CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 7679

Details Citation Select
100%; open Ariza, I, Sutherland, T.S, Durham, J, Mueller, C, Mcgee, W and Clifford, B (2017) Find in CUMINCAD Robotic Fabrication 0f Stone Assembly Details , MENGES, A, SHEIL, B, GLYNN, R and SKAVARA, M (eds), FABRICATE 2017: Rethinking Design and Construction, UCL Press

86%; open Ariza, I, Sutherland, TS, Durham, JB, Mueller, CT, Mcgee, W and CLIFFORD, B (2017) Find in CUMINCAD Robotic Fabrication of Stone Assembly Details , Menges, A, Sheil, B, Glynn, R and Skavara, M (eds), Fabricate 2017, UCL Press, pp. 106-113

86%; open Ariza, Inés, T. Shan Sutherland, James B Durham, Caitlin T. Mueller, Wes McGee, and Brandon Clifford (2017) Find in CUMINCAD Robotic Fabrication of Stone Assembly Details , Fabricate 2017, edited by Achim Menges, Bob Sheil, Ruairi Glynn, and Marilena Skavara, 106–13. London: UCL Press

86%; open Ariza, Inés, T. Shan Sutherland, James B. Durham, Caitlin T. Mueller, Wes McGee, and Brandon Clifford (2017) Find in CUMINCAD Robotic Fabrication of Stone Assembly Details , Fabricate 2017, edited by Achim Menges, Bob Sheil, Ruairi Glynn and Marilena Skavara, 106–113. London: UCL Press

86%; open Ariza, Inés, T. Shan Sutherland, James B. Durham, Caitlin T. Mueller, Wes McGee, and Brandon Clifford (2017) Find in CUMINCAD Robotic Fabrication of Stone Assembly Details , Fabricate 2017, edited by Achim Menges, Bob Sheil, Ruairi Glynn and Marilena Skavara, 106–113. London: UCL Press

71%; open Ariza, I., Sutherland, T.S., Durham, J.B., Mueller, C., McGee, W. and Clifford, B. (2016) Find in CUMINCAD Robotic Fabrication of Stone Assembly Details , Proceedings of FABRICATE, pp. 106-113

43%; open A. Rossi and O. Tessmann (2017) Find in CUMINCAD Geometry as Assembly– Integrating Design and Fabrication with Discrete Modular Units , Proceedings of the 35th eCAADe Conference: ShoCK!: Sharing Computational Knowledge!, vol 2. 201–210

43%; open Bedarf, P., Szabo, A., Zanini, M. & Dillenburger, B. (2021) Find in CUMINCAD Machine Sensing for Mineral Foam 3D Printing , International Conference on Intelligent Robots and Systems: Workshop Robotic Fabrication, IROS 2021. https://doi.org/10.3929/ethz-b-000506097BubbleDeck. (2021). The Original Voided Slab. Retrieved May 11 2021, from https://www.bubbledeck.comCobiax. (2021). Voided flat plate slab technologies available worldwide. Retrieved May 11 2021, from https://www.cobiax.com/intl/en/Compas. (2020). Retrieved May 11 2021, from https://compas.dev/index.htmlFernández-Jiménez, A., & Palomo, A. (2005). Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cement and Concrete Research, 35(10), 1984–1992. https://doi.org/10.1016/j.cemconres.2005.03.003Furet, B., Poullain, P., & Garnier, S. (2019). 3D printing for construction based on a complex wall of polymer-foam and concrete. Additive Manufacturing, 28, 58–64. https://doi.org/10.1016/j.addma.2019.04.002Georgopoulos, C., & Minson, A. (2014). Sustainable concrete solutions. Wiley-Blackwell.Halpern, A. B., Billington, D. P., & Adriaenssens, S. (2013). The Ribbed Floor Slab Systems of Pier Luigi Nervi. Proceedings of the International Association for Shell and Spatial Structures (IASS), 7. http://formfindinglab.princeton.edu/wp-content/uploads/2011/09/Nervi_ribbed_floors.pdfHansemann, G., Schmid, R., Holzinger, C., Tapley, J. P., Peters, S., Trummer, A., & Kupelwieser, H. (2021). Lightweight Reinforced Concrete Slab: 130 different 3D printed voids. CPT Worldwide - Construction Printing Technology, 2021(2), 68.Jipa, A., Calvo Barentin, C., Lydon, G., Rippmann, M., Chousou, G., Lomaglio, M., Schlüter, A., Block, P., & Dillenburger, B. (2019). 3D-Printed Formwork for Integrated Funicular Concrete Slabs. Proceedings of the IASS Annual Symposium 2019, 10. https://www.researchgate.net/publication/335175125_3D-Printed_Formwork_for_Integrated_Funicular_Concrete_SlabsJipa, A., & Dillenburger, B. (2021). 3D Printed Formwork for Concrete: State-of-the-Art, Opportunities, Challenges, and Applications. 3D Printing and Additive Manufacturing, 00, 24. https://doi.org/10.1089/3dp.2021.0024Keating, S. J., Leland, J. C., Cai, L., & Oxman, N. (2017). Toward site-specific and self-sufficient robotic fabrication on architectural scales. Science Robotics, 2(5), 1-15. https://doi.org/10.1126/scirobotics.aam8986Liew, A., López, D. L., Van Mele, T., & Block, P. (2017). Design, fabrication and testing of a prototype, thin-vaulted, unreinforced concrete floor. Engineering Structures, 137, 323–335. https://doi.org/10.1016/j.engstruct.2017.01.075Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29(8), 1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9UN Environment Programme. (2020). Global Status Report for Buildings and Construction. Retrieved May 11 2021, from https://globalabc.org/sites/default/files/inline-files/2020%20Buildings%20GSR_FULL%20REPORT.pdfXu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59(3), 247–266. https://doi.org/10.1016/S0301-7516(99)00074-5Zhao, H., Gu, F., Huang, Q.-X., Garcia, J., Chen, Y., Tu, C., Benes, B., Zhang, H., Cohen-Or, D., & Chen, B. (2016). Connected fermat spirals for layered fabrication. ACM Transactions on Graphics, 35(4), 1–10. https://doi.org/10.1145/2897824.2925958

