A 3-Dimensional

Architectural

Layout Generation

Procedure for Optimization Applications : DC-RVD

Toannis Chatzikonstantinou
Yasar University

i.chatzikonstantinou@yasar.edu.tr

A procedure for generating 3-dimensional spatial configurations for optimization
applications, termed Dimension Constrained Rectangular Voronoi Diagram
(DC-RVD), is presented in this paper. The procedure is able to generate a
non-overlapping configuration of spatial units in 3-dimensional space, given a
string of real values. It constitutes an extension and adaptation of the
Rectangular Voronoi Diagram generating procedure, found in the work of Choi
and Young (1991). An extensive description of the procedure, with the relevant
pseudocode is included in the paper. The procedure is tested in a stochastic
optimisation-based decision support environment. Testing is done using a case
study of a medium-sized family house. The result indicate promising performance.

Keywords: Optimization, Layout, Representation

INTRODUCTION
The problem of spatial configuration is concerned
with finding suitable locations for a set of interrelated
objects that meet design requirements and maxi-
mize design quality according to design preferences.
It is a general problem that applies in many fields
of science and engineering. Specifically for architec-
tural design, the problem is of central significance.
The spatial configuration of a building or complex is
a design aspect that crucially determines it's success.
However, the problem of spatial configuration
is very challenging. In order to tackle it, designers
have up until recently relied on heuristics and rules-
of-thumb, or guidelines developed through personal
experience, which helped them produce suitable lay-
outs in the most common design scenarios. While
such approaches may be helpful in practice, they do
not really address the problem adequately. The rea-
son is that the problem is irreducible to following

pre-existing rules of thumb and heuristics (Loemker
2006). As such, different, more general approach is
required.

Computational optimization techniques have
been applied to layout problems, as an alternative to
the traditional methods. A popular category of algo-
rithms are Stochastic Optimization (SO) algorithms.
SO algorithms have gained a lot of traction in the re-
search community, because of their flexibility and ef-
ficiency. SO Algorithms are able to deal with prob-
lems that we have very limited specific knowledge
about, are able to explore solution spaces that are
highly irregular and fragmented, and to handle mul-
tiple, conflicting goals and multiple constraints. This
features make them a good candidate for tackling de-
sign problems related to spatial layout, since it can
be proven that the objective space of layout prob-
lems is highly fragmented and fractal-like (Cagan et
al. 2002). On the other hand, the computational

Design Tool 1 - Volume 1 - eCAADe 32 | 287

requirements of SO algorithms are high. However,
with today's increase in computing power, the use
of SO algorithms is justified if the problem at hand
is complex. Stochastic optimization includes cate-
gories of algorithms such as Genetic Algorithms (GA),
Simulated Annealing (SA), Partice Swarm Optimiza-
tion (PSO) and more.

Many SO algorithms work by iteratively improv-
ing upon a single or multiple solutions at the same
time. This happens through a continuous loop of
altering decision variables and evaluating resulting
solutions. While evaluation is performed on the ac-
tual design itself, optimization algorithms perform
variations by altering values in a serial representa-
tion of the solution, also known in Evolutionary Com-
putation terminology as Genotype. Each solution is
then generated according to these values, resulting
in what is frequently termed Phenotype. The na-
ture of the representation and the generative process
plays a significant role in the efficiency of the opti-
mization process. A representation language's ade-
quacy, as Cha and Gero mention, is a critically impor-
tant factor (Cha and Gero 1998).

AIM OF THE STUDY

Recognizing the importance of the layout-
generating procedure in spatial configuration prob-
lems, this study proposes a new procedure for gener-
ating 3-dimensional architectural layout configura-
tions, which is suitable for use in computational opti-
mization scenarios. The proposed method is termed
Dimension Constrained Rectangular Voronoi Dia-
gram (DC-RVD). The procedure allows generating 3-
dimensional non-overlapping configurations based
on rectilinear volumes, using an encoding compris-
ing of a series of real-valued parameters.

