS, vis. better analysis of design problems and their potential solutions; in short more
well-founded design decisions.

The tasks to be solved by CAMP systems are well-defined and inter-disciplinary, as opposed to the
tasks of CAPS systems. No doubt the relatively slow development of CAPS in architecture can be
explained partially by the ill defined nature of problems that characterize architectural sketch design and a
certain over-simplification of the problems to make them amenable to computer methods. Moreover,
once the problems are submitted to computer processing their complexity reveals itself. Space planning,
for instance, is sometimes formalized as a "quadratic assignment problem" which is known in computer
science as a so-called NP-complete problem [Liggett (1980)]. This implies that on a sequential computer
any known method for its exact solution requires time or storage that grows exponentially with the
problem size. Other formulations also tend to require explosively growing computer resources.

But the lack of general acceptance of the results obtained so far is hardly due to these difficulties
alone. Numerous CAPS systems for design of furniture layouts, floor plans, site plans and for general
space planning tasks have been presented in the literature, tacitly assuming that these new "powerful
tools" would be welcomed by practitioners. [For comprehensive surveys of the literature, and
illustrations of various CAPS methods, see the excellent introductory texts of Mitchell (1977) and
Steadman (1983)]. There has been, however, a tendency to neglect the crucial question: What do we
want these systems to do for us? Proper discussion of this is obviously a necessary, though not a
sufficient, condition for CAPS to become more generally accepted and practically useful.

Cross (1977) warned against the dangers of uncritical development of CAD in architecture and
presented a general check-list of questions to be considered prior to the implementation of comprehensive
systems. In a similar vein this paper will take up the above question, but in the narrower context of
problem-solving in sketch design, i.e. the most creative phase of architectural design where major
decisions are made. This is where the need for a debate seems most urgent.

The two sections to follow will consider two different aspects of architectural design (especially
CAPS): The first section describes two main types of information involved in design: criteria and
solutions, while the second section focuses on the process of design and the division of labor between
man and machine.
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The third section will criticize current problem-solving strategies in CAPS in terms of these ideas of
design, and finally the fourth section concludes the discussion by suggesting some potentially fruitful
directions for research into CAPS.

Throughout the paper examples are drawn from floor plan design, a fundamental architectural
activity, but the discussion aims at architectural sketch design in general, viewed as problem-solving of a
combinatorial nature. The recommendations made are intended not only as an aid in the development of
specific CAPS systems with due respect to architecture as an art, but also as a subject of further debate.

DESIGN AS INFORMATION: CRITERIA AND SOLUTION SETS

Architectural design can be understood roughly as: a process which (1) creates one or more design
solutions, i.e. geometrical configurations modeling some desired state of the physical world as specified
by a number of design criteria (given a priori, or themselves created by the process), and (2) selects one
such solution to be the best in terms of the (final) criteria.

Forgetting for a moment about design as a process, we first concentrate on the information  aspect of
design: What sorts of criteria and solution sets are involved, what are their mutual relationships, and
what does it mean for the development of CAPS?

A Taxonomy of Design Criteria

Any problem of architectural design is determined by the architect's and the client's architectural
criteria that characterize the solutions to be explored. Neither floor plans nor more complex architectural
objects can be generated like the solution set to n linear equations with n unknowns, by methods leading
directly to the desired result. To the author no systematic methods are known which generate solutions to
realistic architectural design problems directly, without trial and error (though experienced designers may
seem to "jump" directly to solutions, using their intuition); as far as systematic design goes, solutions
must be searched for in a suitable class of geometrical configurations which are made accessible by the
search method.

In traditional intuitive design architectural criteria are often implicitly agreed upon by client and
architect, while the set of candidate solutions is only limited by the capacity of imagination.
CAPS-methods, on the other hand, force the users to state several architectural design criteria explicitly,
while typically limiting the set of candidate solutions, e.g. assuming floor plans to be rectangular
mosaics of tightly packed, non-overlapping rectangles, each representing one room of the building.

