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Building designers make decisions in early design stages that have large impact
on building performance, including those of energy-, daylight- and indoor
environment performance. Building performance simulation (BPS) tools can
support the designer, in making better decisions, by providing the performance
consequences of design choices. However BPS tools often require deep technical
knowledge and is too time consuming to use to effectively support the design
exploration in the early design stages. To solve this challenge, the current paper
proposes: Sentient building performance simulation systems, which combine one
or more high precision BPS tools to provide near instantaneous performance
feedback directly in the design tool. Sentient BPS systems are essentially
combining: 1) design tools, 2) parametric tools, 3) BPS tools, 4) dynamic
databases 5) interpolation techniques and 6) prediction techniques as a fast and
valid simulation system for the early design stage.

Keywords: Building Performance Simulation, Parametric modelling, Visual
Programming Language, Database, Responsive system, Integrated Dynamic
Model

INTRODUCTION
Human intelligence is superior indevelopingabstrac-
tion, creativity and imagination while computers are
superior in calculation, data analysis, and information
retrieval.

Let computershandle the tactics, settingupsimula-
tions of multiple solutions, analyzing results and show-
ing the consequences, while humans handle the strat-
egy.

This is the fundamental idea behind the game
of Advanced Chess [2]. Advanced chess is a human-
computer symbiotic partnership that demonstrates a

human with a computer could be far superior to ei-
ther a human alone or a computer alone.

While a computer is significantlymore intelligent
when it comes to chess tactics, a human is signif-
icantly more intelligent when it comes to strategy.
This is the case for building design, yet we failed to
employ the tactical skills of computers to support us
in our strategy of designing buildings.

Based on this assumption, a computer sup-
ported building performance prediction and decision
making system will be suggested. A prototype im-
plementation of the system, focused on daylight per-
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formance feedback, is employed to explain the pro-
posed concept of sentient building performance sim-
ulation systems. Due to the narrow time frame affil-
iated with early design stages combined with vari-
ous challenges of integrating BPS tools in building
design, a sentient BPS system has to be optimized by
different means, which is presented and discussed in
this paper.

BACKGROUND
Building design is done on basis of geometrical rep-
resentations indesign (CAD) toolswhile performance
evaluation is carried out aided by building perfor-
mance simulation (BPS) tools. The actual stage is
to get these tools to work together in an integral
system. With the introduction Building Information
Modelling (BIM) and visual programming languages
(VPL), the integrationof design tools andBPS tools, at
model level, has improved significantly (Negendahl.
2013). This tendency is strongly implemented in the
design tool Rhino [8] and belonging visual program-
ming language (VPL) Grasshopper [3]. Grasshopper
coupled to a BPS (e.g. DIVA [9] and/or Energy+ [4])
have the ability of strategic scripted parameter vari-
ations in user defined models. This reduces simula-
tion time dramatically, as each new design proposal
is automatically simulated by the runtime coupled
BPS tool.

Additionally the introduction of VPLs has
changed the way engineers and architects think of
building design. The parametric capabilities have
generated everything from architectural manifests
to multi criteria optimization methodologies. Most
importantly the concept of parametric models is giv-
ing building designers the "tool" that matches their
continuously altering idea of a building in the early
design stage (Burry. 2013). Combinedwith BPS, VPLs
are capable of assisting and informing the building
designer in every thinkable building related perfor-
mance.

While BPSs, VPLs and design tools are in a pro-
cess of unification, the road to full integration is still
far ahead. It is today highly improbable that a build-

ing designer can handle every aspect of building per-
formance evaluation in onego: Designingwith struc-
tural optimization in mind, contemplating life cycle
assessments, balancing building energy with indoor
environment, etc. Butwhy shouldn't the building de-
signer do this? Why is the designer limited to the de-
sign tool when all this "knowledge of performance"
is out there to just be simulated, evaluated and taken
into consideration? This article describes away to ap-
proach some of the primary obstacles in themerging
of the design tool with the BPS by describing an im-
plementation of a simple sentient BPS system.