The proposed method extends and comple-
ments the procedure presented in Choi and Kyung
(1991) which has been termed Rectangular Voronoi
Diagram (RVD), and which itself is an adaptation of
the well known Voronoi subdivision method. The
RVD method tackles one issue that occurs frequently
when dealing with the spatial configuration problem,

288 | eCAADe 32 - Design Tool 1 -Volume 1

namely that of overlapping spaces. Instead of treat-
ing overlaps as a constraint, which turns out to be a
difficult problem to solve, RVD re-distributes the con-
tested space, allowing the overlap to be resolved.

The proposed procedure leads to a smooth ob-
jective function landscape that may be easier for an
optimization algorithm to traverse. Decision vari-
ables represent design parameters such as positions
and widths, which correspond to meaningful real-
world quantities. This allows meaningful interpreta-
tion and analysis of data resulting from an optimisa-
tion process.

The paper is structured as follows: In Section 3.
We present a review of approaches to the Building
Configuration problem, focusing on how layouts are
represented and generated. In Section 4., the RVD Al-
gorithm from Choi and Kyung is briefly outlined. In
Section 5., the adaptation of the algorithm for appli-
cation in building configurations is discussed. In Sec-
tion 6., the revised algorithm is presented. In section
7., the case study is presented. Section 8. discusses
the results and Section 9. concludes the study.

EXISTING WORKS

There exist a wide variety of works on the problem
of automatically identifying optimal architectural lay-
out configurations. The work of Lobos and Donath
(2010), presents a good overview of the most promi-
nent approaches. Here we are going to briefly men-
tion a few, focusing on the layout/configuration rep-
resentation.

Jo and Gero (1998), present a binary encoding
scheme, which encodes placement of spatial units
within a predefined boundary, by sequentially en-
coding their positions along a path. The method is
used to solve the Liggett problem (Liggett, 1985) of
locating departments within a multi-storey building.
The encoding they propose uses two bits to encode
the possible movements of a "cursor" to neighboring
cells in a grid. The spaces are placed sequentially as
the cursor moves on the path specified by the encod-

ing.

Elezkurtaj and Franck (1999) make use of a
Genetic Algorithm to search for suitable ground
plans for architectural applications. The process of
genotype-phenotype translation is as follows: First,
the outline of the building is specified. Second, the
list of rooms to be fitted into the outline and the
proportions preferred are entered. Third, the func-
tional scheme of organization and access is specified.
While their work is novel, no details are given as to the
specifics of the encoding scheme.

In the work of Michalek and colleagues, (2002),
stochastic optimization is interweaved with user in-
put, in order to accommodate second-order criteria
and preferences. In the layout representation they
describe, rooms, hallways, doorways (Accessways),
and boundaries are all represented as combinations
of orthogonal rectangular Units. Units are repre-
sented as a point in space and the perpendicular dis-
tance from that point to each of the four walls. This
model has more variables than necessary to describe
the shape; however, it allows an optimization algo-
rithm to change the position of a Unitindependently
without affecting its size. Although this model in-
creases the problem dimensionality, it offers a lot of
flexibility to make the best design moves at each step
of the optimization (Michalek et al. 2002).

Loemker (2006), has formulated the layout prob-
lem as a constrained optimization problem, with
the objective of maximizing areas, subject to con-
straints regarding satisfaction of spatial relations be-
tween units. The principle of the geometric model
adopted was the representation of rooms as rect-
angular units. The concept was similar to that of
Michalek et al. (2002), but differing in that the
representation adopted describes a rectangular unit
through a reference point, a length and a width di-
mension.