43%; open David Rosenwasser, Sonya Mantell, and Jenny E. Sabin (2017) Find in CUMINCAD Clay Non-Wovens: Robotic Fabrication and Digital Ceramics , ACADIA 2017: Disciplines & Disruption; Proceedings of the 37thAnnual Conference of the Association for Computer Aided Design inArchitecture. Cambridge, MA

43%; open Duballet R, Baverel O and Dirrenberger J (2017) Find in CUMINCAD Design of space truss based insulating walls for robotic fabrication in concrete , Humanizing digital reality. Singapore: Springer, 2017, pp. 453–478

43%; open Eversmann, P, Gramazio, F and Kohler, M (2017) Find in CUMINCAD Robotic prefabrication of timber structures: towards automated large-scale spatial assembly , Construction Robotics, 1(1-4), pp. 49-60

43%; open Eversmann, P., Gramazio, F. and Kohler, M. (2017) Find in CUMINCAD Robotic prefabrication of timber structures: towards automated large-scale spatial assembly , Construction Robotics. 1. 10.1007/s41693-017-0006-2. Available at: https://www.researchgate.net/publication/319110210_Robotic_prefabrication_of_timber_structures_towards_automated_large-scale_spatial_assembly (Accessed: 15 February 2022)

43%; open Eversmann, P., Gramazio, F., & Kohler, M. (2017) Find in CUMINCAD Robotic prefabrication of timber structures: towards automated large-scale spatial assembly , Construction Robotics,1(1–4), 49–60

43%; open Eversmann, PE, Gramazio, FG and Kohler, MK (2017) Find in CUMINCAD Robotic prefabrication of timber structures: towards automated large-scale spatial assembly , Construction Robotics, 1(1), pp. 49-60

43%; open Eversmann, Philipp, Fabio Gramazio, and Matthias Kohler (2017) Find in CUMINCAD Robotic Prefabrication of Timber Structures: Toward Automated Large-Scale Spatial Assembly , Construction Robotics 1 (2): 49–60

43%; open Eversmann, Philipp, Fabio Gramazio, and Matthias Kohler. (2017) Find in CUMINCAD Robotic prefabrication of timber structures: towards automated large-scale spatial assembly , Construction Robotics 1(1-4): 49-60

43%; open Eversmann, Philipp, Fabio Gramazio, and Matthias Kohler. (2017) Find in CUMINCAD Robotic Prefabrication of Timber Structures: Towards Automated Large-scale Spatial Assembly , Construction Robotics 1(1-4): 49-60

43%; open Eversmann, Phillipp (2017) Find in CUMINCAD Robotic Fabrication Techniques for Material of Unknown Geometry , Humanizing Digital Reality: Design Modelling Symposium, 311–322. Paris: Springer

43%; open Fadri Furrer, Martin Wermelinger, Hironori Yoshida, Fabio Gramazio, Matthias Kohler, Roland Siegwart, and Marco Hutter (2017) Find in CUMINCAD Autonomous Robotic Stone Stacking with Online next Best Object Target Pose Planning , 2017 IEEE International Conference on Robotics and Automation (ICRA), 2350– 56

43%; open Fadri, Furrer, Martin, Wermelinger, Hironori, Yoshida, Fabio, Gramazio, Matthias, Kohler, Roland, Siegwart and Marco, Hutter (2017) Find in CUMINCAD Autonomous robotic stone stacking with online next best object target pose planning , IEEE International Conference on Robotics and Automation (ICRA) 2017, Singapore, pp. 2350 - 2356

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 383HOMELOGIN (you are user _anon_734131 from group guest) CUMINCAD References Powered by SciX Open Publishing Services 1.002