In general, a computer system for design (as well as informal procedures residing in the head of a
human designer) inevitably affect the "style" of the designs they produce, as argued by Simon (1975).
[Cf. also Cross (1977, p 147).] That is, some design criteria are implicitly added by the system, without
being derived from the user's problem defining criteria. Simon calls them "autonomous constraints". For
the present purpose we prefer the term system imposed  constraints.
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TABLE 1. Classification of design criteria in CAPS.

Classes of design criteria       in        CAPS:       Examples from floor p1an design:

Desiderata:
Quantifiable: * Minimal total pedestrian traffic.

* Min. perimeter length.
* Good daylighting conditions.
* Min. total area.

Non-quantifiable: * Harmony of proportions.
* Intimacy.
* "Form follows function".
* "Form follows fantasy".
* Monumentality, order.
* Visual variation.
* Friendly entrance.

Architectural constraints:
Size: * Min. and max. area of total plan or single rooms.

* Min. and max. length of plan or single rooms.
* Max. length/width ratio.
* Walls on given modular grid.
* Min. length of common wall between two rooms.

Position: * Room A adjacent to either room B or room C.
* Min. 6 metres between rooms A and B.
* Northern walls of rooms A and B aligned.

Style: * Solution is a terminal shape of a given shape grammar.

Resource imposed constraints: * Max. CPU time and storage.
* Max. number of solutions to be generated for the human
  designer to consider.

System imposed constraints: * One sample plan per class of "equivalent" plans.
* Equivalent plans share the same "rectangular dissection".
* Equivalent plans share same "wall representation".
* The solutions depend on the order of room placement.
* Rectangular rooms only.
* Rectangular boundary.

The resources available constitute a third source of design criteria. In practice there are limits to the
amount of computer time and storage that can be afforded, and human resources are also limited: The
time an architect can spend on a project, and the amount of information he can cope with, e.g. the
number of (computer-generated) solutions he is able or willing to compare.

Apart from the trichotomy of architectural, resource imposed, and system imposed, design criteria can
also be divided into desiderata and constraints. Desiderata are satisfied to some degree, which is not
necessarily quantifiable. (E.g. walking distances can be more or less short, or bedrooms more or less
private.) A constraint, in our terminology, is either satisfied or not, and it can be objectively decided
which is the case (e.g. whether two rooms are adjacent as required).
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Figure 1. A Venn diagram showing the relations of goal solutions as defined by the architectural constraints given in
the input to a CAPS system, candidate solutions satisfying the system imposed constraints (and thus available
through the system), and solutions actually generated as part of the output. The class of generated solutions is

delimited by constraints imposed by limitations of human and computer resources. (Notice that no specific sets cor
respond to the     desiderata     listed in Table l.)

For the sake of completeness we also subdivide the architectural constraints into three types: Size and
position constraints, and direct constraints on style, e.g. specified by a shape grammar [Stiny (1980);
Stiny and March (1985)]. The ability of CAPS methods to deal with architectural style constraints was
pointed out by Mitchell (1979) as highly desirable. Only recently have simple shape grammars found
their way into actual CAPS systems; see e.g. Gero and Coyne (1985), Krishnamurti and Girauld (1986).

Combining the distinctions just outlined, we obtain the classification system in Table 1. The
"rectangular dissections" of Mitchell et al (1976) and the "wall representations" of Flemming (1977,
1978, 1979) mentioned in the table are mathematical abstractions of solutions, both representing the
structure of adjacency between rooms, but at slightly different levels of detail. Thus a set of generated
solutions comprising a representative from each equivalence class of plans with the same dissection (or
wall representation) will show all ways in which the adjacency constraints can be satisfied, but ignore
solution variants that differ only with respect to, say, the size of rooms. [Refer to Steadman (1983) for
further explanation.]