Kamol and Krung (2005) have used Mixed In-
teger Programming techniques to address the 2-d
architectural layout problem. They formulate func-
tional and dimensional constraints (such as size,
proximity and overlap) into linear functions, and
make use of a mixed integer programming solver,

GLPK (GNU Linear Programming Kit), in order to iden-
tify optimal solutions. They conclude with promising
results, however the requirement for linear functions
is constraining the expression of complex objectives.
The encoding of layouts is simply based on x,y origin
point coordinates, and widths and heights of spaces.
In the study of Yeh and colleagues, the architec-
tural space assignment problem has been addressed
by the use of Annealed Neural Networks. Yeh used
an Annealed Hopfield Network, that combines the
speed of convergence of a Hopfield net and the
global search characteristics of Simulated Annealing.
They apply their method on the problem of locating
a range of facilities in a hospital building. The prob-
lemincludes multiple objectives and a constraint, but
these are handled in a single-objective fashion, as
such, a considerable amount of parameer tweaking
(e.g. weights, constraint penalties etc.) is required.
They conclude that while the algorithm is efficient,
future research is needed to address the issue of ob-
taining suitable parameter values. (Yeh et al. 2006)

THE RECTANGULAR VORONOI SUBDIVI-
SION METHOD

Choi and Kyung have discussed the Rectangular
Voronoi Diagram (RVD) method, and applied it to
the problem of digital VLSI circuit design, yield-
ing promising results (Choi and Kyung, 1991). The
method takesit's name partially from the well-known
Voronoi diagram. A Voronoi diagram is a method of
subdividing space into regions, where each point of
a region is closest to one of several predefined seed
points. In this method, the resulting regions may
have arbitrary shape, depending on the distribution
of the seed points. While the Voronoi diagram is be-
ing routinely used in architectural design to derive in-
teresting forms and structures, it's application in de-
riving architectural layouts is relatively limited, due to
the irregularity of the shapes resulting from the pro-
cess.

The characteristic difference of RVD from a clas-
sical Voronoi diagram is that, as a result of the RVD
process, regions of space of exclusively rectangular

Design Tool 1 - Volume 1 - eCAADe 32 | 289

shape are produced. This is an important property,
because it makes it much more applicable to build-
ing layout design than the Voronoi diagram, which
produces arbitrary shapes.

The steps of the RVD method can be summarized
as follows:

1. Asetof points Pis considered in 2 dimensions,
each of which represent the center of mass for
a corresponding rectangle.

2. For each point in p, two subsets are created,
Sx and Sy, each of the remaining points ps is
placed in one of them according to the follow-
ing rules:

Sz if [Pz — psa| > |py — Psy)

Sy otherwise

3. The rectangular areas corresponding to
points are derived by determining the middle
line between each point p and the points clos-
est to it in all four directions. For edge points,
a predefined outline may be considered as
a border. As an example, the corresponding
rule for determining the left edge of all rect-
angular spaces may be staed as follows:

repeat for each element r {

Lr = Loutline

repeat for each element e in Sx{
Lm = left_midline(r, e)
Lr = max(Lr, Lm), if Ce < Cr

}

+

where Lr, Le symbolize the left edges and Ce,
Cr the centers of the spaces.

The result of the process is a series of rectangular re-
gions that form subdivisions of space. The resulting
configuration needs to be bound by a rectangle in or-
der to obtain the limits of the outer regions. An ex-
ample is shown in figure 1. Essentially, the way the
RVD method functions eliminates the need for using

290 | eCAADe 32 - Design Tool 1 -Volume 1

overlap constraints for ensuring configuration feasi-
bility. The method instead constrains spatial units to
avid overlapping completely. This, of course, has a
constraining effect on the area of the spatial unit, but
such a constraint, is claimed in this study, is easier to
satisfy.

In the study of Choi and Kyung (ibid. 1991), a
force-directed packing process was used to optimize
the layout with respect to the positions of the seed
points. In the present study, this process is substi-
tuted in favor of a Stochastic Optimization algorithm.
As can be seen from he results, this offers the required
flexibility for dealing with the complex objectives of
a building configuration scenario.

ADAPTATIONS AND EXTENSIONS

The RVD method presents several advantages that
make it attractive for application in building layout
design. It makes use of a compact, continuous vari-
able encoding; it offers parameters with high seman-
tic value; and it requires few calculations for generat-
ing the configuration from the encoding. However,
there are also drawbacks to the method, namely the
possibility of gaps appearing within the arrangement
and the inability of generating configurations that
do not follow a rectangular outline, which should
be addressed if it is to be applied in architectural
design. Furthermore, the RVD method works in 2-
dimensions, but for architectural layout problems, an

Figure 1

An arrangement
resulting from the
application of the
RVD procedure. The
cross symbols
represent the
centres resulting
from the x,y
coordinate
encoding.