EXISTING SYSTEMS LACKS RESPONSIVE-
NESS OR PRECISION
Two different approaches of linking BPS with design
tools are dominating. The first approach is coupling
highly detailed and complicated BPS environments
to the design tools. These systems may be able to
calculate the performance to a very precise degree,
well beyond the information level of a building de-
sign in its conceptual stages. In general, these BPS
tools needs large computing capacity and will take
long time to simulate. The first approach is of this
reason oftenmuch slower than the second approach
and in some instances such system will block the dy-
namics of the design process.

The second most dominating approach seek to
maximize responsiveness by either linking simplified
BPS or implementing user defined scripts acting as
BPS (Klitgaard et al. 2006). Ideally the right im-
plementation and powerful computing power will
allow super-responsive live performance feedback
from the BPS. This approach lacks precision and may
in worst case make performance evaluations on in-
correct assumptions that again can lead to the very
opposite of an improved building performance.

VALIDATED TOOLS, VALIDATED INPUT
DATA, VALIDATEDUSERS
Souza (Bleil de Souza, 2012) argues that validity of
modeling and calculation assumptions depends not
only on the level of competency but also on the pur-
pose of modeling. In this sense, a good model de-
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Figure 1
Implementation of
a simple sentient
BPS system. Rhino
a) is dynamically
coupled through
Grasshopper b) to
DIVA c) over an
intermediate results
database d) with
interpolation
features e). A
prediction
algorithm f) shifts
and sorts yet-to-be-
calculated queued
data g) before the
DIVA receives it.

pends enormously on the experience of themodeler,
which comes from practical knowledge and contex-
tual understanding of the subject in order to solve
similar problems. Valid operation and BPS tool in-
put requires competent simulation experts or "sim-
ulationists" as Souza calls them.

INTRODUCING SENTIENT BUILDING PER-
FORMANCE SIMULATION SYSTEMS
Sentient, also meaning consious and responsive ex-
presses an almost - human-like behavior. How-
ever interesting (and frightening) an awakening con-
sciousness in our computer companions are, the abil-
ity of amachine to respond to building designers de-
mands is what is important to us in this article. Sen-
tient BPS systems are suggested as a highly respon-
sive alternative to building designers who are either
using simple proximate BPS tools or complicated but
slow BPS tools in early design exploration.

The sentient BPS system is based on paramet-
ric modeling procedures, which decreases the deci-
sion space into a finite size. The system utilizes a
database structure combined with a multivariate in-

terpolation algorithm that makes it feasible to sim-
ulate less solutions and still provide the building de-
signer with fast and precise results (fromone ormore
building BPS tools). The idea is essentially to con-
struct a result database containing building perfor-
mance feedback data needed to accompany the de-
signer's own solutions. The system further reduces
the number of solutions needed to be simulated, as
it observes user activity and adjusts the BPS tool to
simulate and improve interpolation precision. To ef-
fectively do this, the system attempts to predict the
space of interest of the building designer while uti-
lizing multivariate interpolation capabilities of the
system. Essentially the systempresents buildingper-
formance feedback of solutions that is of interest to
the designer for decision making in the early design
stages, in a very efficient way.

Sentient BPS systemsarebuilt by recognizing the
need to separate the building designer and the sim-
ulationist in the early design stages. The system de-
taches the complexity of the BPS environment from
the building designer. The building designers re-
quests (design solutions) for performance evaluation
are sent to a separated (web) performance simula-
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tion environment containing a results database, see
Figure 1. The feedback is visualized, or otherwise
handled directly in the building designers' own en-
vironment , Rhino [8], in a way that fits the build-
ing designer. The simulationist will take part in the
system by creating the object relations and (para-
metric) variables necessary to get meaningful results
from the BPS. During the design process, the simu-
lationist only job is to maintain the building perfor-
mance environment (see Figure 1). The sentient BPS
system can therefore support the validity of perfor-
mance feedback required for any building project.

