CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 5 of 5

_id ddssar0206
id ddssar0206
authors Bax, M.F.Th. and Trum, H.M.G.J.
year 2002
title Faculties of Architecture
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary In order to be inscribed in the European Architect’s register the study program leading to the diploma ‘Architect’ has to meet the criteria of the EC Architect’s Directive (1985). The criteria are enumerated in 11 principles of Article 3 of the Directive. The Advisory Committee, established by the European Council got the task to examine such diplomas in the case some doubts are raised by other Member States. To carry out this task a matrix was designed, as an independent interpreting framework that mediates between the principles of Article 3 and the actual study program of a faculty. Such a tool was needed because of inconsistencies in the list of principles, differences between linguistic versions ofthe Directive, and quantification problems with time, devoted to the principles in the study programs. The core of the matrix, its headings, is a categorisation of the principles on a higher level of abstractionin the form of a taxonomy of domains and corresponding concepts. Filling in the matrix means that each study element of the study programs is analysed according to their content in terms of domains; thesummation of study time devoted to the various domains results in a so-called ‘profile of a faculty’. Judgement of that profile takes place by committee of peers. The domains of the taxonomy are intrinsically the same as the concepts and categories, needed for the description of an architectural design object: the faculties of architecture. This correspondence relates the taxonomy to the field of design theory and philosophy. The taxonomy is an application of Domain theory. This theory,developed by the authors since 1977, takes as a view that the architectural object only can be described fully as an integration of all types of domains. The theory supports the idea of a participatory andinterdisciplinary approach to design, which proved to be awarding both from a scientific and a social point of view. All types of domains have in common that they are measured in three dimensions: form, function and process, connecting the material aspects of the object with its social and proceduralaspects. In the taxonomy the function dimension is emphasised. It will be argued in the paper that the taxonomy is a categorisation following the pragmatistic philosophy of Charles Sanders Peirce. It will bedemonstrated as well that the taxonomy is easy to handle by giving examples of its application in various countries in the last 5 years. The taxonomy proved to be an adequate tool for judgement ofstudy programs and their subsequent improvement, as constituted by the faculties of a Faculty of Architecture. The matrix is described as the result of theoretical reflection and practical application of a matrix, already in use since 1995. The major improvement of the matrix is its direct connection with Peirce’s universal categories and the self-explanatory character of its structure. The connection with Peirce’s categories gave the matrix a more universal character, which enables application in other fieldswhere the term ‘architecture’ is used as a metaphor for artefacts.
series DDSS
last changed 2003/11/21 15:16

_id aef9
id aef9
authors Brown, A., Knight, M. and Berridge, P. (Eds.)
year 1999
title Architectural Computing from Turing to 2000 [Conference Proceedings]
doi https://doi.org/10.52842/conf.ecaade.1999
source eCAADe Conference Proceedings / ISBN 0-9523687-5-7 / Liverpool (UK) 15-17 September 1999, 773 p.
summary The core theme of this book is the idea of looking forward to where research and development in Computer Aided Architectural Design might be heading. The contention is that we can do so most effectively by using the developments that have taken place over the past three or four decades in Computing and Architectural Computing as our reference point; the past informing the future. The genesis of this theme is the fact that a new millennium is about to arrive. If we are ruthlessly objective the year 2000 holds no more significance than any other year; perhaps we should, instead, be preparing for the year 2048 (2k). In fact, whatever the justification, it is now timely to review where we stand in terms of the development of Architectural Computing. This book aims to do that. It is salutary to look back at what writers and researchers have said in the past about where they thought that the developments in computing were taking us. One of the common themes picked up in the sections of this book is the developments that have been spawned by the global linkup that the worldwide web offers us. In the past decade the scale and application of this new medium of communication has grown at a remarkable rate. There are few technological developments that have become so ubiquitous, so quickly. As a consequence there are particular sections in this book on Communication and the Virtual Design Studio which reflect the prominence of this new area, but examples of its application are scattered throughout the book. In 'Computer-Aided Architectural Design' (1977), Bill Mitchell did suggest that computer network accessibility from expensive centralised locations to affordable common, decentralised computing facilities would become more commonplace. But most pundits have been taken by surprise by just how powerful the explosive cocktail of networks, email and hypertext has proven to be. Each of the ingredients is interesting in its own right but together they have presented us with genuinely new ways of working. Perhaps, with foresight we can see what the next new explosive cocktail might be.
series eCAADe
email
more http://www.ecaade.org
last changed 2022/06/07 07:49

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2020_128
id sigradi2020_128
authors Sousa, Megg; Mônaco, Denise; Martínez, Andressa; Souza, Douglas
year 2020
title The operationalization of "A Pattern Language" by using network analysis tools
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 128-136
summary One of the most significant public space studies, "A Pattern Language", published in 1977, is until today's background for some contemporary investigations. The aim of this paper is to propose an operationalization of the patterns' network of the book into a network analysis tool. The methodology is based on a new classification of patterns, in addition to what is initially presented in the book: "context patterns" (evidencing pre-existing conditions and potentialities) and "design patterns" (considering possibilities limited by the stakeholder at that location). The digital operationalization can enhance the analytical and predictive character of the work.
keywords Pattern language, Network analysis tool, Christopher Alexander, Public spaces
series SIGraDi
email
last changed 2021/07/16 11:48

_id ecaade2007_143
id ecaade2007_143
authors Ulmer, Andreas; Halatsch, Jan; Kunze, Antje; Müller, Pascal; Gool, Luc Van
year 2007
title Procedural Design of Urban Open Spaces
doi https://doi.org/10.52842/conf.ecaade.2007.351
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 351-358
summary This paper presents a novel approach for the automatic creation of vegetation scenarios in real or virtual 3D cities in order to simplify the complex design process and time consuming modeling tasks in urban landscape planning. We introduce shape grammars as a practical tool for the rule-based generation of urban open spaces. The automatically generated designs can be used for pre-visualization, master planning, guided design variation and digital content creation in general (e.g. for the entertainment industry). In a first step, we extend the CGA shape grammar by Müller et al. (2006) with urban planning operations. In a second step, we employ the possibilities of shape grammars to encode design patterns (Alexander et al., 1977). Therefore, we propose several examples of design patterns allowing for an intuitive high-level placement of objects common in urban open spaces (e.g. plants). Furthermore, arbitrary interactions between distinct instances of the vegetation and the urban environment can be encoded. With the resulting system, the designer can efficiently vegetate landscape and city parks, alleys, gardens, patios and even single buildings by applying the corresponding shape grammar rules. Our results demonstrate the procedural design process on two practical example scenarios, each one covering a different scale and different contexts of planning. The first example illustrates a derivation of the Garden of Versailles and the second example describes the usage of high-level rule sets to generate a suburbia model.
keywords City modeling, design methodology, generative design, simulation, virtual environments
series eCAADe
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_71036 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002