CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 3 of 3

_id acadia20_426
id acadia20_426
authors Zohier, Islam; EL Antably, Ahmed; S. Madani, Ahmed
year 2020
title An AI Lens on Historic Cairo
doi https://doi.org/10.52842/conf.acadia.2020.1.426
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 426-434.
summary Reports show that numerous heritage sites are in danger due to conflicts and heritage mismanagement in many parts of the world. Experts have resorted to digital tools to attempt to conserve and preserve endangered and damaged sites. To that end, in this applied research, we aim to develop a deep learning framework applied to the decaying tangible heritage of Historic Cairo, known as “The City of a Thousand Minarets.” The proposed framework targets Cairo’s historic minaret styles as a test case study for the broader applications of deep learning in digital heritage. It comprises recognition and segmentation tasks, which use a deep learning semantic segmentation model trained on two data sets representing the two most dominant minaret styles in the city, Mamluk (1250–1517 CE) and Ottoman (1517–1952 CE). The proposed framework aims to classify these two types using images. It can help create a multidimensional model from just a photograph of a historic building, which can quickly catalog and document a historic building or element. The study also sheds light on the obstacles preventing the exploration and implementation of deep learning techniques in digital heritage. The research presented in this paper is a work-in-progress of a larger applied research concerned with implementing deep learning techniques in the digital heritage domain.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia08_340
id acadia08_340
authors Chalmers, Chris
year 2008
title Chemical Signaling as a Model for Digital Process in Architecture
doi https://doi.org/10.52842/conf.acadia.2008.340
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 340-345
summary The role of the architect is quite literally one of assembly: synthesizing the various parts of a project into a cohesive whole. It is a difficult job, often requiring the architect to weave many seemingly contradictory concerns into a solution that benefits them all. It is not surprising then, that the many elegant and effective systems found in nature should be inspiring to the architect. Emerging fields like biomimicry and systems dynamics model the patterns of interaction between organisms and their environments in terms of dynamic part to part and part to whole relationships. ¶ Observations of real relationships between organisms and their environments, as they exist in nature, reveal complex feedback loops working across multiple scales. These feedback loops operate by the simultaneous action of two observed phenomena. The first is the classic phenotypic relationship seen when organisms of the same genetic makeup instantiate differently based upon differences in their environment. This is the relationship that was originally proposed by Charles Darwin in his theory of natural selection of 1859. Darwin’s model is unidirectional: the organism adapts to its environment, but not the other way around. It operates at the local scale as individual parts react to the conditions of the whole. (Canguilhem, 1952). ¶ The second phenomenon, which sees its effect at the global scale, is the individual’s role as consumer and producer in the flows of energy and material that surround it. It is the subtle and incremental influence of the organism upon its environment, the results of which are often invisible until they reach a catastrophic threshold, at which point all organisms in the system feel global changes. ; The research presented in this paper addresses the dialectic between organism and environment as each responds reciprocally to the others’ changing state. Such feedback loops act in a non-linear fashion, across nested scales in biological systems. They can be modeled to act that way in a digital design process as well. This research is an exploration into one such model and its application to architecture: the simple communication between organisms as they affect and are affected by their environments through the use of signal chemicals.
keywords Biology; Cellular Automata; Feedback; Material; Scripting
series ACADIA
last changed 2022/06/07 07:55

_id cf2017_682
id cf2017_682
authors Rocha, Joao
year 2017
title Design and Architecture for the Dawn of the Personal Computer: The Pioneer Vision of Adriano Olivetti
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 682-701.
summary In 1952 the Italian Olivetti Company opened a study laboratory on electronic calculators in New Canaan, USA; in 1955 it created an electronic research laboratory in Pisa and two years later, co-founded a company to produce electronic conductors. In 1959 it presented ELEA 9003 and in 1965 the P101, respectively the first full transistorized computer and the first desktop computer. This paper aims to investigate how the Olivetti Company accomplished in such a brief period of time a pioneer vision in the field of computing. By one hand it seeks to highlight the forerunner idea of Adriano Olivetti (1901-1960) for an integrated awareness of what computing could become and on the other hand, how that wakefulness fostered an innovative agenda among architects, designers, filmmakers and scientists for the invention of the computer as an artifact expression of an epoch. This successful endeavor anticipated what would become the concept of personal computing. Moreover the paper underlines how the early commercial development of Olivetti and IBM computing flourished in the context of the Universal Exhibitions of Brussels and New York.
keywords Olivetti, Computing, Architecture, Mario Tchou, Ettore Sottsass, IBM
series CAAD Futures
email
last changed 2017/12/01 14:38

No more hits.

HOMELOGIN (you are user _anon_133619 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002