CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 7187

Details Citation Select
100%; open Forman J, Doga Dogan M, Forsythe H, et al. (2020) Find in CUMINCAD DefeXtiles: 3D printing Quasi-Woven fabric via under-extrusion , Proceedings of the 33rd annual ACM symposium on user interface software and technology, Virtual Event, USA, 20–23 October 2020, pp.1222–1233. New York: ACM Digital Library

100%; open Forman, J., Dogan, M. D., Forsythe, H., & Ishii, H. (2020) Find in CUMINCAD Defextiles: 3D Printing Quasi-woven Fabric Via Under-extrusion , UIST 22Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, 1222-1233. Available at: https://doi.org/1.1145/3379337.3415876

40%; open Gosselin, C., Duballet, R., Roux, P., Gaudilliere, N., Dirrenberger, J. & Morel, P. (2016) Find in CUMINCAD Large-scale 3D printing of ultra-high performance concrete–a new processing route for architects and builders , Materials & Design, 100, 102-109. https://doi.org/10.1016/j.matdes.2016.03.097Khoshnevis, B. (2004). Automated construction by contour crafting—related robotics and information technologies. Automation in construction, 13(1), 5-19. https://doi.org/10.1016/j.autcon.2003.08.012Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G., & Thorpe, T. (2012). Mix design and fresh properties for high-performance printing concrete. Materials and structures, 45(8), 1221-1232. https://doi.org/10.1617/s11527-012-9828-zLi, Z., Wang, L., Ma, G., Sanjayan, J., & Feng, D. (2020). Strength and ductility enhancement of 3D printing structure reinforced by embedding continuous micro-cables. Construction and Building Materials, 264, 120196. https://doi.org/10.1016/j.conbuildmat.2020.120196Lim, J. H., Weng, Y., & Pham, Q. C. (2020). 3D printing of curved concrete surfaces using Adaptable Membrane Formwork. Construction and Building Materials, 232, 117075. https://doi.org/10.1016/j.conbuildmat.2019.117075Ma, G., Li, Z., Wang, L., & Bai, G. (2019). Micro-cable reinforced geopolymer composite for extrusion-based 3D printing. Materials Letters, 235, 144-147. https://doi.org/10.1016/j.matlet.2018.09.159Masoud Akbarzadeh. Andrei Nejur.(2019). Polyframe. From https://psl.design.upenn.edu/polyframe/Mechtcherine, V., Nerella, V. N., Will, F., Näther, M., Otto, J., & Krause, M. (2019). Large-scale digital concrete construction–CONPrint3D concept for on-site, monolithic 3D-printing. Automation in Construction, 107, 102933. https://doi.org/10.1016/j.autcon.2019.102933Salet, T. A., Ahmed, Z. Y., Bos, F. P., & Laagland, H. L. (2018). Design of a 3D printed concrete bridge by testing. Virtual and Physical Prototyping, 13(3), 222-236. https://doi.org/10.1080/17452759.2018.1476064

40%; open Mogan-Soldevila, L., J. Duro-Royo, and N. Oxman. (2014) Find in CUMINCAD Water- Based Robotic Fabrication: Large-Scale Additive Manufacturing of Functionally Graded Hydrogel Composites via Multichamber Extrusion , 3D Printing and Additive Manufacturing 1(3): 141-151

40%; open Mogas Soldevila, L., J. Duro Royo, N. Oxman (2014) Find in CUMINCAD Water-based Robotic Fabrication: Large-Scale Additive Manufacturing of Functionally-Graded Hydrogel Composites via Multi-Chamber Extrusion , 3D Printing and Additive Manufacturing. Liebert 1: 141-151

40%; open Mogas-Soldevila, L, Duro-Royo, J and Oxman, N (2014) Find in CUMINCAD Water-Based Robotic Fabrication: Large-Scale Additive Manufacturing of Functionally Graded Hydrogel Composites via Multichamber Extrusion , 3D Printing and Additive Manufacturing, 1(3), pp. 141-151

40%; open Mogas-Soldevila, L, Duro-Royo, J and Oxman, N (2014) Find in CUMINCAD Water-Based Robotic Fabrication: Large-Scale Additive Manufacturing of Functionally Graded Hydrogel Composites via Multichamber Extrusion , 3D Printing and Additive Manufacturing, 1(3), p. 141-151

