CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 21 to 40 of 3707

Details Citation Select
67%; open Hafiz, A. M. & Bhat, G. M. (2020) Find in CUMINCAD A survey of deep learning techniques for medical diagnosis , Information and communication technology for sustainable development, 161-170. https://doi.org/10.1007/978-981-13-7166-0_16

67%; open Han, Z., Yan, W. and Liu, G. (2021) Find in CUMINCAD A Performance-Based Urban Block Generative Design Using Deep Reinforcement Learning and Computer Vision , P.F. Yuan et al. (eds) Proceedings of the 2020 DigitalFUTURES. Singapore: Springer Singapore, pp. 134-143

67%; open Haryanto, T., Pratama, A., Suhartanto, H., Murni, A., Kusmardi, K. & Pidanic, J. (2020) Find in CUMINCAD Multipatch-GLCM for Texture Feature Extraction on Classification of the Colon Histopathology Images using Deep Neural Network with GPU Acceleration , Journal of Computer Science, 16(3), 280–294. https://doi.org/10.3844/jcssp.2020.280.294Hassani, M. M., Wittel, F. K., Hering, S., & Herrmann, H. J. (2015). Rheological model for wood. Computer Methods in Applied Mechanics and Engineering, 283, 1032–1060. https://doi.org/10.1016/j.cma.2014.10.031

67%; open Hensel, D. S. (2020) Find in CUMINCAD Ecological Prototypes: Initiating Design Innovation in Green Construction , Sustainability (Switzerland), 12(14). Available at: https://doi.org/1.339/su12145865

67%; open Heuillet, A., Couthouis, F. and Díaz-Rodríguez, N. (2020) Find in CUMINCAD Explainability in Deep Reinforcement Learning , arXiv:2008.06693 [cs] [Preprint]. Available at: http://arxiv.org/abs/2008.06693 (Accessed: 15 February 2022)

67%; open Hsu, Ya-Wen, Yen-Wei Chen, and Jau-Woei Perng (2020) Find in CUMINCAD Estimation of the Number of Passengers in a Bus Using Deep Learning , Sensors (Basel) 20 (8): 2178

67%; open Hu, G., Liu, L., Tao, D., Song, J., Tse, K. T., & Kwok, K. C. S. (2020) Find in CUMINCAD Deep learning-based investigation of wind pressures on tall building under interference effects , Journal of Wind Engineering and Industrial Aerodynamics, 201, 104138. https://doi.org/10.1016/j.jweia.2020.104138

67%; open Huang, H. S., Lan, Y. B., Yang, A. Q., Zhang, Y. L., Wen, S., & Deng, J. Z. (2020) Find in CUMINCAD Deep Learning Versus Object-based Image Analysis (obia) in Weed Mapping of Uav Imagery , International Journal OF Remote Sensing, 41(9), 3446-3479. Available at: https://doi.org/1.18/1431161.219.176112

67%; open Ibrahim MR, Haworth J and Cheng T (2020) Find in CUMINCAD Understanding cities with machine eyes: a review of deep computer vision in urban analytics , Cities 2020; 96: 102481

67%; open Ibrahim, Y., Nagy, B., Benedek, C., (2020) Find in CUMINCAD Deep Learning-Based Masonry Wall Image Analysis , Remote Sens. 12, 3918. https://doi.org/10.3390/rs12233918

67%; open Ikeno K, Fukuda T and Yabuki N. (2020) Find in CUMINCAD Automatic generation of horizontal building mask images by using a 3d model with aerial photographs for deep learning , Proceedings of eCAADe; 2: 271–278.

67%; open Ikeno, K, Fukuda, T and Yabuki, N (2020) Find in CUMINCAD Automatic Generation of Horizontal Building Mask Images by Using a 3D Model with Aerial Photographs for Deep Learning , Proceedings of eCAADe 2020, p. 271-278

67%; open Jingxuan Hou, Long Chen, Enjia Zhang, Haifeng Jia, and Ying Long (2020) Find in CUMINCAD Quantifying the Usage of Small Public Spaces Using Deep Convolutional Neural Network , PLoS ONE 15 (10): e0239390

67%; open Johnson, J. Nikhila Ravi, Jeremy Reizenstein, David Novotny, Shubham Tulsiani, Christoph Lassner, and Steve Branson (2020) Find in CUMINCAD Accelerating 3D Deep Learning with PyTorch3D , SIGGRAPH Asia 2020 Courses (SA '20) Article 10, 1. Association for Computing Machinery, New York, NY. DOI:https://doi.org/10.1145/3415263.3419160

67%; open Kapania, S., Saini, D., Goyal, S., Thakur, N., Jain, R. and Nagrath, P. (2020) Find in CUMINCAD Multi object tracking with UAVs using deep SORT and YOLOv3 RetinaNet detection framework , Proceedings of the 1st ACM Workshop on Autonomous and Intelligent Mobile Systems, Bangalore, pp. 1-6

67%; open Kido, D., Fukuda, T. and Yabuki, N. (2020) Find in CUMINCAD Diminished reality system with real-time object detection using deep learning for onsite landscape simulation during redevelopment , Environmental Modelling and Software, 131, p. -

67%; open Kim, J., & Lee, J.-K. (2020) Find in CUMINCAD Stochastic detection of interior design styles using a deep-learning model for reference images , Applied Sciences, 10(20), 7299. https://www.mdpi.com/2076-3417/10/20/7299

67%; open Kuldna, P., Poltimäe, H., & Tuhkanen, H. (2020) Find in CUMINCAD Perceived importance of and satisfaction with nature observation activities in urban green areas , Journal of Outdoor Recreation and Tourism, 29, 100227

67%; open Law, S., Seresinhe, C. I., Shen, Y. & Gutierrez-Roig, M. (2020) Find in CUMINCAD Street-frontage-net: Urban image classification using deep convolutional neural networks , International Journal of Geographical Information Science, 34(4), 681–707

67%; open Lee, J., Azamfar, M., Singh, J., & Siahpour, S. (2020) Find in CUMINCAD Integration of digital twin and deep learning in cyber-physical systems: Towards smart manufacturing , IET Collaborative Intelligent Manufacturing, 2(1), 34-36

For more results click below:

show page 0this is page 1show page 2show page 3show page 4show page 5show page 6... show page 185HOMELOGIN (you are user _anon_826764 from group guest) CUMINCAD References Powered by SciX Open Publishing Services 1.002