Subdividing the Universe of Potential Solutions

F'igure 1 shows the universe of potential solutions, i.e. all geometrical configurations that may be
thought of as solutions to any problem of architectural sketch design whatsoever, and its subdivision into
sets of solutions satisfying system imposed, resource imposed, and architectural constraints. [The model
presented here is closely related to the models discussed by Mitchell (1975, 1979).]
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The candidate solutions are the potential solutions which (theoretically) are available by means of a
specific design method (computerized or manual). The class of candidate solutions of a method is
delimited by the system imposed constraints of the method.

The goal solutions are those potential solutions which satisfy all architectural constraints of a specific
design problem. Some of these may not apply to the candidate solutions of the method chosen, and will
then usually remain implicit and without significance to the design process. E.g. the designer of a floor
plan may not have any objections to circular rooms; however, by convention (or because it is supported
by his computer!) he has chosen a design method which allows only rectangular rooms. Then of course
he does not think of constraints on the minimum and maximum radius of rooms. But those architectural
constraints which do not apply to the candidate solutions of a computerized design method obviously
must form the core substance of its input. (E.g. the sample of architectural constraints on area and
adjacency shown in Table 1 would typically occur in the input of a program for generating rectangular
floor plans with rectangular rooms.)

The feasible solutions we define as the intersection of candidate and goal solutions. The more these
classes intersect, the more suitable is the design method for the problem at hand. The ideal but unlikely
situation of total suitability would occur if all goal solutions were candidate solutions.

The solutions generated constitute the core substance of the output of the system and are to be
selected from the feasible solutions subject to the resource imposed constraints.

Over- Well- and Underconstraining

For a given design method (and hence a given set of candidate solutions available), the choice of
architectural constraints requires a good deal of experience (or luck) if a suitable number of feasible
solutions are to be delimited. Very often there will be none at all or too many with respect to the human
resources:

Given the design method, a design problem is said to be overconstrained if the set of feasible
solutions is empty. [1] If, on the other hand, there are too many feasible solutions to be generated and
considered within the limits of the resources available, we call the problem underconstrained (with
respect to resources and method). Finally, if the problem happens to be neither over- nor
underconstrained we shall call it wellconstrained. (Cf. Fig. 2.)

Potential over- and underconstraining is probably inherent in all sorts of architectural design, usually
blurred by the implicit or even subconscious use of criteria in traditional intuitive methods. But even a
design problem explicitly stated for a CAPS system may be impossible to classify beforehand as either an
over-, well-, or underconstrained problem. Therefore developers of CAPS systems should take great care
to ensure that the systems will be able to cope with a problem in either of the three cases. As we shall
argue in the next section existing CAPS (space planning) methods are unable to respond adequately to
many under- and overconstrained design problems within their intended scope of application. This
problem was recognized by Eastman (1975 b, p 10) more than a decade ago, so it is high time for us to
pay attention to it.
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Figure 2. The three situations of over-, well-, and underconstraining illustrated in terms of the solution sets from
figure 1. The dots symbolize feasible solutions.

Much of the difficulty of design arises from situations of underconstraining where the number of
choices open to the designer appears practically infinite, rendering a decision very hard to make - and
from situations of (unrecognized) overconstraining where the problem just looks increasingly intractable
to him the more he works on it. If CAPS systems fail to be helpful in such moments of frustration, the
designer is likely to discard them as useless.

DESIGN AS PROCESS: DIVISION OF LABOR BETWEEN MAN AND MACHINE

Another problem of crucial importance in further research into CAPS is the basic question of what
parts of design as a process should be automated and what should be left to the human designer. [A point
also stressed by Cross (1977).] In order to discuss this, we should elaborate a little on our crude
definition of architectural design as stated above. Maver (1977) presents a model of architectural design,
originating from The Building Performance Research Unit. According to this model, design proceeds
through various stages with increasing levels of detail, each composed of four steps: analysis, synthesis,
appraisal, and decision (with feed-back loops connecting them). Here we are interested in just a single
early stage of the design process, vis. sketch design, but the four steps of such a design stage are useful
for a discussion of the man / machine relationship. Table 2 contains in its left column a brief description
of four design steps much like Maver's, but in terms of the concepts introduced in the previous section.
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TABLE 2. Limits to computerization of architectural design, as proposed by the author.