Sentient BPS systems can combine one or more
high precision BPS tools and provide near instanta-
neous performance feedback directly in the design
tool, hence providing the best of both worlds; speed
and precision. The concept of sentient BPS systems is
based on a further development of a student project
performed by Perkov (Perkov. 2014) at the Technical
University of Denmark.

THE RESULTS DATABASE
It was first suggested by Sullivan (Sullivan et al., 1988)
that large number of building energy simulations
saved systematically in database could provide fast
feedback of energy performance. Such database is
capable of giving responsive answers to multiple cri-
teria but required either very large databases or very
simple buildings to get meaningful answers. Caldas
notes that these kinds of approaches generates data
that do "only apply to solutions that are close to those
simulated, what's makes them of limited use in an ar-
chitectural design domain" (Caldas, 2001). Nonethe-
less, at the time of Sullivan's and Caldas' consider-
ations were written, much development have been
done in the field of databases and computing in gen-
eral. It may still not be feasible to construct univer-
sal databases, comprehending every thinkable com-
bination of variables. But it can be feasible to make
a finite subset of solutions as a database lookup that
takes a very specific design concept into considera-
tion.

When constructing a database of solutions, size

matters. To grasp the scale of multidimensional re-
sult databases, consider a room with three variables:
its heighth, itswidthw, and its depthd. The variables
each have variable resolution of 10, meaning the vari-
ables may be defined in 10 different unique states.
The total amount of combinations, c of solutions that
need to be simulated adds up to:

c(rw, rh, rd) = 103 = 1000 combinations (1)

If each simulation takes 5minutes in average to simu-
late with a BPS tool, it will take 3.5 days to construct a
result database. Now imagine we add twomore vari-
ables to the equation, again each with a variable res-
olution of 10. We end up with almost a year of sim-
ulation time to construct the results database, which
is not feasible.

The solution is to limit the simulations to the
problems that actually are worth investigating. Seen
from a design point of view the decision space is un-
limited. But since computer power and time are
limited factors (particularly in early design stages),
how and where does the designer limit the decision
space?

The process of limiting the decision space can be
separated into two different system approaches on
designing with performance as seen in Figure 2:

• A system that supports a space of solutions,
Figure 2a)

• A system that supports a space of interest,
Figure 2b)

A system that finds the "space of solutions" is a
system which seek to aid the designer to find solu-
tions that complies with predefined performance cri-
teria e.g. annual building energy consumption (Pe-
tersen, 2011). The designer usually in one way or an-
other "pick out" a specific solution from an enumer-
ated list of permitted solutionswithin the spaceof so-
lutions. The system is allways limited of predefined
performance criteria.

A system supporting the deductive search to-
wards solutions: the "spaceof interest", allows thede-
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Figure 2
Decision space:
Here illustrated in
relation to two
performance
metrics, each dot
represents a
specific solution.
Space of solutions
a) is defined by all
solutions that
conform to the
requirement of a
certain
performance
criteria, here
performance 1 and
2. Space of interest
b) is defined by the
building designers’
interest in certain
solutions related or
unrelated to the
performance
criteria 1 and 2. The
complete and
pareto optimal
decision spaces c),
d) are shown for
comparative
purposes.

signer search through the solutions that may or may
not comply with certain performance criteria. Typ-
ical design tools (e.g. Rhino) as well as parametric
tools (e.g. Grasshopper) support deductive search of
interest, usually with focus on the geometrical rep-
resentation of layout, functions, visual appearances
etc. Criteria of these types of qualitative objectives
may be unknown to the designer until the designer
suddenlyuncover a solution that fits in agreater holis-
tic whole. Through a web of moves, designers discover
the consequences,implications, appreciations and fur-
ther moves. Within these moves, phenomena are un-
derstood, problemsare solvedandopportunities are ex-
ploited. (Souza. 2012) A system based on the space
of interest is therefore limited by predefined interest
criteria. The real question is, when adding a BPS tool
to any of the two system approaches, how does the

designer use the BPS tools, or with a simulationist in-
volved, how does the designer and the simulationist
use the BPS tools in the system?

