CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 7986

Details Citation Select
100%; open Ali, Z., Kouzani, A. Z., Khoo, S. Y., Gibson, I., Kaynak, A. (2016) Find in CUMINCAD 3D printed hydrogel soft actuators , Region 10 Conference (TENCON), IEEE, 2272–2277

83%; open Ali, Z., Kouzani, A. Z., Khoo, S. Y., Nasri-Nasrabadi, B., Kaynak, A. (2017) Find in CUMINCAD Development and analysis of a 3D printed hydrogel soft actuator , Sensors and Actuators A: Physical

50%; open (2016) Find in CUMINCAD 3D Printed Structures: Challenges and Opportunities , STRUCTURE, 54

50%; open Andrei, Jipa, Mathias, Bernhard, Mania, Meibodi and Dillenburger, Benjamin (2016) Find in CUMINCAD 3D-Printed Stay-in-Place Formwork for Topologically Optimized Concrete Slabs , TxA Emerging Design + Technology, San Antonio, Texas, USA, p. Volume: 3

50%; open Bader, C, Patrick, W, Kolb, D, Hays, S, Keating, S, Sharma, S, Dikovsky, D, Belocon, B, Weaver, J, Silver, P and Oxman, N (2016) Find in CUMINCAD Printed, and Biologically Augmented: An Additively Manufactured Microfluidic Wearable , Functionally Templated for Synthetic Microbes 3d Printing And Additive Manufacturing, 3(2), pp. 79-89

50%; open Bader, C., Patrick, W.G., Kolb, D, Hays, S.G., Keating, S., Sharma, S., Dikovsky, D., Belocon, B., Weaver, J.C., Silver, P.A. and Oxman, N. (2016) Find in CUMINCAD Grown, Printed, and Biologically Augmented: An Additively Manufactured Microfluidic Wearable, Functionally Templated for Synthetic Microbes , 3D Printing and Additive Manufacturing, 3(2), pp. 79-89

50%; open Bader, C., W.G. Patrick, D. Kolb, S.G. Hays, S. Keating, S. Sharma, D. Dikovsky, B. Belocon, J.C. Weaver, P.A. Silver, and N. Oxman. (2016) Find in CUMINCAD Grown, printed, and biologically augmented: An additively manufactured microfluidic wearable, functionally templated for synthetic microbes , 3D Printing and Additive Manufacturing 3(2): 79-89

