Palladio’s Bridges: Graphic Analysis and Digital Interpretations

Representing Palladian Designs with New Technologies

Alberto Sdegno
University of Trieste, Faculty of Architecture
http://www.unts.it/sdegno
sdegno@units.it

Abstract. The paper presents some results of a research on the digital reconstruction of some bridges designed by Andrea Palladio. The use of new technologies has enabled us to investigate the morphology of every single element and to be compared each other. Using the method of video animation, we have analyzed some of them in order to simulate the human perception and to understand their spatial configuration, but also to visualize the point of view of a man crossing a river or a canal. The last step was to prepare the models for producing some physical maquettes with the technique of rapid prototyping that have enabled us to verify the quality of the digital construction. Some different kinds of powder were used to identify the best one for the representation of architecture.

Keywords: Digital reconstruction; geometric analysis; unbuilt projects; video; rapid prototyping.

Palladio’s designs for bridges

For the fifth centenary of the birth of Andrea Palladio a research project started with the aim to study some important bridges designed by the Vicentine architect. Some of them are published in his treatise ‘I Quattro Libri dell’Architettura’, others are kept in various historical archives.

The research was based on the reconstruction of Palladio’s wooden bridges, published in the III Book of his treatise (an arc solution of a bridge, the Bassano Bridge), and the two versions for the Rialto Bridge in Venice. Owing to the little graphic information about them, we have faced great difficulties of interpretation. In some cases we had the plan and the longitudinal elevation as the main drawings to describe the project, but sometimes we had just an elevation, without any information about the width of it and nor any constructive details of the way in which it was thought for the realization.

But thanks to the digital reconstructions, some relevant aspects were revealed, concerning above all the rigorous geometry of every form and the symmetry of the structure. In fact the aim of this
research was, not only to model the 3D maquette of the structure, but also to understand the hidden relationship between the single parts and the general morphology.

Wooden bridges

The wooden bridges are described by Andrea Palladio in the Third Book of his treatise, where there are texts and drawings that show the main idea. Some of them seem to be very simple in their formal configuration, but in reality it is possible to identify a rigorous geometry that allows us to understand the great ability of the architect in solving complex problems of form and function. In fact every bridge structure must consider aesthetic problems, as well as satisfy a static necessity, allowing people to cross the river and arrive at the opposite side.

We shall not analyze all the solutions adopted by Palladio, but we shall only consider the arc bridge solution, because of its singular way to solve the problem of having a bridge without elements touching the water of the river. Its geometrical analysis enables us to show the geometry that has determined the form. In fact, if we extend the ‘colonelli’ – the small vertical supports – that hold up the structure, it is possible to recognize a common point that is the centre of the two circumferences where the two arches lay. The same point is also the vertex of the equilateral triangle, whose extremities are placed exactly on the shutter plane on the two shores. In the text Palladio observes that “you could make with a bigger or smaller arc than the one that is drawn, depending from the quality of the site and the dimension of the river”, as in Figure 1.

After the analysis of the drawings published, we started a digital reconstruction of the three-dimensional structure (Figure 2), trying to understand Palladio’s initial geometrical conception and then pass to a more sophisticated study that could give the perception of an hypothetical ‘promenade virtuelle’ across the bridge, in order to have a visitor’s realistic visual impression.

The last step was the physical reconstruction of the structural configuration with the rapid prototyping techniques, enabling us to compare it with some other models at the same scale. The powders used in the process of sinterization are of three kinds: nylon, aluminium and ceramics. The last one had the best results both in term of solidity and in term of beauty, due to its clear yellow colour.

The Bassano Bridge

In 1567 the bridge on the river Brenta, near the centre of the town of Bassano, was destroyed by a flood. Palladio was asked to give a solution keeping some aspects of the preceding one but trying to define a new idea with some architectural components. In fact its structure was based on a horizontal path covered by a roof on a series of Tuscanic pilasters, all of them made in wood.

After two other destructive episodes – the first
one natural and the second one due to the Second World War – the bridge was reconstructed respecting Palladio’s drawing, so that we can say that the actual one is very similar to his intention.

In his treatise we can find all the information about the structure, since we have a scheme of the plan, the elevation and the section along the path (Figure 3), and some measures in Venetian palm that allow us to have the right dimension of it, although we do not have the whole drawing of the design, but only its most relevant parts.

The activity of reconstructing the bridge with new technology started with the 3D modeling of the main horizontal and vertical elements, and then we passed to the visualization of it with some rendering software – such as the radiosity, to have the best solution in terms of final restitution – which give us the possibility to calculate the natural illumination and compare it with the real one.

After this step we tried to explore it generating a video animation, recreating a human point of view and moving it inside the scene. In this way it was possible to compare it with a real camera moving on it. The virtual and the real bridges were presented in the same sequence for a double comparison at the same lighting.

The Rialto Bridges

The most interesting solutions of bridges by Andrea Palladio were, without any doubt, those on the Rialto area in Venice. These show a true intention to respect the main idea of the design, which was to have a poly-functional bridge, an idea that we can find also in the one which was eventually realized by Antonio da Ponte. The bridge – located in the central market area of Venice - had, in fact, to fulfill a variety of functions. Apart from the main one, which is to cross the Grand Canal, there was the need to have shops for the commerce of goods and food. Some other common characteristics are: the use of a multiplicity of arcs as structural elements inside the water; the use of architectural orders, and the timpan in the central part of it to give a hierarchical order to the whole complex.