(We see that some decision-making takes place in all steps except no. 2; hence the fourth step has been
called SELECTION, rather than DECISION. It selects either a final solution or the next step to be
repeated in the process.)

Limits to Computerization

The middle and right columns of Table 2, respectively, show what the author believes should at least
be left to the human designer, and should at most be done by the computer. The Underlying (ethical and
practical) principle is the following:

All activities involving value judgement should be carried out by the human designer, while purely
logical matters (satisfaction and consistency of constraints) and purely numerical matters (measurement
of the degree of satisfaction of quantifiable desiderata) may be left to the machine.

In each step requiring decisions, these are left entirely to the designer who thus retains his
responsibility, while the task of the computer is that of providing the designer with adequate information
that enables him to make his decisions. Clearly, each of these are also based on value judgements: In
STEP 1 the formulation of criteria (to the extent that they are not given a priori), so as to make clear what
a good, or at least acceptable, solution is like. In STEP 3 the subjective weighting of criteria. Finally, in
STEP 4 the decision whether the generated solutions are good enough or search for better solutions
should continue, also involves a value judgement. Typically this judgment will rely on a trade-off
between the improvement expected from continued design efforts, and the resources needed (time,
money, etc.).
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How Close to the Limits?

Table 2 does not tell us how close to the Emits of computerization we should go. If we want the
insight offered by a systematic exploration of the set of feasible solutions, as assumed in this paper, we
should go as close as we can to these limits.

In cases of trivial routine design, automating STEP 2 could hardly jeopardize any substantial values of
human creativity. As for the majority of non-routine cases it would seem unlikely that all goal solutions
will be included in the set of feasible solutions available by computer. The search for solutions performed
by the computer should then be supplemented by intuitive search in the set of goal solutions that are not
feasible in terms of computer methods. The apparently controversial "Nothing" of Table 2 obviously
applies only within the limited scope of CAPS methods. The solutions automatically generated should be
taken as an inspiration for the architect to continue search for solutions beyond reach of the computer.

OPTIMIZE, SIMULATE, OR SATISFY?

Before we embark upon the future of CAPS, let us briefly review its past and present in the light of
over- well- and underconstraining, and proper division of labor. Following Radford and Gero (1980),
we divide CAPS methods into three main families:

* (1) Optimization:  Generation of one or a few solutions which are not only feasible but also
"best", e.g. in the sense of minimizing some measure of cost.

* (2)Simulation: Prediction of the performance of a given potential solution with respect to one or
more criteria. Simulation methods do not themselves produce the solutions to be investigated;
usually simulation is combined with a graphic user-interface allowing the designer to propose
potential solutions interactively.

* (3)Satisfaction: [2] Generation of some or all feasible solutions, i.e. solutions that satisfy the
given constraints, but without any automated ranking or evaluation of the solutions.

Optimization

The usefulness of optimization methods in purely technical matters of operational research,
construction engineering, and environmental or building design will not be questioned here. However, a
large group [Gero (1973, 1983)] of computer methods based on optimization have been devised for use
in genuinely architectural sketch design, vis. systems for automated floor plan layout. They automatically
synthesize and select one or a few "best" solutions using various techniques to minimize an objective
function of the layout. This function expresses the fulfillment degree of one or more quantifiable
desiderata (often called objectives). Typically the objective function to be minimized is the sum of the
traffic line lengths, multiplied by some measure of expected traffic intensity, e.g. the number of people
walking along those lines. [The early system of Whitehead and Eldars (1964) even weighted the cost of
walks according to the salaries of people walking.]
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The problem of overconstraining is ignored by these methods, rather than solved. By simplifying
architectural reality to essentially a matter of minimizing a function of distances and traffic intensity the
relevant architectural constraints that might cause overconstraining are merely neglected. It should be
noted, however, that Liggett and Mitchell (1981b) adopt a highly interactive approach to floor plan
optimization in order to take a richer set of design criteria into account, including non-quantifiable
desiderata. Their method incorporates, however, a substantial element of simulation.