It surely should not be the BPS tool, or the as-
sisting simulationist, that defines the design direc-
tion, but the designers own choices in what is worth
investigating. In this regard, the sentient BPS sys-
tem aligns itself with the approach of space of inter-
est. However, sentient BPS systems may be used to
narrow down the decision space by utilizing prede-
fined performance criteria as required by the space
of solutions framework. The sentient BPS system em-
ploys the parametric capabilities of a VPL to define
the space of interest, thus narrowing down the open
design problem into a smaller finite decision space.
Aided by a VPL, this can be done in numerous ways:

• The building designer (and simulationist)may
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focus purely on an (optimization of) expected
performance.

• The building designer and the simulationist
may define a coordinated reduction of the de-
cision space, seeking to advance various per-
formance related and unrelated objectives.

• The building designer (and simulationist)may
choose to setup a parametric model on the
sole purpose of finding a particular desired
geometric form and use the BPS results to val-
idate the geometry as "good enough".

In the prototype sentient system discussed in this
article, the simulationist and the building designer
are collectively reducing the decision space by em-
ploying parametric model scripted in Grasshopper
[3]. The only clearly defined objective is to improve
daylight factor conditions in a room model. Other
objectives such as aesthetics, layout and qualitative
use of daylight is unknown to the users in the be-
ginning of the modeling process, however, aided by
the sentient BPS system the objectives becomes ap-
parent during the design exploration with the para-
metric model. There are no criteria or predefined
rules, others than the limitations based on the im-
plemented parametric definitions and the paramet-
ric boundaries in the variables used in the model.

PREDICTING THE SPACE OF INTEREST
Predictions of building designer interest is a rather
unexplored subject while predictions of the (space
of) solutions has been thoroughly investigated e.g.
by (Pedersen, 2006; Shi & Yang, 2013). Framing the
space of solutions is defined by very accurately de-
fined objectives, and in terms of building perfor-
mance, the objectives have to be defined in a way
that BPS tools can understand. Predicting the user in-
terest is very different, simply because the user often
does not know what he or she is interested in to be-
gin with. The objective is an exploration in itself why
objectives are likely to be unclear and fuzzy. The con-
cept is to utilize embedded information of the para-
metric variables present in themodel. The amount of

variables and their resolutionswill define the amount
of unique combinations in the model as it was men-
tioned earlier.

A variable resolution is the amount of unique
states a given (parametric) variable has. The variable
is an enumeration of numbers, which does not need
to be sequential or based on integers. An example is
shown in Figure 3; let a variable be represented by a
slider that can be set in state [1..7], the variable res-
olution of the slider is 7. A system may have more
than one slider or any other collection function of
variables (navigational controllers, lists, arrays, etc.).
Each individual variable has a individual variable res-
olution. We now introduce a concept of variable reso-
lution levels to further reduce the amount of solutions
needed to be simulated. The idea is to make precise
performance simulationson strategically selected so-
lutionswithin the space of interest, then estimate the
rest of space of interest with minimum amount of er-
rors. The variable resolution level of anygiven sentient
BPS system is basically all the unique combinations
of every variable states divided by the number of fin-
ished simulations (per coupled BPS tool), defined as
follows:

Variable resolution level; has a number of vari-
ables v > 1 where each variable resolution r > 0,
for every resolution r in the sequence i of variables
vi:

rv1 · rv2 · . . . · rvi∑
(number of simulations completed)

(2)

