CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 81 to 100 of 5815

Details Citation Select
50%; open Wong, S. L., K. K. W. Wan, and T. N. T. Lam (2010) Find in CUMINCAD Artificial Neural Networks for Energy Analysis of Office Buildings with Daylighting , Applied Energy 87 (2): 551–57. doi:10.1016/j.apenergy.2009.06.028

50%; open Wong, S., Wan, K. and Lam, T. (2010) Find in CUMINCAD Artificial neural networks for energy analysis of office buildings with daylighting. , Applied Energy, 87(2), pp. 551-557

50%; open Wu, X., Lu, Y., Lin, Y. & Yang, Y. (2019) Find in CUMINCAD Measuring the Destination Accessibility of Cycling Transfer Trips in Metro Station Areas: A Big Data Approach , Int. J. Environ. Res. Public Health, 16(15), 2641. http://doi.org/10.3390/ijerph16152641Wang, H., & Noland, R. (2021, January 26). Changes in the pattern of bikeshare usage due to the COVID-19 pandemic. Findings. Retrieved May 16, 2021, from https://findingspress.org/article/18728Zafri, N.M., Khan, A., Jamal, S., & Alam, B.M. (2021). Impacts of the COVID-19 Pandemic on Active Travel Mode Choice in Bangladesh: A Study from the Perspective of Sustainability and New Normal Situation. Sustainability, 13(12), 6975. http://doi.org/10.3390/su13126975Zhang, Y., & Mi, Z. (2018). Environmental benefits of bike sharing: a bigdata-based analysis. Applied Energy, 220, 296-301. https://doi.org/10.1016/j.apenergy.2018.03.101

50%; open Zhang, T, Huang, X, Wen, D and Li, J (2017) Find in CUMINCAD Urban Building Density Estimation From High-Resolution Imagery Using Multiple Features and Support Vector Regression , IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, pp. 3265-3280

50%; open Zhang, Y., Cheng, S., Mei, W., Jiang, L., Jia, Z., Cheng, Z., Sun, J. & Wang, Q. (2023) Find in CUMINCAD Understanding of thermal runaway mechanism of LiFePO4 battery in-depth by three-level analysis , Applied Energy, 336,120695. https://doi.org/10.1016/j.apenergy.2023.120695

50%; open Zhang, Y., Zhang, Q., Zhao, Y., Deng, Y., & Zheng, H. (2022) Find in CUMINCAD Urban Spatial Risk Prediction and Optimization Analysis of Poi Based on Deep Learning from the Perspective of an Epidemic , International Journal of Applied Earth Observation and Geoinformation, 112, 12942. Available at: https://doi.org/1.116/j.jag.222.12942

50%; open An, R., Wu, Z., Tong, Z., et al. (2022) Find in CUMINCAD How the built environment promotes public transportation in Wuhan: A multiscale geographically weighted regression analysis , Travel Behaviour and Society, 29: 186-199

50%; open Asadi, S, Amiri, SS and Mottahedi, M (2014) Find in CUMINCAD On the Development of Multi-Linear Regression Analysis to Assess Energy Consumption in the Early Stages of Building Design , Energy & Buildings, 85, pp. 246-255

50%; open Chatterjee S, Hadi A and Price B (2000) Find in CUMINCAD Regression analysis by example , New York, NY: John Wiley and Sons

50%; open Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F., & Mosavi, A. (2019) Find in CUMINCAD An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines , The Science of the total environment, 2019-02, Vol.651 (Pt 2), p.2087-2096"

50%; open Dietrich von, Rosen (eds) (2018) Find in CUMINCAD Bilinear Regression Analysis , Springer International Publishing

50%; open Fei, M. A., Fr, A., Kfy, B., Yg, A., Cz, A., Dan, G. A. (2019) Find in CUMINCAD The spatial coupling effect between urban public transport and commercial complexes: A network centrality perspective - ScienceDirect , Sustainable Cities and Society, 50, 101645-101645.Fotheringham, A. S., Yang, W., Kang, W. (2017). Multiscale Geographically Weighted Regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247-1265.Harris, P., Fotheringham, A. S., Crespo, R., Charlton, M. (2018). Inference in multi-scale geographically weighted regression. WILEY, 43(3), 399.Jia, J., Zhang, X. (2021). A human-scale investigation into economic benefits of urban green and blue infrastructure based on big data and machine learning: A case study of Wuhan. Journal of Cleaner Production, 316, 128321.Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., Fotheringham, A. S. (2019). MGWR: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. International Journal of Geo-Information, 8(6), 269.Rifkin, J. (2013). The Third Industrial Revolution. International Study Reference, 6(1), 8-11.Yu H, Fotheringham A S, Li Z, et al. (2019). Inference in multi-scale geographically weighted regression. Geographical Analysis, 52(1), 87-106

50%; open Fotheringham, A. S., Charlton, M. E., & Brunsdon, C. (1998) Find in CUMINCAD Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis , Environment and Planning A: Economy and Space, 30(11), 1905-1927

50%; open Fotheringham, A., Brunsdon, C. & Charlton, M. (2002) Find in CUMINCAD Geographically Weighted Regression: The Analysis of Spatially Varying Relationships , Wiley

50%; open Green, SB (1991) Find in CUMINCAD How Many Subjects Does It Take To Do A Regression Analysis , Multivariate Behav Res., 26(3), pp. 499-510

50%; open Hu, Ling (2014) Find in CUMINCAD Research on the Application of Regression Analysis Method in Data Classification , Journal of Networks, 1276, pp. 3151-3157

50%; open Krackhardt (1988) Find in CUMINCAD Predicting with networks-Nonparametric multiple regression analysis of dyadic data , Social Network. 10: 359-381

50%; open Nishii, K., M. Tanahashi, T. Doi, and T. Kiuchi (1996) Find in CUMINCAD The LOGMAP modelling for structural analysis of railroad line area image: An empirical study on the attribute – regression model , Infrastructure Planning Review, 13, p.49-56

50%; open Rosen, D. v. (2018) Find in CUMINCAD Bilinear Regression Analysis , Springer International Publishing

50%; open Tso, G.K.F. and Yau, K.K.W. (2007) Find in CUMINCAD Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks , Energy 32(9), pp. 1761-1768. doi: 10.1016/j.energy.2006.11.010

For more results click below:

show page 0show page 1show page 2show page 3this is page 4show page 5show page 6show page 7show page 8show page 9... show page 290HOMELOGIN (you are user _anon_469190 from group guest) CUMINCAD References Powered by SciX Open Publishing Services 1.002