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Introduction

Aside architecture numerous disciplines exist where 
computer-supported planning and construction 
play an important role in the design of a product. In 
the automotive industry, aircraft industry or in me-
chanical engineering the designing engineers surely 
obtain support during the form finding process 
through the use of computer programs. The use of 
optimization techniques from within these programs 
is obligatory and as almost every real problem has 
one or more optimal solutions, it is the cardinal goal 
in most sectors of industry to strive for these solu-
tions. But as common as the use of these techniques 
is in banking corporations, insurance companies or 
the manufacturing industry, as scarce is their use in 
the architectural domain. Even if optimization tech-
niques are used for specific tasks in the building sec-
tor, e.g. static calculations, almost no architect ever 
touched an optimization engine to calculate a range 
of design solutions that meet his or her needs. Unlike 
the products of the industries mentioned above the 

form of buildings to be developed seem not to fol-
low clearly defined design-variables and principles. 
However, economic efficiency, profitability and us-
ability determine architectural principles and there-
fore the aesthetics of the building product as well. 
Architecture is therefore not free of principles that 
can clearly be labeled and that influence the appear-
ance of a building. In contrast to other disciplines 
though it appears to be more difficult to determine 
the important variables in the architectural design 
process and to set up the rules these variables have 
to comply with. Our research demonstrates the use 
of optimization engines and their scope of integra-
tion in the design process with regard to building 
costs. We point out predominant factors that influ-
ence building costs of domestic architecture and 
integrate these factors in mathematical calculations 
that result in various geometrical building envelopes 
and floor plans with quantifiable performance.

Commonly, building a house is regularly limited 
by the budget of its prospective owner. Decisions 
made during the design process clearly depend on 
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this budget. Usually architects start with determin-
ing rough building costs in the very early stages of 
the design process to get an overview of the ex-
pected expenses. Computing power, which nowa-
days can be found in every single office in form of 
personal computers, plays an important role in this 
process. With the use of this power, more detailed 
estimation of costs is possible. With the aid of opti-
mization techniques, right in the first steps of the de-
sign process it is possible to find cost-saving design 
variants, disclosing more flexibility during further 
work progress.

How can these optimizations techniques look 
like? Of course an exact analysis of costs during the 
preliminary design steps is not possible - and obvi-
ously not even necessary. However, some decisions 
made very early have great impact on the expenses. 
The outer shape of a building influences the area of 
outer walls, which are more expensive then com-
mon inner walls and thus influence costs to a greater 
extend. Arrangements and sizes of rooms, together 
with necessary walls that for example protect bath-
rooms from insights, are reflected in a similar way in 
our calculations. Finally, static and building climatic 
factors are instrumental in pricing the house. Well 
thought static structures cause less material use, 
well-designed window areas lead to a better quality 
of rooms and consequently to reduced costs.

This document provides an overview about our 
research regarding cost reduction during the early 
stages of design. We demonstrate a way to design 
low priced buildings with the aid of numerical opti-
mization techniques.

Previous research

As shown in previous research (Loemker, 2006a, 
2006b), it is possible to solve layout-planning prob-
lems through the use of optimization algorithms 
that search for optimal solutions in a given set of 
rooms. The results of this research are integrated in 
an improved form to provide the initial room sets for 
our new optimization searches that try to find cost 

effective layout solutions. The algorithms were sim-
plified; additional constraints have been added for 
increased performance and flexibility.

According to these optimization models, a java 
program for easy constraint creating and editing was 
developed. Users are now provided with the possi-
bility to interactively formulate special requirements, 
which are parsed and passed to the optimization 
engine. The results are constrained satisfying room 
arrangements, which easily can be interpreted and 
displayed. These room arrangements are the basis 
for the further optimization process, which our re-
search is referencing.

Basic principles

To reach the main goal, cost reduction, we decided 
to concentrate on optimizing the count of elements 
within a building and their arrangement. Elements 
are walls and windows, floors and ceilings as well as 
stairs. At the moment, our results are limited to one 
storey buildings. Thus, stairs and floors, respectively 
ceilings, are momentarily fixed in size. Therefore, our 
main task was to find an optimization algorithm for 
walls within a given pattern of spaces. With regard 
to the evaluation of existing buildings we defined 
the term ‘room’ to be obsolete and to replace it with 
the term ‘space’. The classical concept of rooms im-
plies boundaries. For a given arrangement of spaces, 
which determines location and size of walls, cost op-
timization would be restricted to minimal changes. 
With the equivalent definition of a space allocation 
program, spaces do not have to be separated. This 
definition is not new due to the fact that contempo-
rary architecture often makes use of this principle – 
open and floating spaces do not depend on specific 
room usages anymore.