Figure 2

An example of
applying the
DC-RVD procedure,
using spatial unit
dimensions to
constrain the unit
size. In this case,
encoding includes
X,y, coordinates of
the centres, as well
as width and height
of the shapes.

Figure 3

Spatial overlaps, RV
regions and
resolution of
overlaps in the
DC-RVD procedure

Figure 4

Neighbor relations
in a simple case of
vertically
distributed spatial
units

approach that considers 3-dimensional layout would
be preferable.

To address these shortcomings and make the
RVD method more applicable to architectural layout
problems, a new method, resulting from adaptations
and extensions of the original, is proposed.

x x
x
! x x
|
. x
x
X
x [x =
‘
x
: x |
! :
x x
x L’ I)(x X
x
x x

> @
@ > ® 9
®e— 00
e e

As a first modification, predefined element dimen-
sions are incorporated in rule #3. The new rule will
only constrain spaces' dimensions if the closest mid-
line to a neighboring space is found to be closer that
the space's original value for that dimension. The in-
clusion of dimensioning information extends the set

of required decision variables for the description of a
spatial unit by two, it's length and width. Reiterating
the above example of finding the left border, with the
new rule:

repeat for each element r {
Bd,r = Bd,original
repeat for each element e in Sd {
Bd,m = midline(r, e)
Bd,r = max(Bd,r, Bd,m), if Ce < Cr
}
}

It should be noted here that constraints are not sym-
metric for each side of the space, as such it's position-
ing may be implicitly altered by the constraining pro-
cess. An example of the procedure applied in 2-d is
shown in figure 2. An example of overlap resolution,
including spatial segmentation, is available in figure
3.

Secondly, the algorithm is modified to support
generation of three-dimensional configurations. The
intuition behind the proposed procedure is to con-
strain each of the volumes only for those of it's neigh-
bors with which a vertical intersection is present. By
doing so, the space is only constrained as much as
required in order for it not to overlap with it's neigh-
bors. To achieve that, we create separate sets of
neighbors for each unit and perform the constraint
operation there:

repeat for each element r {
Bd,r = Bd,original
repeat for each element e in Sr,d {
if vertical_intersection(r, e) {
Bd,m = midline(r, e)
Bd,r = max(Bd,r, Bd,m), if Ce <
— Cr
}
}
}

where vertical_intersection would be a function to
detect whether the two spaces share some interval in
the z (vertical) axis. This way of extending the RVD al-
gorithm ensures that spaces of arbitrary dimensions
(albeit still rectilinear) may be accomodated, e.g. ver-

Design Tool 1 - Volume 1 - eCAADe 32| 291

tical circulation spaces, such as staircases, double-
height spaces etc. The formation of neighbour rela-
tionships during the process is illustrated in figure 4.

Thirdly, the issue of leftover space within the ar-
rangement is addressed. The issue may be either ex-
plicitly treated (by employing some post-processing
step), or left to be treated implicitly as part of the op-
timization process, considering that leftover spaces
negatively affect the performance of a configuration.
With explicit treatment, leftover spaces may be re-
distributed to neighboring spatial units. However, in
the case study that follows, leftover spaces are left to
be treated implicitly during the optimization. It turns
out that such an implicit treatment offers satisfactory
results.