Theoretically a design problem may have so many feasible solutions which are all optimal in the sense
of the objective function (or are within an acceptable deviation from the optimum) that the problem would
be underconstrained if they were all to be generated. Under the disputable assumption that the objective
function expresses all criteria that matter, one solution optimal in the sense of the function is (in
principle) as good as any other. Hence the underconstraining can easily be evaded by picking an optimal
solution at random. From an architectural point of view, however, the price of such "elimination" of
underconstraining is high, since in spite of more recent improvements, notably by Liggett and Mitchell
(1981 a), optimization methods are inherently unable to deal with non -quantifiable desiderata.[3]

Admittedly, judicious use of optimization may allow the designer to have several solutions generated
which are optimal or near-optimal or, as suggested by Radford and Gero (1980) and by Gero and
Balachandran (1986), Pareto-optimal with respect to multiple objectives. (A solution S is said to be
Pareto-optimal with respect to a set O of objectives if no other solution is better than S with respect to
every objective in.) The designer can then compare the generated solutions in terms of qualitative and
other criteria not taken into account by the optimization technique. But even such a procedure is biased
toward the quantifiable desiderata. The solution which is "optimal" with respect to all desiderata (given
their relative importance which is a subjective decision) is not necessarily one of the solutions that are
optimal or near-optimal in quantifiable terms.

Although this is clearly unsatisfactory, (pure) optimization methods are primarily objectionable in
architectural sketch design because they attempt a full automation of appraisal (STEP 3 in Table 2), tacitly
assuming that the relative importance of non-quantifiable desiderata is negligible, thus indirectly making
judgments on behalf of the designer. By generating only quantitatively optimal solutions, they also
indirectly make decisions on behalf of the designer (STEP 4) as regards selection of the best solution,
thus violating the limits to computerization outlined above [Cf. also Galle (1981) and Steadman (1983,
pp 140-141).]

Simulation

The optimization techniques originate in the field of operational research; hence it is worth noting that
the problematic application of them to architectural space planning tasks has long ago been criticized from
within that field vis. by Krarup and Pruzan (1978), who recommend instead a simulation approach.

Simulation programs for architectural sketch design have been developed mainly at the University of
Strathclyde in Scotland [Maver (1977, 1979)]. Today some of them have found their way into practice in
Holland [Kraal (1983)], as well as architectural education in a diversity of countries such as Holland,
Denmark [Agger (1982)], and Israel [Roth (1985)].
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The basic task of such programs is to point out to the designer if his solution proposals do not satisfy
the architectural constraints (STEP, 1), and to measure the fulfillment degree of quantifiable desiderata
(STEP 3). According to Maver (1979) this enables the designer to investigate up to ten times as many
potential solutions as he could do without the aid of the programs.

Thus augmenting the resources at the designer's disposal the programs render many problems
wellconstrained that would otherwise be underconstrained. But since all tasks of synthesis are left to the
human designer, there is no guarantee that any (let alone all) relevant feasible solutions are actually
considered, even if the problem is wellconstrained. And there is no way in which the designer can know
if this is the case.

As far as overconstraining gun the simulation approach has the advantage of allowing the designer to
hypothesize unfeasible solutions whose violations of the constraints are then immediately discovered.
Thus he may gain a useful insight into the causes of the overconstraining.

