
 eCAADe 26 501-Section 12: Prediction and Evaluation 2

Design To Cost with the Aid of Numerical Optimization
Techniques

Thorsten M. Loemker 1, Albrecht Degering
Computer Science in Architecture and Landscape Architecture (CALA), Technical
University of Dresden, Germany
http://www.arch.tu-dresden.de/cala/
1 thorsten.loemker@tu-dresden.de, 2 albrecht.degering@mailbox.tu-dresden.de

Abstract. This paper discusses the use of optimization methods in the
architectural design process. It points out the possible scope of integration with
regard to building costs in the design of new buildings.
Keywords: Optimization; Layout-Planning; Design to Cost.

Introduction

Aside architecture numerous disciplines exist where
computer-supported planning and construction
play an important role in the design of a product. In
the automotive industry, aircraft industry or in me-
chanical engineering the designing engineers surely
obtain support during the form finding process
through the use of computer programs. The use of
optimization techniques from within these programs
is obligatory and as almost every real problem has
one or more optimal solutions, it is the cardinal goal
in most sectors of industry to strive for these solu-
tions. But as common as the use of these techniques
is in banking corporations, insurance companies or
the manufacturing industry, as scarce is their use in
the architectural domain. Even if optimization tech-
niques are used for specific tasks in the building sec-
tor, e.g. static calculations, almost no architect ever
touched an optimization engine to calculate a range
of design solutions that meet his or her needs. Unlike
the products of the industries mentioned above the

form of buildings to be developed seem not to fol-
low clearly defined design-variables and principles.
However, economic efficiency, profitability and us-
ability determine architectural principles and there-
fore the aesthetics of the building product as well.
Architecture is therefore not free of principles that
can clearly be labeled and that influence the appear-
ance of a building. In contrast to other disciplines
though it appears to be more difficult to determine
the important variables in the architectural design
process and to set up the rules these variables have
to comply with. Our research demonstrates the use
of optimization engines and their scope of integra-
tion in the design process with regard to building
costs. We point out predominant factors that influ-
ence building costs of domestic architecture and
integrate these factors in mathematical calculations
that result in various geometrical building envelopes
and floor plans with quantifiable performance.

Commonly, building a house is regularly limited
by the budget of its prospective owner. Decisions
made during the design process clearly depend on

502 eCAADe 26 - Section 12: Prediction and Evaluation 2

this budget. Usually architects start with determin-
ing rough building costs in the very early stages of
the design process to get an overview of the ex-
pected expenses. Computing power, which nowa-
days can be found in every single office in form of
personal computers, plays an important role in this
process. With the use of this power, more detailed
estimation of costs is possible. With the aid of opti-
mization techniques, right in the first steps of the de-
sign process it is possible to find cost-saving design
variants, disclosing more flexibility during further
work progress.

How can these optimizations techniques look
like? Of course an exact analysis of costs during the
preliminary design steps is not possible - and obvi-
ously not even necessary. However, some decisions
made very early have great impact on the expenses.
The outer shape of a building influences the area of
outer walls, which are more expensive then com-
mon inner walls and thus influence costs to a greater
extend. Arrangements and sizes of rooms, together
with necessary walls that for example protect bath-
rooms from insights, are reflected in a similar way in
our calculations. Finally, static and building climatic
factors are instrumental in pricing the house. Well
thought static structures cause less material use,
well-designed window areas lead to a better quality
of rooms and consequently to reduced costs.

This document provides an overview about our
research regarding cost reduction during the early
stages of design. We demonstrate a way to design
low priced buildings with the aid of numerical opti-
mization techniques.

Previous research

As shown in previous research (Loemker, 2006a,
2006b), it is possible to solve layout-planning prob-
lems through the use of optimization algorithms
that search for optimal solutions in a given set of
rooms. The results of this research are integrated in
an improved form to provide the initial room sets for
our new optimization searches that try to find cost

effective layout solutions. The algorithms were sim-
plified; additional constraints have been added for
increased performance and flexibility.

According to these optimization models, a java
program for easy constraint creating and editing was
developed. Users are now provided with the possi-
bility to interactively formulate special requirements,
which are parsed and passed to the optimization
engine. The results are constrained satisfying room
arrangements, which easily can be interpreted and
displayed. These room arrangements are the basis
for the further optimization process, which our re-
search is referencing.

Basic principles

To reach the main goal, cost reduction, we decided
to concentrate on optimizing the count of elements
within a building and their arrangement. Elements
are walls and windows, floors and ceilings as well as
stairs. At the moment, our results are limited to one
storey buildings. Thus, stairs and floors, respectively
ceilings, are momentarily fixed in size. Therefore, our
main task was to find an optimization algorithm for
walls within a given pattern of spaces. With regard
to the evaluation of existing buildings we defined
the term ‘room’ to be obsolete and to replace it with
the term ‘space’. The classical concept of rooms im-
plies boundaries. For a given arrangement of spaces,
which determines location and size of walls, cost op-
timization would be restricted to minimal changes.
With the equivalent definition of a space allocation
program, spaces do not have to be separated. This
definition is not new due to the fact that contempo-
rary architecture often makes use of this principle –
open and floating spaces do not depend on specific
room usages anymore.