40%; open Mogas-Soldevila, L, Duro-Royo, J and Oxman, N (2014) Find in CUMINCAD Water-based Robotic Fabrication: Large-Scale Additive Manufacturing of Functionally-Graded Hydrogel Composites via Multi-Chamber Extrusion, , 3D Printing and Additive Manufacturing, 1, pp. 1-11

30%; open Allouzi, R., Al-Azhari, W., & Allouzi, R. (2020) Find in CUMINCAD Conventional Construction and 3D Printing: A Comparison Study on Material Cost in Jordan , Journal of Engineering, 2020(Cc). https://doi.org/10.1155/2020/1424682

30%; open Amit D. Raval and C. G. Patel (2020) Find in CUMINCAD Development, Challenges and Future Outlook of 3D Concrete Printing Technology , International Journal on Emerging Technologies 11(2): 892-896

30%; open Ana Anton, Lex Reiter, Timothy Wangler, Valens Frangez, Robert J. Flatt, and Benjamin Dillenburger (2021) Find in CUMINCAD A 3D Concrete Printing Prefabrication Platform for Bespoke Columns , Automation in Construction 122 (Feb.): 103467. https://doi.org/10.1016/j. autcon.2020.103467

30%; open Antoine Le Duigou, David Correa, Masahito Ueda, Ryosuke Matsuzaki, Mickael Castro. (2020) Find in CUMINCAD A review of 3D and 4D printing of natural fibre biocomposites , Materials & Design 194: 108911

30%; open Bedarf, P., Dutto, A., Zanini, M. & Dillenburger, B. (2021) Find in CUMINCAD Foam 3D printing for construction: A review of applications, materials, and processes , Automation in Construction, 130, 103861. https://doi.org/10.1016/j.autcon.2021.103861Bedarf, P., Martinez Schulte, D., Senol, A., Jeoffroy, E., & Dillenburger, B. (2021). Robotic 3D Printing of Mineral Foam for a Lightweight Composite Facade Shading Panel. In 26th International Conference of the Association for Computer-Aided Architectural Design Research in Asia, CAADRIA 2020 (pp. 603–612). The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA)

30%; open Bedarf, P., Szabo, A., Zanini, M. & Dillenburger, B. (2021) Find in CUMINCAD Machine Sensing for Mineral Foam 3D Printing , International Conference on Intelligent Robots and Systems: Workshop Robotic Fabrication, IROS 2021. https://doi.org/10.3929/ethz-b-000506097BubbleDeck. (2021). The Original Voided Slab. Retrieved May 11 2021, from https://www.bubbledeck.comCobiax. (2021). Voided flat plate slab technologies available worldwide. Retrieved May 11 2021, from https://www.cobiax.com/intl/en/Compas. (2020). Retrieved May 11 2021, from https://compas.dev/index.htmlFernández-Jiménez, A., & Palomo, A. (2005). Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cement and Concrete Research, 35(10), 1984–1992. https://doi.org/10.1016/j.cemconres.2005.03.003Furet, B., Poullain, P., & Garnier, S. (2019). 3D printing for construction based on a complex wall of polymer-foam and concrete. Additive Manufacturing, 28, 58–64. https://doi.org/10.1016/j.addma.2019.04.002Georgopoulos, C., & Minson, A. (2014). Sustainable concrete solutions. Wiley-Blackwell.Halpern, A. B., Billington, D. P., & Adriaenssens, S. (2013). The Ribbed Floor Slab Systems of Pier Luigi Nervi. Proceedings of the International Association for Shell and Spatial Structures (IASS), 7. http://formfindinglab.princeton.edu/wp-content/uploads/2011/09/Nervi_ribbed_floors.pdfHansemann, G., Schmid, R., Holzinger, C., Tapley, J. P., Peters, S., Trummer, A., & Kupelwieser, H. (2021). Lightweight Reinforced Concrete Slab: 130 different 3D printed voids. CPT Worldwide - Construction Printing Technology, 2021(2), 68.Jipa, A., Calvo Barentin, C., Lydon, G., Rippmann, M., Chousou, G., Lomaglio, M., Schlüter, A., Block, P., & Dillenburger, B. (2019). 3D-Printed Formwork for Integrated Funicular Concrete Slabs. Proceedings of the IASS Annual Symposium 2019, 10. https://www.researchgate.net/publication/335175125_3D-Printed_Formwork_for_Integrated_Funicular_Concrete_SlabsJipa, A., & Dillenburger, B. (2021). 3D Printed Formwork for Concrete: State-of-the-Art, Opportunities, Challenges, and Applications. 3D Printing and Additive Manufacturing, 00, 24. https://doi.org/10.1089/3dp.2021.0024Keating, S. J., Leland, J. C., Cai, L., & Oxman, N. (2017). Toward site-specific and self-sufficient robotic fabrication on architectural scales. Science Robotics, 2(5), 1-15. https://doi.org/10.1126/scirobotics.aam8986Liew, A., López, D. L., Van Mele, T., & Block, P. (2017). Design, fabrication and testing of a prototype, thin-vaulted, unreinforced concrete floor. Engineering Structures, 137, 323–335. https://doi.org/10.1016/j.engstruct.2017.01.075Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29(8), 1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9UN Environment Programme. (2020). Global Status Report for Buildings and Construction. Retrieved May 11 2021, from https://globalabc.org/sites/default/files/inline-files/2020%20Buildings%20GSR_FULL%20REPORT.pdfXu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59(3), 247–266. https://doi.org/10.1016/S0301-7516(99)00074-5Zhao, H., Gu, F., Huang, Q.-X., Garcia, J., Chen, Y., Tu, C., Benes, B., Zhang, H., Cohen-Or, D., & Chen, B. (2016). Connected fermat spirals for layered fabrication. ACM Transactions on Graphics, 35(4), 1–10. https://doi.org/10.1145/2897824.2925958