In general, the basically passive and un-creative role played by a simulation system in the design
process ensures that the limits to computerization from Table 2 are certainly not violated; on the contrary
it is a weakness of (pure) simulation that in the synthesis step it stays too far behind those limits. No
systematic investigation of alternative solutions is achieved. On the other hand the simulation methods
are able to utilize the potential benefits of computerizing the analysis and appraisal steps.

Satisfaction

The same objection regarding unsystematic search can be made against the class of non-exhaustive
constraint satisfaction methods, i.e. methods that automatically generate one or some solutions, governed
by ad-hoc heuristics or random number generators. Such methods have been developed by Weinzapfel
and Handel (1975) (whose "IMAGE" system can also run in a simulation mode), Velez-Jahn (1971,
1973), Teicholz (1975), Ruch (1978) and have also been advocated by Willey (1978).

But several computer-based architectural satisfaction methods are (basically) exhaustive. That is, they
generate systematically (within resource limits) all feasible solutions (e.g. schematic floor plans; cf.
Figures 3 and 4). A pioneering effort was made by Grason (1968, 1970). Systems later developed by
Mitchell et al (1976), Flemming (1977, 1978, 1979), and Roth et al (1982, 1985) impost various
constraints in order to reduce the risk of underconstraining, vis. by selecting sample solutions
representing certain classes of solutions which are considered "equivalent" (cf. the remarks explaining
Table 1). These more recent systems are hybrids in the sense that exhaustive satisfaction is combined
with optimization which is, however, used only as an auxiliary tool for selecting sample solutions. A
new system based on such a principle is also suggested by Flemming (1986). The floor plan generator
"FLOP 1" by Galle (1981, 1983) performs a purely exhaustive search under the additional system
imposed constraint that the modular grids of the plans be as coarse as possible.

Although the system imposed constraints embedded in such sampling techniques dramatically reduce
the number of problems that would be underconstrained, exhaustive satisfaction methods tend to be very
sensitive to "combinatorial explosions": They may encounter  a
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Figure 3. Sample output from the author's FLOP 1 system (Galle (198l): Exhaustive list of all 22 solutions to a
simple house design problem. The system was restricted to rectangular floor plans.
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Figure 4. Design for an old people's home, generated by the FLOP 2 system [Galle (1987 a, b)] in a test run creating
new variants of an existing building by the Danish architects Buhl & Klithoj.

problem which (in spite of the carefully devised system imposed constraints) is underconstrained, and so
forces the generation process to stop before a systematic overview of the entire set of feasible solutions
has been obtained. (E.g. a sample solution may not have been found in all equivalence classes.)

The obvious approach to this effect of underconstraining has been taken by Flemming       (1978) and by
Roth et al [Roth (1984)] who allow the human designer to guide the generation process interactively.
Indeed, resorting to interaction may be necessary but is likely to re-introduce the element of randomness
that was characteristic of the simulation methods.
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TABLE 3. A subjective evaluation of current methods of CAPS in architectural sketch design. with respect to overwell- and
underconstraining. (Applications of the methods as auxiliary techniques in "hybrid" methods are not taken into account.)

As for overconstraining, some of the methods incorporate input control tests that may reveal simple
cases of inconsistency in the constraints specified by the designer, notably constraints on room adjacency
that are impossible to satisfy in two-dimension layouts; cf. e.g. Ruch (1978). However a complete set of
size and position constraints may be impossible to satisfy simultaneously, without their inconsistency
being a priori detectable by any simple test. The literature has nothing much to report on the behavior of
the systems in such cases, presumably because they are, e.g. like FLOP 1, unable to give any helpful
information at all when the design problem is overconstrained in this complex way.