For every such space program, an algorithm can
find solutions fitting structural and practical require-
ments. These arrangements can be optimized to
cost, to allow good floor plan solutions at an opti-
mized level of building costs.

Respectively we defined four steps, which assure

 eCAADe 26 503-Section 12: Prediction and Evaluation 2

diversity of results. Decomposing the process in
smaller steps helps to lower combinatorial diversity.
Furthermore the user can change or cancel the prog-
ress if it is predictable that the results will not fit the
task.

Space arrangement program selection
The basis is a pre-defined space program. As men-
tioned in our earlier research, the methods for cre-
ating a bandwidth of solutions are known and used
in this research. Selecting a solution fitting the prob-
lem best from an economic point of view, but also
under architectural aspects, is the first step to a good
design. For this, it is necessary to select the solution
manually, since a computer is not able to capture
all edge conditions yet. Whereas manual selection
means that the optimizer sometimes produces hun-
dreds of different solutions that all fulfill the con-
straints and objectives defined during the previous
optimization run. The manual selection process pro-
vides the option that the selected variant can obtain
other subjective features that were not specified in
the calculations.

Determination and definition of constraints
Some of these conditions are important for the task
performed by the optimization engine. E.g., it is nec-
essary to pass data anent adjacent buildings, not
just for preventing windows in concerning walls, but
also to prevent the calculation of redundant walls
for static reasons. Other constraints might be neces-
sary to meet requirements of sound insulation or to
screen residents from view. The user can define these
constraint definitions interactively. We marked out
three different possibilities - to close a room, to close
a room in special directions and to close a room to
the outside of the building. This convention covers
most of the cases relevant in the design process. For
all other cases, the algorithm is flexible enough to
handle them.

Optimization
Flexible but fast algorithms to generate optimized

and multifarious solutions are the main aspect of our
research. These algorithms will be described within
the next chapters.

Performance and output
Finally, an evaluation of results allows a comparison
of the solutions from different points of view. In the
first instance this will be done with regard to build-
ing costs. The user selects one of the solutions found,
which are displayed on a board and for which the ex-
pected price is calculated.

Optimization Techniques

The cost calculation is based on the element method
described in DIN 276. For every element we detailed
prices that are used in the calculations. The price of
an element is dependent of its specific size, i.e. width,
height and depth. The optimization engine which is
ILOG OPL (Van Hentenryck, 1999) can therefore op-
erate with abstract data. To provide the data, it was
necessary to develop an interactive input program
including a parser. As a programming language Java
was chosen, whose class concept provides the pos-
sibility to reuse the functions.

For performance reasons the parser overlays
the ground plan with a grid pattern, with a square
side length of one meter. The emerging squares act
as a coordinate system for the communication with
the optimizer. So, every wall can be described as a
tuple of integers, two of them representing the co-
ordinates, the other two referring to the direction of
the wall. Thus, typical wall sets consist of four inte-
ger arrays with the same length according the count
of walls. Four fields at the same index in the corre-
sponding array represent a one meter long part of a
wall. Furthermore, the parser already separates the
outer walls from the inner ones.

This separation in types of walls was made for
more flexible cost calculation on the one hand and
on the other to provide different types of walls, ac-
cording to their location. An outer wall can be ei-
ther closed or open, which leads to other different

504 eCAADe 26 - Section 12: Prediction and Evaluation 2

features. A closed wall will carry the ceiling, which
has an influence on statics. A window is necessary
for lighting and airing. Inner walls can be of two dif-
ferent types; by now, they are closed and either non-
supporting or supporting walls.

With the given wall set the optimizer can deter-
mine the type of the wall, which will influence costs.
In two arrays, each of them representing one type of
wall, the type of wall can be turned on or off. A Bool-
ean value for each wall segment is set to represent
the walls of the building. Through the use of a simple
multiplication operation the values of walls not rel-
evant can be masked. With the aid of this technique,
we found a simple way performing the price calcula-
tion and defining static constraints, which easily can
be interpreted by the optimization engine.

In the following examples, we will use the fol-
lowing notation, taken from OPL Model syntax.

n, m	
	 Integer, indicating the number of outer/		
	 inner walls
XAll, YAll	
	 Integer, declaring the building size in two 	
	 directions
supOutWall[i]
	 supporting outer wall at index [i]

nonsupOutWall[i]	
	 non-supporting outer wall at index [i]
supInnWall[i]
	 supporting outer wall at index [i]
nonsupInnWall[i]
	 non-supporting inner wall at index [i]
forall(i in 1..n)
	 for every element i within the range from 	
	 1 to n
sum(i in 1..n)
	 sum of all elements i within the range 		
	 from 1 to n
sIWallDX[i], sIWallDY[i]
	 supporting inner wall x/y direction length
isOutWallSet[i], isInnWallSet[i]
	 Decision variables containing the outer 		
	 wall’s state
sOWallDX[i], sOWallDY[i]
	 supporting outer wall x/y direction length

Special constraints are necessary to meet static
needs and user defined requirements. We figured
out seven necessary constraints, three of them are
design constraints, four to meet static requirements.
Below, each constraint of the optimization routine is
explained and an abstract formulation is specified,
showing the basic principle.