Essentially the variable resolution level indicate how
much of the space of interest have been covered by
simulated results. A high variable resolution level
means few simulations is completed by the coupled
BPS tool (in relation to the total number of poten-
tial solutions), while a variable resolution level = 1
means every possible variable state combination has
been simulated. As it follows, the number of vari-
ables and their resolution will affect the variable res-
olution level quite substantially. An ideal model will
have a minimum required number of variables each
with lowest possible variable resolutions to cover the
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Figure 3
The prediction
algorithm uses
variable states (here
represented on
sliders). The slider
in the bottom left
shows a variable
resolution of 7 and
its current state is 5.
The three weight
functions are
illustrated to the
right.

space of interest quickly in the design process. Min-
imizing variables and resolutions, however can be
rather difficult when the building designer have not
yet decided all the design objectives. Of this rea-
son an interest prediction algorithm has been imple-
mented, hence to further reduce the needed simu-
lations, to cover the actual interest space within the
boundaries of the defined variables and their resolu-
tions.

An interest prediction algorithm is implemented
on the basis of a continuous weight factorization of
the yet-to-be-simulated unique data combinations.
There are basically three weight functions in the pre-
diction algorithm; s, t, w (shown in the right side of
Figure 3).

Weight functions s, t andw
Weight-function, s is given to all variable states but
distributed flat out semi-random by utilizing a se-
quence of primes (Figure 3). Imagine all states is
distributed in a sequence, where every third state is
weighted less than every fifth, every fifth is weighted
less than the seventh etc. In this way the system is
set in a progressive loading-state that helps to get
"rough" and faster interpolations "evenly" distributed

over the entire the space of interest. The idea with
this function is to gradually improve the overall dis-
tribution of simulations, in the space of interest, by
an incremental expansion variable resolutions.

Weight-function, t is a variable listener function,
which essentially is a timer function that reads the
particular variable states of navigational controllers
(aka. sliders) embedded in Grasshopper. Basically
the listener function identifies the state of every vari-
able and how long time it remains in that state.
The highest weight is given to the variable with the
fewest alterations, which arguably must be the pre-
ferred state of interest of that particular variable.

Weight-function, w is a simple overwrite-
function that favorably alters the weight of a given
state on a given variable. It gives the building de-
signer an option to alter a specific request (design
solution) to become more important than all other
requests queued for simulation. The exact combina-
tions of variable states are sent directly to the BPS to
perform an analysis based on that specific request.

weight sj , tj , wj [0..1], as follows: For every
variable state in the sequence j :

weight(j) = sj + tj + wj (3)
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The sum of the weights of each parameter is con-
tinuously updated while the building designer uses
the system. As seen in Figure 1 g) the effect of the
prediction algorithm is a reordering of the yet-to-be-
calculatedqueueddatabase. The consequence of us-
ing the prediction algorithm is amore efficient use of
simulation power, as the requests from the building
designer is automatically taken into account.

INTERPOLATION CAPABILITIES OF THE
SYSTEM
Well before the results database is complete, it is pos-
sible to interpolate results by using multivariate in-
terpolation techniques. In the prototype implemen-
tation seen in Figure 1, the choice was to use the
GridDataN from the native Matlab [10] library. Grid-
DataN fits a hyper-surface of the form y = F (x) to
the data in non-uniformly-spaced vectors. When a
request is sent to the interpolation algorithm it will
automatically performa linear interpolationbetween
the continuous and sequential simulations in the re-
sults database.

To ensure that interpolation is not performed
over discontinuities the user has to state which
of the input variables are continuous and discrete,
thus sending compliant data to the interpolation
algorithm. The interpolation feature is simply a
method to give fast feedback of the results "yet-to-
be-simulated". While it is strictly not required in the
sentient BPS system, the interpolation algorithm can
give the building designer faster and more detailed
feedback with fewer simulations, but it also intro-
duces an element of uncertainty into the system.