One remarkable exception is the non-exhaustive IMAGE system mentioned above. It manipulates
box-shaped volumes representing e.g. furniture, rooms, or buildings, trying to satisfy a number of
constraints e.g. on area, distance, alignment, non- overlapping, and visual access. It currently checks for
each box whether it satisfies all constraints pertaining to it. If not, the system calculates a suitable
displacement of the box so as to reduce the constraint violations of that particular box. As pointed out by
Eastman (1975b), the basic assumption of IMAGE is that the design problems are usually
overconstrained. Therefore the system effects a compromise so as to minimize the overall violations of
constraints (and hence may fail to find
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feasible solutions even if they exist). An important feature of the compromise generator is that it is able to
report the constraints that have been (most) violated, thus giving the designer potentially valuable
information.

Generally speaking, however, the weakness of current satisfaction methods is their inadequate
response to over- and underconstrained problems. The strength of exhaustive satisfaction methods is that
for wellconstrained problems they give us exactly the systematic overview desired for decision-making,
going close to but not across the limits to computerization.

Comparison

While, as we have argued, the optimization family of methods fail to solve the general division-
of-labor problem properly in the architectural context, simulation and (exhaustive) satisfaction seem to
complement each other nicely in this respect: Simulation is able to utilize the automatization potentials of
analysis and appraisal (cf. Table 2) but not of synthesis -- and vice versa for exhaustive satisfaction.

Turning to the problem of over- well- and under constraining, we notice a similar complementarity of
strengths and weaknesses between simulation (together with the IMAGE system) on one hand and
exhaustive satisfaction on the other hand. The pattern becomes clear from Table 3 which summarizes the
above discussion of this problem. An obvious conclusion to draw is that the best choice of CAPS tools
for typical architectural sketch design, given the broadly published techniques of today, is a combination
of simulation (or an IMAGE-like approach) and exhaustive satisfaction. But as the table shows, we still
need tools for proper handling of under constrained design problems.

It should be admitted at once that the statements contained in the table, especially when condensed and
simplified in this way, may seem rather dogmatic. Since the premises of the above argument may not be
generally agreed upon (e.g. the limits to computerization, the desirability of systematic exploration of
solutions, or the importance of non-quantifiable desiderata), one cannot expect the conclusions to be so.

CONCLUSIONS AND RECOMMENDATIONS

We have identified two key problems in the development of CAPS methods for architectural sketch
design:

* (1) Proper handling of over- well- and underconstraining: It was pointed out that CAPS methods
should be able to respond to all three situations; particularly methods which fail to help the
designer avoid the frustrations of under- or overconstraining are unlikely to become generally
accepted.

* (2) Proper division of labor between man and machine: An attempt to outline "the limits to
computerization" of design was summarized in Table 2, and we argued that for the potential
benefits of CAPS to be better utilized the limits should be approached  -- but not violated.
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Since, according to the discussion summarized in Table 3, none of the methods currently available is
satisfactory with respect to both of the key problems, these issues should obviously be addressed in
future research.

More specifically we reached the conclusion that simulation and exhaustive satisfaction were
preferable to (pure) optimization [4] with respect to (2) and probably could be combined in order to solve
it. Recommending therefore that optimization be generally abandoned (or reserved for auxiliary
purposes), how could we suggest improvements of the remaining methods with respect to (1)? - A
reasonable approach would be to concentrate on those of the weaknesses listed in Table 3 which seem
most likely to be remediable.

Overconstrained design problems, for example, imply a need for improved diagnostic power of
satisfaction methods. Although satisfying a set of inconsistent constraints is impossible by definition,
certain approaches to overconstraining have already emerged in the context of satisfaction. One is a
systematic relaxation of constraints so as to eliminate the inconsistency, followed by generation of a
sample of the corresponding, not strictly feasible, solutions. If the designer knows which constraints are
relaxed, and how, those solutions may give him enough insight to decide upon a revised set of
constraints. The non-exhaustive IMAGE system actually performed constraint relaxation along these
lines. A principle based on (potentially exhaustive) generation of abstract, approximate solutions was
suggested by Galle (1986), and tested in the "FLOP 2" system which has only very recently been
implemented. A preliminary report on the results is given in [Galle (1987a, b)]. Another technique
introduced in FLOP 2 for handling overconstraining is generation of maximal incomplete solutions; e.g.
floor plans with as many of the required rooms as possible, but with certain rooms omitted whose
constraints cannot be satisfied. But more ambitious approaches are needed that would enable the systems
to suggest explicitly how to modify overconstrained problems.