OVERVIEW AND PSEUDOCODE OF PRO-
POSED ALGORITHM

Having summarized the extensions to the RVD algo-
rithm, we may now write down the complete pro-
posed algorithm in the form of pseudocode:

repeat for each element r {
repeat for each element e excluding

— r {
Sr,1 += e, if rx - ex > |ry - eyl
Sr,r += e, if ex - rx > |ry - eyl
Sr,b += e, if |ex - rx| < ry - ey
Sr,f += e, otherwise
}

}
repeat for each direction d (among
— left (1), right (r), front (f) and
— back (b)) {
repeat for each element r {
Bd,r = Bd,original
repeat for each element e in Sr,d
— {
if vertical_intersection(r, e) {
Bd,m = midline(r, e)
Bd,r = max(Bd,r, Bd,m), if Ce
— < Cr

292 | eCAADe 32 - Design Tool 1 -Volume 1

After the algorithm has finished, we end up with a
configuration of non-overlapping spaces with areas
equal or less to the predefined ones. As a final step,
assignment of functions to spaces may be allowed,
based on, e.g., sorting according to a separate list
of real-valued decision variables, one for each space.
In this case, the number of decision variables is in-
creased by one for each space. Function assignment
allows in some cases radical alterations to take place
in the design (Merrell et al. 2010).

APPLICATION IN A
OPTIMIZATION-BASED
SUPPORT SYSTEM

In order to investigate applicability and performance,
the proposed mehod was used to tackle a design
problem: that of designing a simple detached family
house, with basic design goals. The brief includes a
total of seven spaces: a living room, a kitchen, a bath-
room, a hall and three bedrooms. Site constraints are
minimal. The site area is 15x15 meters. The objec-
tive is to select appropriate positions and sizes of the
spatial units, so that their area is maximized, subject
to constraints regarding connectivity and proximity
of the spaces, as well as minimum areas. The list of
spaces, desired areas and connectivity requirements
are shown in figure 5.

STOCHASTIC
DECISION-

Unit Min/Max Area Adjacency Matrix
Living Ream 15m? / 30m? 2
Kitchen 9m? / 14m? L

L]
Hall Arrd f G

®

Master Bedroom 12m? [18m? ®

L
Bedroom 1 10m? / 16m?

L]
Bedroom 2 10m? / 16m?
Bathroom Gm? / 9m? ® Strong Adjacency

Weak Adjacency
Weak Separation
® Strong Separation

A Genetic Algorithm was used for optimisation.
The decision variables were the positions, widths and
lengths of the spatial units. Separate function assign-
ment was not used. The vertical position of the spa-
tial units was encoded as a real-valued variable, so

Figure 5

Labels, minimum
and maximum
areas and
adjacency matrix
for the spatial units
included in the case
study

Figure 6

Overview of the
implementation of
the procedure in
Grasshopper. A.
Parameters, B.
Generation of
rectangles, C.
DC-RVD procedure,
D. Evaluation of
performance
metrics

Figure 7

The set of non
dominated
solutions after 120
generations, using
NSGA-Il with a
population of 300
individuals. Larger
dots indicate better
performance in
terms of spatial
relations.

they could be positioned anywhere between floors.
Three objectives were formulated. The first one is to
maximize the area, prescribed by the problem defini-
tion, for three main spaces: Living Room, Maser Bed-
room and Kitchen. The second one was to minimize
cost. The third one to maximise either proximity or
separation between desired spaces.

The system has been modelled in the Grasshop-
per parametric design program. DC-RVD was mod-
elled using simple mathematical and geometrical
components. The objectives and constraints were
also modelled in the same way. A diagram of the
parametric model is available n figure 6. For opti-
mization, the NSGA-II Genetic Algorithm was used.
NSGA-Il is a multi-objective constrained genetic al-
gorithm, developed by Deb and colleagues (Deb et
al. 2002). It is a well established optimization algo-
rithm that has seen widespread use in a wide spec-
trum of applications. An implementation of NSGA-II
for Grasshopper, Lotus, implemented in the Chair of
Design Informatics in the Faculty of Architecture, TU
Delft, by I. Chatzikonstantinou and Dr. M. S. Bitter-
mann was used. Details of the implementation are
discussed in the work of Chatzikonstantinou (2011).
The model was left to execute on an Intel Core i5 PC,
with 4GB RAM, running the Microsoft Windows 7 Op-
erating System.