50%; open Bedarf, P., Szabo, A., Zanini, M. & Dillenburger, B. (2021) Find in CUMINCAD Machine Sensing for Mineral Foam 3D Printing , International Conference on Intelligent Robots and Systems: Workshop Robotic Fabrication, IROS 2021. https://doi.org/10.3929/ethz-b-000506097BubbleDeck. (2021). The Original Voided Slab. Retrieved May 11 2021, from https://www.bubbledeck.comCobiax. (2021). Voided flat plate slab technologies available worldwide. Retrieved May 11 2021, from https://www.cobiax.com/intl/en/Compas. (2020). Retrieved May 11 2021, from https://compas.dev/index.htmlFernández-Jiménez, A., & Palomo, A. (2005). Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cement and Concrete Research, 35(10), 1984–1992. https://doi.org/10.1016/j.cemconres.2005.03.003Furet, B., Poullain, P., & Garnier, S. (2019). 3D printing for construction based on a complex wall of polymer-foam and concrete. Additive Manufacturing, 28, 58–64. https://doi.org/10.1016/j.addma.2019.04.002Georgopoulos, C., & Minson, A. (2014). Sustainable concrete solutions. Wiley-Blackwell.Halpern, A. B., Billington, D. P., & Adriaenssens, S. (2013). The Ribbed Floor Slab Systems of Pier Luigi Nervi. Proceedings of the International Association for Shell and Spatial Structures (IASS), 7. http://formfindinglab.princeton.edu/wp-content/uploads/2011/09/Nervi_ribbed_floors.pdfHansemann, G., Schmid, R., Holzinger, C., Tapley, J. P., Peters, S., Trummer, A., & Kupelwieser, H. (2021). Lightweight Reinforced Concrete Slab: 130 different 3D printed voids. CPT Worldwide - Construction Printing Technology, 2021(2), 68.Jipa, A., Calvo Barentin, C., Lydon, G., Rippmann, M., Chousou, G., Lomaglio, M., Schlüter, A., Block, P., & Dillenburger, B. (2019). 3D-Printed Formwork for Integrated Funicular Concrete Slabs. Proceedings of the IASS Annual Symposium 2019, 10. https://www.researchgate.net/publication/335175125_3D-Printed_Formwork_for_Integrated_Funicular_Concrete_SlabsJipa, A., & Dillenburger, B. (2021). 3D Printed Formwork for Concrete: State-of-the-Art, Opportunities, Challenges, and Applications. 3D Printing and Additive Manufacturing, 00, 24. https://doi.org/10.1089/3dp.2021.0024Keating, S. J., Leland, J. C., Cai, L., & Oxman, N. (2017). Toward site-specific and self-sufficient robotic fabrication on architectural scales. Science Robotics, 2(5), 1-15. https://doi.org/10.1126/scirobotics.aam8986Liew, A., López, D. L., Van Mele, T., & Block, P. (2017). Design, fabrication and testing of a prototype, thin-vaulted, unreinforced concrete floor. Engineering Structures, 137, 323–335. https://doi.org/10.1016/j.engstruct.2017.01.075Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29(8), 1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9UN Environment Programme. (2020). Global Status Report for Buildings and Construction. Retrieved May 11 2021, from https://globalabc.org/sites/default/files/inline-files/2020%20Buildings%20GSR_FULL%20REPORT.pdfXu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59(3), 247–266. https://doi.org/10.1016/S0301-7516(99)00074-5Zhao, H., Gu, F., Huang, Q.-X., Garcia, J., Chen, Y., Tu, C., Benes, B., Zhang, H., Cohen-Or, D., & Chen, B. (2016). Connected fermat spirals for layered fabrication. ACM Transactions on Graphics, 35(4), 1–10. https://doi.org/10.1145/2897824.2925958

50%; open Beyhan, F., & Arslan Selcuk, S. (2018) Find in CUMINCAD 3D Printing in Architecture: One Step Closer to a Sustainable Built Environment , Lecture Notes in Civil Engineering, 253–268. https://doi.org/10.1007/978-3-319-63709-9_20Ching-Shun, T. (2006). Smart Structures: Designs with Rapid Prototyping. Progress in Design & Decision Support Systems in Architecture and Urban Planning, 415–429. Retrieved from http://papers.cumincad.org/data/works/att/ddss2006-pb-415.content.pdfDefacto (2016) The Rise Pavilion [Project] Guinness World Record: Largest 3D Printed Structure 2016 Retrieved from https://3dprint.com/147981/defacto-rise-pavilion-guinness/

50%; open Dantas, A. C. S., Scalabrin, D. H., De Farias, R., Barbosa, A. A., Ferraz, A. V. & Wirth, C. (2016) Find in CUMINCAD Design of Highly Porous Hydroxyapatite Scaffolds by Conversion of 3D Printed Gypsum Structures – A Comparison Study , Procedia CIRP, 49, 55–60. https://doi.org/10.1016/j.procir.2015.07.030

50%; open Farahi, B B (2016) Find in CUMINCAD Caress of the gaze: A gaze actuated 3D printed body architecture , ACADIA

50%; open Farahi, B (2016) Find in CUMINCAD Caress of the Gaze: A Gaze Actuated 3D Printed Body Architecture , Proceedings of Acadia 2016, Michigan, pp. 352-361

50%; open Farahi, B (2016) Find in CUMINCAD Caress of the Gaze: A Gaze Actuated 3D Printed Body Architecture , ACADIA 2016 Posthuman Frontiers: Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture, Ann Arbor, Michigan, pp. 352-361