Wellconstrained design problems should obviously be solved by exhaustive satisfaction whenever
possible, if one accepts the conclusions in Table 3. The weakness of simulation and non-exhaustive
satisfaction in the case of wellconstraining stems from the very principles of these methods. Hence
attempts to improve them would be likely to lead towards either optimization or exhaustive satisfaction.
As for the latter, an important area of research is the continued effort to render as many problems as
possible wellconstrained, e.g. by developing efficient combinatorial search algorithms [Mackworth
(1977); Kornfeld (1982)] and inventing useful sampling techniques in terms of system imposed
constraints [Simon (1975, p 300); Flemming (1979; 1986); Galle (1986; 1987a)].

Underconstrained design problems are evidently the most difficult ones to master. Again, improving
the weaknesses of simulation and non-exhaustive (heuristic or random number based) satisfaction seems
impossible a priori because the search is unsystematic by definition. But at least in principle nothing
prevents exhaustive satisfaction (i.e. exhaustive within resource limits) from improvement with respect to
underconstraining. No doubt the poor behavior of most exhaustive methods in cases of
underconstraining results from their underlying unwarranted optimism: They rely on the hope that the
problem at hand (perhaps due to system imposed constraints) will turn out to be wellconstrained, so that
all feasible solutions will eventually be generated. Encouraging results have been obtained by designing
FLOP 2 on the more pessimistic assumption that each generated solution may turn out to be the last one
permitted by scanty resources: A simple combinatorial search strategy called Branch & Sample [Galle
(1987c)] was developed which ensures at any stage of the search that the solutions generated so



eCAADe 1989 - PDF-Proceedings (conversion 2000) 6.4.17

far are representative of the entire set of feasible solutions, and are uniformly scattered over it.
(Technically, representativeness and scatteredness are defined in terms of a so-called ultrametric distance
function over the search tree).

These years the idea of "knowledge based systems" is being intensely investigated by some CAPS
researchers, and one can hope for a break-through in that direction leading to more 1nteWgent" and
user-friendly systems. For example Coyne and Gero's (1985a, b) attempts to transfer so-called
"planning" techniques from other areas of artificial intelligence to floor plan design, and their suggestions
for further research, show some promise. But even so the fundamental and serious problems of CAPS
which have been the subject of this paper are likely, for quite a long time, to remain fundamental and
serious.

NOTES

[1] Thus to say that a design problem is overconstrained strictly speaking amounts to stating the non-existence of an object with
certain properties. (A feasible solution.) But we know from Goedel and others that no general algorithm exists to prove or disprove
such a statement in finite time. Therefore in practice we shall consider a problem overconstrained whenever the resources and the
rnethod at hand do not allow us to find any feasible solutions to it.

[2] Radford and Gero (1980) use the term     generation

[3] Gero and Oguntade (1978), as well as Oguntade and Gero (1981), have proposed Zadeh's    fuzzy        set       theory     as a formalisrn which
might enable CAPS methods to deal properly with subjective evaluation, but to the author's knowledge no systems with such an
ability have yet been implemented.

[4] For an argument concluding in favor of optimization, see the paper by Radford and Gero (1980).
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Abstract:

This paper focuses on the function of drawing in architectural design. It does so by taking an
in-depth look at the drawing material produced for the design of the chapel at Ronchamp. Within
architectural design there is more than one type of drawing. The objective therefore is to determine
what exactly these different types of drawing are and furthermore what their function is for the
architect. For we believe that questioning, at this basic level, the function of drawing within the
design process provides the basis from which it is possible to go on to question the function of
computer-based drawing within the design process, and consequently it's function in CAAD.
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