The user may get fast feedback from an incom-
plete results database as illustrated in Figure 4. In
theprototype implementation theperformancemet-
rics is daylight factors. Here interpolation was per-
formed over 648 individual results when a request is
sent from the user. Each of these 648 results corre-
sponds to 648 measurement-points of daylight fac-
tors in a planar grid. This means every time the user
sends a request with a new set of variable states (in
Figure 4, twodimensions, x and y, representingwidth

and height of a window), the user asks the system
to look for 648 individual results from the database.
If the corresponding combination of x and y is ab-
sent in the database, the system sends the request
over to Matlab. GridDataN in Matlab then constructs
648 individual hyper-surfaces corresponding to the
number ofmeasurement points (and not the amount
of simulations already performed). Each individual
red dots in Figure 3, however, are representing the
separate simulations already performed of the same
measurement-point in space. The interpolations are
performed 648 times from on each of these hyper-
surfaces and in theory the 648 individual measure-
ment points could be a product of 648 different BPS
tools. While the system is utterly scalable, the 648
points are just used as an example to represent the
daylight factor distribution in a room, themind blow-
ing flexibility and scalability of the system is hard to
describe. However useful and interesting multivari-
ate interpolations are, the very fact humans cannot
comprehend higher levels of multi-dimensional op-
erations,makes interpolations risky to use in practice.

DISCUSSION
When focusing on the multivariate interpolation in-
cluded in the prototype sentient BPS system, the real
challenge is to minimize the errors of interpolation.
As with any approximatemethod, the utility ofmulti-
variate interpolation cannot be overextended. While
various techniques exist in error minimization (e.g.
Lagrange multipliers for Kriging (Vapnyarskii, 2010)),
we have simply attempted to quantify the errors that
can occur inmultivariate interpolation. The reason of
this, as it follows, is to showwhere to expect large er-
rors and accordingly seek to avoid them.

In Figure 5 is shown the process of estimating
the error from GridDataN in the system. The errors
are calculated by subtracting the interpolated results
with the actual simulated results. To simplify it fur-
ther the numerical value of this difference is used to
estimate the effect of simulation variable resolution
levels, equation (2).

Errors of the simple case of the two-dimensional
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Figure 4
The interpolation
process of using
GridDataN, here
showed with a
two-dimensional
interpolation F(x,y),
where x is the width
and y the height of
a window. F
represents the
performance metric
daylight factor [%]
in 648
measurement-
points (seen as
colors on a plane).
The red dots
represent a unique
product of
simulation from
DIVA. The blue dot
represents the"
lookup" procedure
handled by the
interpolation
algorithm.

interpolation are shown in figure 6. It is seen in the
upper left corner that even two exact simulations
vary due to stochastic variations in simulation tool
DIVA. Based on two previously discussed variables
x,y, each variable has a resolution of 9, which follows
a variable resolution level of: (9 · 9)⁄80≈1.

The interpolation performs reasonably well,
however errors tend to accumulate near thewindow,
thus affecting the highest result values. The reason
is associated with the inter-dimensional increasing
numeric variations in the larger values, which means
more simulations may be needed where changes

vary much from one solution to the other. Nonethe-
less estimating daylight factors of 2% or below was
reasonable precise even with a fraction of the simu-
lations done.

When a higher resolution level is analyzed
(9 · 9)⁄35 = 2.25, the errors rises accordingly. From
the various test performed with the system, it was
found that variable resolution levels should not ex-
ceed the level 10, since it generated too great er-
rors to be a useful guide to the designer. Neverthe-
less much work still need to be done in quantifying a
general assumption of error levels, number of para-

Figure 5
The absolute error
of interpolation is
simply the absolute
value of
interpolated result
subtracted from the
actual simulated
result.
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Figure 6
The absolute error
of interpolation
related to the
resolution level
(higher level means
fewer simulation s
available for the
interpolation
algorithm).
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metric variables and variable resolutions. General-
ization is further problematic when relationships be-
tween variables have strong oscillations or disconti-
nuities. This suggests that, itmaybeadvantageous to
attempt to script additional relations between vari-
ables, particularly in the case of abstract problems for
which the topology of the input and output spaces
may not be clear a priori, as to produce a relationship
which is as smooth as possible.