50%; open Fischer T and Herr C. (2016) Find in CUMINCAD Parametric Customisation of a 3D Concrete printed Pavilion , CAADRIA 2016 549-558:

50%; open Fischer, T and Herr, CM (2016) Find in CUMINCAD Parametric Customisation of a 3D Concrete Printed Pavilion , Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia, Melbourne, pp. 549-558

50%; open Gosselin, C., Duballet, R., Roux, P., Gaudilliere, N., Dirrenberger, J. & Morel, P. (2016) Find in CUMINCAD Large-scale 3D printing of ultra-high performance concrete–a new processing route for architects and builders , Materials & Design, 100, 102-109. https://doi.org/10.1016/j.matdes.2016.03.097Khoshnevis, B. (2004). Automated construction by contour crafting—related robotics and information technologies. Automation in construction, 13(1), 5-19. https://doi.org/10.1016/j.autcon.2003.08.012Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G., & Thorpe, T. (2012). Mix design and fresh properties for high-performance printing concrete. Materials and structures, 45(8), 1221-1232. https://doi.org/10.1617/s11527-012-9828-zLi, Z., Wang, L., Ma, G., Sanjayan, J., & Feng, D. (2020). Strength and ductility enhancement of 3D printing structure reinforced by embedding continuous micro-cables. Construction and Building Materials, 264, 120196. https://doi.org/10.1016/j.conbuildmat.2020.120196Lim, J. H., Weng, Y., & Pham, Q. C. (2020). 3D printing of curved concrete surfaces using Adaptable Membrane Formwork. Construction and Building Materials, 232, 117075. https://doi.org/10.1016/j.conbuildmat.2019.117075Ma, G., Li, Z., Wang, L., & Bai, G. (2019). Micro-cable reinforced geopolymer composite for extrusion-based 3D printing. Materials Letters, 235, 144-147. https://doi.org/10.1016/j.matlet.2018.09.159Masoud Akbarzadeh. Andrei Nejur.(2019). Polyframe. From https://psl.design.upenn.edu/polyframe/Mechtcherine, V., Nerella, V. N., Will, F., Näther, M., Otto, J., & Krause, M. (2019). Large-scale digital concrete construction–CONPrint3D concept for on-site, monolithic 3D-printing. Automation in Construction, 107, 102933. https://doi.org/10.1016/j.autcon.2019.102933Salet, T. A., Ahmed, Z. Y., Bos, F. P., & Laagland, H. L. (2018). Design of a 3D printed concrete bridge by testing. Virtual and Physical Prototyping, 13(3), 222-236. https://doi.org/10.1080/17452759.2018.1476064

50%; open Huang, A (2016) Find in CUMINCAD From Bones to Bricks: Design the 3D Printed Durotaxis Chair and La Burbuja Lamp , Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture, Ann Arbor, pp. 318-325

50%; open Huang, Alvin. (2016) Find in CUMINCAD From Bones to Bricks: Designing the 3D Printed Durotaxis Chair and La Burbuja Lamp , ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design Architecture (ACADIA)] Ann Arbor 27-29 October, 2016, Pp. 318-325

50%; open Huang, HH, Wong, BL, & Chou, YC (2016) Find in CUMINCAD Design and properties of 3D-printed chiral auxetic metamaterials by reconfigurable connections , Physica Status Solidi B 253, n8, 1557-1564

50%; open Jipa A, Bernhard M, Meibodi M and Dillenburger B (2016) Find in CUMINCAD 3D-Printed Stay-in-Place Formwork for Topologically Optimized Concrete Slabs , K Bieg (ed) 2016 TxA Emerging Design + Technology Conference Proceedings San Antonio, USA: Texas Society of Architects, 2016, pp 97–107

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 399HOMELOGIN (you are user _anon_456506 from group guest) CUMINCAD References Powered by SciX Open Publishing Services 1.002