DISCUSSION

The optimization process was initially carried out
with a population of 300 individuals, for a predeter-
mined amount of 200 generations. It was observed
that after about 100 generations, no significant im-
provement of the solutions can be observed. The op-
timization run starts with infeasible solutions for the
first 15-20 generations. After this point, feasible solu-
tions start to appear. As aresult f the process, a Pareto
front was generated about 60 generations after start-
ing. Smaller improvements to the solutions were be-
ing made after this point, but no radical changes oc-
cur. A graph showing the distribution in objective
space of the non dominated solutions after 100 gen-
erations can be seen in figure 7.

The results that were obtained did correspond to
reasonable configurations. The final set of nondom-
inated solutions included mostly variations of a sin-
gle configuration; i.e., not the whole spectrum of fea-
sible and well-performing solutions was attained. In
order to improve the diversity of solutions, a different
strategy was employed: Instead of a single run with
a large population and many generations, the results
of shorter runs of smaller populations, with restarts
between them, were combined, i.e. an archive of
non-dominated solutions was established from the
results of multiple runs. Indeed, in this case, di-
verse spatial configurations complemented the non-
dominated set. Three of the resulting configurations
from different runs, can be seen in figure 8.

1]

2 \'*

o

£ 5

5 ‘\

3 =

i

o “'1

% %

o i i T

5 b P

b L

@ ot i
‘..1.. 4 - -

\ " ad,

L] - -

-+—— Better Area Performance

Design Tool 1 - Volume 1 - eCAADe 32 | 293

Figure 8

Layout diagram of
two of the resulting
solutions

@ Living Room
@ Kitchen

Hall
' Master Bedroom
@ Bedroom 1
@ Bedroom 2

@ Living Room Figure 9
@ Kitchen Layout diagram of a

Hall . :
@ Master Bedroom solution with four
@ Bedroom 1 half-floors
@ Bedroom 2

@ Bathroom

294 | eCAADe 32 - Design Tool 1 -Volume 1

Figure 10
Volumetric study,
resulting from the
arrangement in
figure 9

In order to further evaluate the potential of the pro-
cedure, a comparison was made with a simple proce-
dure of placing unmodified spatial units, defined by
their positions and size, and including their overlap
as an extra constraint, alongside the ones descibed
earlier. The optimisation process was confiured with
the same parameters, i.e. population of 300 individ-
uals. It was observed that in the latter case, the opti-
mization process was not able to converge to a feasi-
ble solution at all, after 80 generations. In contrast to
that, the proposed procedure was able to reach the
first feasible solution on average at the 24th genera-
tion. Not only that, but in the case of the unmodified
procedure, the solutions converged to a very specific
area of the objective function space. This gives a hint
that, even if a feasible solution were to be found, it
would not be possible to improve it much further.
We observed that distribution of spatial units in
the resulting solutions is generally according to the
requirements, and in some cases demonstrates in-
novative arrangements. However, it should also be
noted that in some cases, the results after several
generations are unsatisfactory, leading to the con-
clusion that in those cases, the process is trapped in
local optima. An example of an interesting result is
shown in figure 9. It represents a design with four
half-floors. In this solution, the Master bedroom and
bathroom take the upper level, together with one of
the bedrooms. The living room and kitchen take the
mid-level. The other bedroom takes the lower level.

Since in this solution no requirement for proximity
between bedrooms was specified, it was considered
as a good solution. A volumetric study based on this
solution was performed as an indicative next design
step, resulting in the model of figure 10.

An optimization run of 100 generations with a
population size of 150 individuals last approximately
12 minutes. However, we should note that the pro-
cess, including generation and performance evalua-
tion, was modelled using components found in the
Grasshopper parametric Design program. This type
of implementation is rather slow compared to code.
As such, with a code-based implementation the exe-
cution time would drastically drop.