For every such space program, an algorithm can 
find solutions fitting structural and practical require-
ments. These arrangements can be optimized to 
cost, to allow good floor plan solutions at an opti-
mized level of building costs.

Respectively we defined four steps, which assure 
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diversity of results. Decomposing the process in 
smaller steps helps to lower combinatorial diversity. 
Furthermore the user can change or cancel the prog-
ress if it is predictable that the results will not fit the 
task.

Space arrangement program selection
The basis is a pre-defined space program. As men-
tioned in our earlier research, the methods for cre-
ating a bandwidth of solutions are known and used 
in this research. Selecting a solution fitting the prob-
lem best from an economic point of view, but also 
under architectural aspects, is the first step to a good 
design. For this, it is necessary to select the solution 
manually, since a computer is not able to capture 
all edge conditions yet. Whereas manual selection 
means that the optimizer sometimes produces hun-
dreds of different solutions that all fulfill the con-
straints and objectives defined during the previous 
optimization run. The manual selection process pro-
vides the option that the selected variant can obtain 
other subjective features that were not specified in 
the calculations. 

Determination and definition of constraints
Some of these conditions are important for the task 
performed by the optimization engine. E.g., it is nec-
essary to pass data anent adjacent buildings, not 
just for preventing windows in concerning walls, but 
also to prevent the calculation of redundant walls 
for static reasons. Other constraints might be neces-
sary to meet requirements of sound insulation or to 
screen residents from view. The user can define these 
constraint definitions interactively. We marked out 
three different possibilities - to close a room, to close 
a room in special directions and to close a room to 
the outside of the building. This convention covers 
most of the cases relevant in the design process. For 
all other cases, the algorithm is flexible enough to 
handle them.

Optimization
Flexible but fast algorithms to generate optimized 

and multifarious solutions are the main aspect of our 
research. These algorithms will be described within 
the next chapters.

Performance and output
Finally, an evaluation of results allows a comparison 
of the solutions from different points of view. In the 
first instance this will be done with regard to build-
ing costs. The user selects one of the solutions found, 
which are displayed on a board and for which the ex-
pected price is calculated.

Optimization Techniques

The cost calculation is based on the element method 
described in DIN 276. For every element we detailed 
prices that are used in the calculations. The price of 
an element is dependent of its specific size, i.e. width, 
height and depth. The optimization engine which is 
ILOG OPL (Van Hentenryck, 1999) can therefore op-
erate with abstract data. To provide the data, it was 
necessary to develop an interactive input program 
including a parser. As a programming language Java 
was chosen, whose class concept provides the pos-
sibility to reuse the functions.

For performance reasons the parser overlays 
the ground plan with a grid pattern, with a square 
side length of one meter. The emerging squares act 
as a coordinate system for the communication with 
the optimizer. So, every wall can be described as a 
tuple of integers, two of them representing the co-
ordinates, the other two referring to the direction of 
the wall. Thus, typical wall sets consist of four inte-
ger arrays with the same length according the count 
of walls. Four fields at the same index in the corre-
sponding array represent a one meter long part of a 
wall. Furthermore, the parser already separates the 
outer walls from the inner ones.

This separation in types of walls was made for 
more flexible cost calculation on the one hand and 
on the other to provide different types of walls, ac-
cording to their location. An outer wall can be ei-
ther closed or open, which leads to other different 
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features. A closed wall will carry the ceiling, which 
has an influence on statics. A window is necessary 
for lighting and airing. Inner walls can be of two dif-
ferent types; by now, they are closed and either non-
supporting or supporting walls.

With the given wall set the optimizer can deter-
mine the type of the wall, which will influence costs. 
In two arrays, each of them representing one type of 
wall, the type of wall can be turned on or off. A Bool-
ean value for each wall segment is set to represent 
the walls of the building. Through the use of a simple 
multiplication operation the values of walls not rel-
evant can be masked. With the aid of this technique, 
we found a simple way performing the price calcula-
tion and defining static constraints, which easily can 
be interpreted by the optimization engine.

In the following examples, we will use the fol-
lowing notation, taken from OPL Model syntax.

n, m	
	 Integer, indicating the number of outer/		
	 inner walls
XAll, YAll	
	 Integer, declaring the building size in two 	
	 directions
supOutWall[i]
	 supporting outer wall at index [i]

nonsupOutWall[i]	
	 non-supporting outer wall at index [i]
supInnWall[i]
	 supporting outer wall at index [i]
nonsupInnWall[i]
	 non-supporting inner wall at index [i]
forall(i in 1..n)
	 for every element i within the range from 	
	 1 to n
sum(i in 1..n)
	 sum of all elements i within the range 		
	 from 1 to n
sIWallDX[i], sIWallDY[i]
	 supporting inner wall x/y direction length
isOutWallSet[i], isInnWallSet[i]
	 Decision variables containing the outer 		
	 wall’s state
sOWallDX[i], sOWallDY[i]
	 supporting outer wall x/y direction length

Special constraints are necessary to meet static 
needs and user defined requirements. We figured 
out seven necessary constraints, three of them are 
design constraints, four to meet static requirements. 
Below, each constraint of the optimization routine is 
explained and an abstract formulation is specified, 
showing the basic principle.