30%; open Bhardwaj, A. et al. (2020) Find in CUMINCAD 3D printing of biomass-fungi composite material: A preliminary study , Manufacturing Letters, 24, pp. 96-99 https://doi.org/10.1016/j.mfglet.2020.04.005

30%; open Bhardwaj, A., Vasselli, J., Lucht, M., Pei, Z., Shaw, B., Grasley, Z., Wei, X., & Zou, N. (2020) Find in CUMINCAD 3D Printing of Biomass-fungi Composite Material: a Preliminary Study , Manufacturing Letters, 24, 96-99. Available at: https://doi.org/https://doi.org/1.116/j.mfglet.

30%; open Breseghello, L., Naboni, R. (2021b) Find in CUMINCAD Adaptive Toolpath: Enhanced Design and Process Control for Robotic 3DCP , Gerber, D., Pantazis, E., Bogosian, B., Nahmad, A., Miltiadis, C. (eds) Computer-Aided Architectural Design. Design Imperatives: The Future is Now. CAAD Futures 2021. CommunicationsComputer and Information Science, vol 1465. Springer, Singapore. https://doi.org/10.1007/978-981-19-1280-1_19Breseghello, L., & Naboni, R. (2022). Toolpath-based design for 3D concrete printing of carbon-efficient architectural structures. Additive Manufacturing, 56, 102872. https://doi.org/10.1016/j.addma.2022.10287Buswell, R., Kinnell, P., Xu, J., Hack, N., Kloft, H., Maboudi, M., Gerke, M., Massin, P., Grasser, G., Wolfs, R., & Bos, F. (2020). Inspection Methods for 3D Concrete Printing. RILEM Bookseries, 28, 790-803. https://doi.org/10.1007/978-3-030-49916-7_78Daniilidis, K. (1998) Hand-eye calibration using dual quaternions. International Journal of Robotics Research, 18:286-298

30%; open Burger, J, Lloret-Fritschi, E, Scotto, F, Demoulin, T, Gebhard, L, Mata-Falc\'on, J, Gramazio, F, Kohler, M and Flatt, RJ (2020) Find in CUMINCAD Eggshell: Ultra-Thin Three-Dimensional Printed Formwork for Concrete Structures , 3D Printing and Additive Manufacturing, 7(2), pp. 48-59

30%; open Burger, J, Lloret-Fritschi, E, Scotto, F, Demoulin, T, Gebhard, L, Mata-Falcón, J, Gramazio, F, Kohler, M and Flatt, RJ (2020) Find in CUMINCAD Eggshell: Ultra-Thin Three-Dimensional Printed Formwork for Concrete Structures , 3D Printing and Additive Manufacturing, 7(2), pp. 48-59

30%; open Burger, J. et al. (2020) Find in CUMINCAD Eggshell: Ultra-Thin Three-Dimensional Printed Formwork for Concrete Structures , 3D Printing and Additive Manufacturing 7(2): 48-59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 359HOMELOGIN (you are user _anon_699832 from group guest) CUMINCAD References Powered by SciX Open Publishing Services 1.002