In the prototype system, the discontinuities of
variables have to be identified by the user. In most
cases, e.g. variables such as number ofwindows, type
of glazing, and enumerations in general, the user can
easily identify the discontinuities, however, in some
cases e.g. where geometry "jumps" from a state to
another, the discreteness can be difficult to identify.

While onlyweight-function t autodidact seeks to
predict the user interest, weight-function w is more
of a service for thedesigner to validate, or refinehis or
her own intuition of the building performance. The
inclusion of weight-function w was found necessary
in providing the user a feel of control over themodel.
Weight function s was found necessary to include
into themodel because it helped the interpolation al-
gorithm to get enough data tomake themultivariate
interpolations distributed more uniformly in the vast
space of interest. The function also acted as a contin-
uous generalist refiner for the result database, thus
counteracting the weight function t. If the model
was left completely unattended the weight function
s makes sure every combination of every variable-
state is pulled through the coupled BPS tool.

The actual interesting weight-function t is in-
credibly simple as a concept and in its implementa-
tion. The impression that a preferred state is likely
to stay the same throughout the design process is
quite reasonable, however in many real situations
this might not be the case.

A user might not alter a variable simply because
the variable is of less importance to the user. This
could be the color-tone of a window pane or some-
thing else of minor interest, in terms of larger build-
ing design perspective. While this preferred state of

this particular variable does not matter for the user,
the system does not know the difference of inter-
variable importance. This results in significantlymore
simulations with e.g. greenish glass, and thus giving
the results of the combinations with all other vari-
ables based on this color. Greenish glass poses no
physical major significance for e.g. thermal perfor-
mance and building energy consumption. However,
if the color green was somehow associated to the
window pane g-value, the thermal performance and
energy consumption will be very much affected by
the choice of state. Of this reason it is suggested in
future research to implement a variable importance
function.

FURTHER STEPS TOWARDS SENTIENT BPS
SYSTEMS
Regression is concerned with modelling the rela-
tionship between variables, but unlike interpolation
methods, regression does not need a continuous
stream of results data to function (although, regres-
sions are often constructed on vast amounts of em-
piric data). Regression can iteratively be refined by
using a measure of error in the predictions made by
the model. Regression methods are a work horse
of statistics and in future sentient systems regres-
sion may be a natural next step for improved inter-
dimensional estimations of building performance
simulation results.

One of the most promising directions towards
sentient BPS systems may be found in the fast grow-
ing field of machine learning. Of the various direc-
tions in research some popular methods are men-
tioned; neural networks, Gaussian processes, sup-
port vector machines, nearest neighbors, however
there are many others. The way the prototype sen-
tient system interpolates between the multidimen-
sional results, and gradually becomes more certain
over time, can be compared to many implemented
machine learning concepts. However, the proposed
prototype system cannot be classified as a machine
learning system, of the simple reason that a hypoth-
esis set (trainingdata) is not anecessity for the system
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to work. Machine learning may very well be used to
further improve the prediction of user preferred solu-
tions, thus further narrow the the amount of simula-
tions needed. Nonetheless, the problem with many
machine learningalgorithmsare theyoftenneedvast
amounts of data to train the system effectively [7].
This needs to be addressed in future sentient BPS sys-
tem builds.

CONCLUSION
Sentient BPS systems are yet to be seen as a sta-
ble and agile implementation. Much work is needed
in the area of predicting building designer requests.
Better, more adaptable multivariate interpolation
methods needs to be utilized. Additional features
e.g. feedback of suboptimal directions will be highly
beneficial for the sentience of the system. Neverthe-
less, the implementation of "sentient", also meaning
"responsive", BPS systems promises the building de-
signer a fast feedback with valid results.
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