CONCLUSION
In this paper, a novel procedure for generating 3-
dimensional architectural configurations for opti-
mization applications has been proposed, termed Di-
mension Constrained Rectangular Voronoi Diagram
(DC-RVD).The method produces 3-dimensional, non-
overlapping configurations of spatial units, based on
an array of real-valued variables. It is based off an
adaptation of the Voronoi subdivision, namely the
Rectangular Voronoi Diagram (RVD). The procedure
is using a string of values that represent real-world
layout parameters, such as positions and dimensions.
This facilitates elaboration of the knowledge gener-
ated by optimisation processes.

DC-RVD has been tested in an Evolutionary

Design Tool 1 - Volume 1 - eCAADe 32 | 295

Computation-based decision support environment,
built in Grasshopper. As a case study, the design of
a medium-size detached family house has been ad-
dressed. The algorithm produces interesting results,
although in many cases the presence of local optima
is evident. The 3-dimensional representation allows
some novel features to be present, such as vertical
circulation cores and spaces with vertical relation-
ships, as well as innovative configurations, interme-
diate level placement of public spaces.

At it's present state, the tool can be used as a de-
sign aid for inspiration, as it allows insight into so-
lutions that otherwise may not have been consid-
ered. There are certainly numerous perspectives for
improvement in this work. Improvement is possible
in the evaluation of configurations, so that soft de-
sign aspects related to e.g. perception, such as, e.g.,
those described in the work of Bittermann (2009) may
be included. Finally, there is ample room for more ex-
tended trials, with building configuration problems
of higher complexity.

REFERENCES

Bittermann, MS 2009, Intelligent Design Objects (IDO):
a cognitive approach for performance-based design,
Ph.D. Thesis, TU Delft

Cagan, J, Shimada, K and Yin, S 2002, ‘A survey of com-
putational approaches to three-dimensional layout
problems;, Computer-Aided Design, 34, pp. 597-611

Cha, MY and Gero, J 1998, Shape pattern representation
for design computation, Working Paper

Chatzikonstantinou, | 2011, Evolutionary Computation
and Parametric Pattern Generation for Airport Termi-
nal Design, Master's Thesis, TU Delft

Choi, SG and Kyung, CM 1991 'A floorplanning algo-
rithm using rectangular Voronoi diagram and force-
directed block shaping, IEEE International Confer-
ence on Computer-Aided Design Digest of Technical
Papers

Deb, K, Pratap, A, Agarwal, S and Meyarivan, T 2002,
‘A fast and elitist multiobjective genetic algorithm:
NSGA-II} IEEE Transactions on Evolutionary Computa-
tion, 6 (2), pp. 182-197

Elezkurtaj, T and Franck, G 1999 'Genetic algorithms
in support of creative architectural design’, eCAADe
1999 Conference Proceedings, pp. 645-651

296 | eCAADe 32 - Design Tool 1 -Volume 1

Jo, J and Gero, J 1998, 'Space layout planning using an
evolutionary approach, Artificial Intelligence in Engi-
neering, 12 (3), p. 149-162

Kamol, K and Krung, S 2005 'Optimizing Architectural
Layout Design via Mixed Integer Programming;, Pro-
ceedings of the 11th International CAAD Futures Con-
ference, pp. 175-184

Liggett, RS 1985, 'Optimal spatial arrangement as a
quadratic assignment problem’, Design Optimiza-
tion, 2, pp. 1-40

Lobos, D and Donath, D 2010, 'The problem of space
layout in architecture: A survey and reflections, Ar-
quitetura Revista, 6, pp. 136-161

Loemker, TM 2006 'Designing with Machines: solving ar-
chitectural layout planning problems by the use of a
constraint programming language and scheduling
algorithms', Proceeding of The Second International
Conference of the Arab Society for Computer Aided Ar-
chitectural Design, pp. 88-106

Merrel, P, Schkufza, E and Koltun, V 2010, 'Computer-
generated residential building layouts, ACM Trans-
actions on Graphics, 29 (6), p. 1

Michalek, J, Choudary, R and Papalambros, P 2002, ‘Ar-
chitectural layout design optimization’, Engineering
optimization, 34 (5), pp. 37-41

Yeh, 1 2006, 'Architectural layout optimization using an-
nealed neural network!, Automation in construction,
15, pp. 531-539