Figure 1 
A data set, written in simple 
ASCII-Data format
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First, we have to define the possibilities of the 
type both of inner and outer walls. It is self-explan-
atory, that an outer wall can only be either closed or 
unclosed. This is expressed by adding the two corre-
sponding array values, comparing the result to one. 
Therefore, either one or the other value has to be set 
to satisfy the constraint

forall(i in 1..m) 
( supOutWall[i] + nonsupOutWall[i] == 1 )

For inner walls the constraint is nearly the same, ex-
cept that an inner wall does not necessarily have to 
be turned on – it is also possible not to set it. The ad-
dition can result in zero, which is expressed by the 
less-equal sign.

forall(i in 1..n)
( supInnWall[i] + nonSupInnWalls[i] <= 1 )

The third and last design constraint defines the re-
lation between the area of opened and unopened, 
thus supporting and non-supporting, outer walls. 
The factor can be expressed with a variable; in the 
example, it is fixed to 2/3.

( sum(i in 1..m) supOutWall[i] ) < 2/3*m

For static constraints, we decided to use a simple 
form of definition. For performance reasons the 
optimization engine makes no proof of static regu-
lations, but the parser performs this task. However, 
relevant rules are included, preventing the optimizer 
from generating invalid solutions.

First, it has to be assured that walls are able to 
carry the load of the roof, respectively the load of the 
ceiling. For this a convention was made, that the sum 
of the lengths of all supporting walls is more than 
a third of the area of the roof. This constraint is suf-
ficient to grant the building not to collapse.

( sum(i in 1..m) supOutWall[i] 
+ sum(i in 1..n) supInnWall [i] ) > ( XAll*Yall )/3

Furthermore it has to be constrained that the build-
ing is supported in both directions. To provide ad-
equate walls it was necessary to add the following 
constraint, requesting that 40% of each direction has 
to be supported by walls, either inner or outer. For 
simplification of the statements, a definition of two 
Integer variables was made, combining each direc-
tion’s wall data with the decision variables and add-
ing them to one value.

SupOutWallsX 
= sum(i in 1..m) sOWallDX[i]*isOuterWallSet[i]

SupOutWallsY 
= sum(i in 1..m) sOWallDY[i]*isOuterWallSet[i]

SupInnWallsX 
= sum(i in 1..n) sIWallDX[i]*isInnerWallSet[i]

SupInnWallsY 
= sum(i in 1..n) sIWallDY[i]*isInnerWallSet[i]

With these definitions the statement for the con-
straint definition given above is

SupOutWallsX + SupInnWallsX > 0.4*XAll;

SupOutWallsX + SupInnWallsY > 0.4*YAll;

The last definition was made to prevent that all walls 
can point in the same direction, which also would 
cause the building to collapse. A formulation deter-
mining the bandwidth of relation between the walls 
oriented in each direction assures this.

SupOutWallsX+SupInnWallsX 
< 2*(SupOutWallsY+SupInnWallsY) &&

(SupOutWallsY+SupInnWallsY) 
< 2*( SupOutWallsX+SupInnWallsX)

The optimization goal is expressed with a simple 
formula, multiplying the walls turned on with the 
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correlating price value.

minimze sum(i in 1..m) (pSOW*supOutWall[i]
+pNSOW*nonSupOutWall[i])
+sum(i in 1..n) (pSIW*supInnWall[i]
+pNSIW*nonSupInnWall[i])

With the aid of these five simple constraints, con-
nected to the minimization goal, it is already pos-
sible to create buildable floor plans with quantifiable 
performance.

Prospects

Optimized architectural designs will get increasingly 
important in the future. We have demonstrated a ba-
sic method to design to cost with the aid of numerical 
optimization techniques. The example given shows 
the direction of our further research. The potential 
of adding complex constraints, improving especially 
the software’s performance for larger buildings and 
floor plans and to remove the one storey restrictions 

are in progress. Furthermore connecting existing 
BIM-software to our system, offers great possibilities 
for importing material data into the optimization 
process and writing it back to the BIM-model, thus 
relieving the user of entering redundant data in dif-
ferent programs.
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Figure 2 
Screenshot of the parser 
program with an output of the 
optimization process