Figure 1
A data set, written in simple
ASCII-Data format

 eCAADe 26 505-Section 12: Prediction and Evaluation 2

First, we have to define the possibilities of the
type both of inner and outer walls. It is self-explan-
atory, that an outer wall can only be either closed or
unclosed. This is expressed by adding the two corre-
sponding array values, comparing the result to one.
Therefore, either one or the other value has to be set
to satisfy the constraint

forall(i in 1..m)
(supOutWall[i] + nonsupOutWall[i] == 1)

For inner walls the constraint is nearly the same, ex-
cept that an inner wall does not necessarily have to
be turned on – it is also possible not to set it. The ad-
dition can result in zero, which is expressed by the
less-equal sign.

forall(i in 1..n)
(supInnWall[i] + nonSupInnWalls[i] <= 1)

The third and last design constraint defines the re-
lation between the area of opened and unopened,
thus supporting and non-supporting, outer walls.
The factor can be expressed with a variable; in the
example, it is fixed to 2/3.

(sum(i in 1..m) supOutWall[i]) < 2/3*m

For static constraints, we decided to use a simple
form of definition. For performance reasons the
optimization engine makes no proof of static regu-
lations, but the parser performs this task. However,
relevant rules are included, preventing the optimizer
from generating invalid solutions.

First, it has to be assured that walls are able to
carry the load of the roof, respectively the load of the
ceiling. For this a convention was made, that the sum
of the lengths of all supporting walls is more than
a third of the area of the roof. This constraint is suf-
ficient to grant the building not to collapse.

(sum(i in 1..m) supOutWall[i]
+ sum(i in 1..n) supInnWall [i]) > (XAll*Yall)/3

Furthermore it has to be constrained that the build-
ing is supported in both directions. To provide ad-
equate walls it was necessary to add the following
constraint, requesting that 40% of each direction has
to be supported by walls, either inner or outer. For
simplification of the statements, a definition of two
Integer variables was made, combining each direc-
tion’s wall data with the decision variables and add-
ing them to one value.

SupOutWallsX
= sum(i in 1..m) sOWallDX[i]*isOuterWallSet[i]

SupOutWallsY
= sum(i in 1..m) sOWallDY[i]*isOuterWallSet[i]

SupInnWallsX
= sum(i in 1..n) sIWallDX[i]*isInnerWallSet[i]

SupInnWallsY
= sum(i in 1..n) sIWallDY[i]*isInnerWallSet[i]

With these definitions the statement for the con-
straint definition given above is

SupOutWallsX + SupInnWallsX > 0.4*XAll;

SupOutWallsX + SupInnWallsY > 0.4*YAll;

The last definition was made to prevent that all walls
can point in the same direction, which also would
cause the building to collapse. A formulation deter-
mining the bandwidth of relation between the walls
oriented in each direction assures this.

SupOutWallsX+SupInnWallsX
< 2*(SupOutWallsY+SupInnWallsY) &&

(SupOutWallsY+SupInnWallsY)
< 2*(SupOutWallsX+SupInnWallsX)

The optimization goal is expressed with a simple
formula, multiplying the walls turned on with the

506 eCAADe 26 - Section 12: Prediction and Evaluation 2

correlating price value.

minimze sum(i in 1..m) (pSOW*supOutWall[i]
+pNSOW*nonSupOutWall[i])
+sum(i in 1..n) (pSIW*supInnWall[i]
+pNSIW*nonSupInnWall[i])

With the aid of these five simple constraints, con-
nected to the minimization goal, it is already pos-
sible to create buildable floor plans with quantifiable
performance.

Prospects

Optimized architectural designs will get increasingly
important in the future. We have demonstrated a ba-
sic method to design to cost with the aid of numerical
optimization techniques. The example given shows
the direction of our further research. The potential
of adding complex constraints, improving especially
the software’s performance for larger buildings and
floor plans and to remove the one storey restrictions

are in progress. Furthermore connecting existing
BIM-software to our system, offers great possibilities
for importing material data into the optimization
process and writing it back to the BIM-model, thus
relieving the user of entering redundant data in dif-
ferent programs.

References

Loemker, T. M.: 2006a, Plausibilität im Planungsprozess,
Umbau und Umnutzung als Optimierungs-aufgabe
(Dissertation), Bauhaus-Universität Weimar.

Loemker, T. M.: 2006b, Revitalization of Existing Build-
ings through Sustainable Non-Destructive Floor
Space Relocation, in M. Mourshed, Proceedings of
the GBEN 2006 conference, Global Built Environ-
ment Network, Preston, pp. 181-189.

Van Hentenryck, P. and Lustig, I.: 1999, The OPL Opti-
mization Programming Language, MIT Press, Cam-
bridge, Mass.

Figure 2
Screenshot of the parser
program with an output of the
optimization process