The two palladian solutions are similar, but at the same time very different. Since neither of them is identified by the architect with the name of the area (Rialto), they seem to be two abstract designs of bridges without any real collocation in the space of a town. For example, Palladio speaks about the second one published in his book – as ‘bellissima inventione’ for a noble town, without saying that it is Venice.
First solution of the Rialto Bridge

The first solution of the Rialto Bridge is described in two drawings conserved on a single paper at the Civic Museum in Vicenza, and it was dated between 1553 and 1554 (Figure 5). There we can find a partial elevation on the recto and a full plan on the verso. As a metric specification we find some quotes that give us the information about the dimension of the structure. In fact the bridge is 132 feet long (1 Venetian foot is cm 34,77) corresponding to mt 45,89, while the two courts at the end of the bridge are 32 x 26 ‘pasa’ (pasa stands for step, and is mt 1,78, that is 5 Vicentine feet), which correspond to mt 57,20 long and 46,47 wide).

We have no other information about the interior of it, but from the plan we can identify two series of seven shops on the two sides – and some staircases that allow us to circulate around and on the bridge. Even if it is not clear the way in which you can reach the court with this vertical path – the number of steps of the staircase is not proportioned to the height of the building – we have to hypothesize that some elements are drawn as abstract symbols with no real relationship to the whole composition.

The first step of the reconstruction was to define the whole geometry in the plan, elevations and sections, trying to identify all the information which was not present in the graphic paper.

Then there was the phase of modeling the bridge, with the detailed parts of it, such as the architectural order, and in particular the Corinthian capitals. After having reconstructed all the parts, we tried to understand the position in the site, tracing the river sides and the water. The last phase before the rendering visualization was to create the texture maps and to apply them to the surfaces of the model. The final rendering was made with V-Ray algorithm in order to
obtain a pre-calculation and to accelerate the generation of single frames to create the video animation. In Figure 6 there are some of these slides.

Second solution of the Rialto Bridge

The second solution of the Rialto Bridge was much better known than the first one. This is due to the fact that it was published in the ‘Four Books of Architecture’ by Andrea Palladio, although – as we have just said – there is no reference to Venice in it. A lot of redrawings are in fact made by starting from Palladio’s graphics in the treatise, such as those of Muttoni and Bertotti Scamozzi, in the XVIII century. Antonio Rondelet in 1841 wrote an essay trying to understand the history of the bridge better, showing not only Palladio’s ideas but all the different ones, and studying the composition as well as the possibility of building it. His considerations about the construction were very useful to this research, also owing to the details that the author gave as suggestions.

The main drawings show the plan and the longitudinal elevation and section of it, giving a sufficient description of the principal parts. For an exhaustive representation we should have also some other sections and another side elevation, and the plan of the roof would give the exact configuration of the higher part of the bridge.

The analysis of the drawings allowed us to model all the parts of the bridge using solid and NURBS modeling. In fact, as we have some simple elements, such us walls and floor, there are a lot of very complex components – such as Corinthian capitals, for instance – that need some specific procedures to
obtain a satisfied solution both for the rendering phase and for the prototyping model. The use of NURBS permits to construct forms thanks to the geometrical genesis derived from the analytical phase.

After having reconstructed the whole bridge we decided to produce a video, simulating the perception of a hypothetical visitor on a boat along the Canal Grande. In order to obtain a realistic effect of the bridge, but an abstract representation of the contest – which allowed the best visualization of the Palladian structure – we decided to apply the drawings of the façades on the volumes of the buildings as texture maps, to get a general idea of the impact of the bridge on the canal.

The final video showed the point of view from the boat, but the walkthrough path inside it was also used to simulate a man’s visit of the building.

The video was selected from the CISA - Centro Internazionale di Studi di Architettura Andrea Palladio in Vicenza to be showed during the great exhibition that will held in September 2008, in occasion of the 500th anniversary of the birth of the vicentine architect. The exhibition will then move to the Royal Academy of Arts in London and then to Washington. For this occasion we are also preparing a 3D maquette in ceramics powder solidified with sinterization techniques, to obtain a physical model that can be compared with the preceding solution of the bridges.

Future development of the research

A possible evolution of the research is to digitally reconstruct one of the well known paintings reproducing the Palladio Bridge in three dimensions. In 1743, in fact, the Venetian painter Canaletto produced some ideal pictures – the so called ‘capricci’ – to give a new idea of Venice. The best known is the ‘Capriccio con edifici palladiani’, conserved at the Galleria Nazionale of Parma, in which, besides the Rialto Bridge, there are Palladio’s Basilica and the Chiericati Palace, both of them realized by Palladio in Vicenza (Figure 10).

The aim of this research was to follow and establish a scientific procedure to analyze some non-realized historical architectures - through the study of all the documents, the definition of their geometry and form, and the digital reassembling of every single part – in order to reconstruct the architectural heritage of the unbuilt past.
References

Palladio, A.: 1570, I Quattro libri dell’architettura, Dominico de’ Franceschi, Venezia.
