CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 15 of 15

_id a7b0
authors Gips, J.
year 1979
title Artificial Intelligence
source Environment and Planning B. 1979. vol. 6: pp. 353-364 : ill. includes bibliography
summary The field of artificial intelligence and its subfields of computer vision, games, natural language understanding, speech understanding, mathematics, medicine and robotics is reviewed. The work of George Stiny and the author on design and criticism is discussed briefly in terms of a paradigm of artificial intelligence research
keywords AI
series CADline
last changed 2003/06/02 10:24

_id 8023
authors Lang, M.S., Cohen, R.L. and Eschenberg, K.E. (et al)
year 1979
title Implementation of An Interactive Computer Graphics Environment at NASA/JSC
source SIGGRAPH '79 Conference Proceedings. August, 1979. vol. 13 ; no. 2: pp. 246-252 : ill. includes bibliography
summary The implementation of visually-oriented software for graphics support on the high-performance computer graphics hardware at NASA's Johnson Space Center is the latest step in the evolution of an interactive computer applications technology being developed by the Computer Graphics Group at The Applied Research Laboratory of Penn State University. This technology is designed to aid the typical scientist or engineer in learning and using computer graphics productively, including writing his own programs and interfacing to software specialists who will write and maintain his programs. Key aspects of the current development include the creation and incorporation of a visually-oriented learning package for graphics geometric perception and graphics programming, as well as a sophisticated control environment which aides the user in obtaining a quick understanding of and access to the system. Preliminary results indicate that this software support can substantially reduce the start-up time for a novice graphics user with some background in Fortran
keywords computer graphics, user interface, software, learning, programming, control, education
series CADline
last changed 2003/06/02 13:58

_id 98bd
authors Pea, R.
year 1993
title Practices of Distributed Intelligence and Designs for Education
source Distributed Cognitions, edited by G. Salomon. New York, NY: CambridgeUniversity Press
summary v Knowledge is commonly socially constructed, through collaborative efforts... v Intelligence may also be distributed for use in designed artifacts as diverse as physical tools, representations such as diagrams, and computer-user interfaces to complex tasks. v Leont'ev 1978 for activity theory that argues forcibly for the centrality of people-in-action, activity systems, as units of analysis for deepening our understanding of thinking. v Intelligence is distributed: the resources that shape and enable activity are distributed across people, environments, and situations. v Intelligence is accomplished rather than possessed. v Affordance refers to the perceived and actual properties of a thing, primarily those functional properties that determine how the thing could possibly be used. v Norman 1988 on design and psychology - the psychology of everyday things" v We deploy effort-saving strategies in recognition of their cognitive economy and diminished opportunity for error. v The affordances of artifacts may be more or less difficult to convey to novice users of these artifacts in the activities to which they contribute distributed intelligence. v Starts with Norman's seven stages of action Ø Forming a goal; an intention § Task desire - clear goal and intention - an action and a means § Mapping desire - unable to map goal back to action § Circumstantial desire - no specific goal or intention - opportunistic approach to potential new goal § Habitual desire - familiar course of action - rapidly cycle all seven stages of action v Differentiates inscriptional systems from representational or symbol systems because inscriptional systems are completely external, while representational or symbol systems have been used in cognitive science as mental constructs. v The situated properties of everyday cognition are highly inventive in exploiting features of the physical and social situation as resources for performing a task, thereby avoiding the need for mental symbol manipulations unless they are required by that task. v Explicit recognition of the intelligence represented and representable in design, specifically in designed artifacts that play important roles in human activities. v Once intelligence is designed into the affordances properties of artifacts, it both guides and constrains the likely contributions of that artifact to distributed intelligence in activity. v Culturally valued designs for distributed intelligence will change over time, especially as new technology becomes associated with a task domain. v If we treat distributed intelligence in action as the scientific unit of analysis for research and theory on learning and reasoning... Ø What is distributed? Ø What constraints govern the dynamics of such distributions in different time scales? Ø Through what reconfigurations of distributed intelligence might the performance of an activity system improve over time? v Intelligence is manifest in activity and distributed in nature. v Intelligent activities ...in the real world... are often collaborative, depend on resources beyond an individual's long-term memory, and require the use of information-handling tools... v Wartofsky 1979 - the artifact is to cultural evolution what the gene is to biological evolution - the vehicle of information across generations. v Systems of activity - involving persons, environment, tools - become the locus of developmental investigation. v Disagrees with Salomon et al.'s entity-oriented approach - a language of containers holding things. v Human cognition aspires to efficiency in distributing intelligence - across individuals, environment, external symbolic representations, tools, and artifacts - as a means of coping with the complexity of activities we often cal "mental." "
series other
last changed 2003/04/23 15:14

_id 2ccd
authors Kalisperis, Loukas N.
year 1994
title 3D Visualization in Design Education
doi https://doi.org/10.52842/conf.acadia.1994.177
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 177-184
summary It has been said that "The beginning of architecture is empty space." (Mitchell 1990) This statement typifies a design education philosophy in which the concepts of space and form are separated and defined respectively as the negative and positive of the physical world, a world where solid objects exist and void-the mere absence of substance-is a surrounding atmospheric emptiness. Since the beginning of the nineteenth century, however, there has been an alternative concept of space as a continuum: that there is a continuously modified surface between the pressures of form and space in which the shape of the space in our lungs is directly connected to the shape of the space within which we exist. (Porter 1979). The nature of the task of representing architecture alters to reflect the state of architectural understanding at each period of time. The construction of architectural space and form represents a fundamental achievement of humans in their environment and has always involved effort and materials requiring careful planning, preparation, and forethought. In architecture there is a necessary conversion to that which is habitable, experiential, and functional from an abstraction in an entirely different medium. It is often an imperfect procedure that centers on the translation rather than the actual design. Design of the built environment is an art of distinctions within the continuum of space, for example: between solid and void, interior and exterior, light and dark, or warm and cold. It is concerned with the physical organization and articulation of space. The amount and shape of the void contained and generated by the building create the fabric and substance of the built environment. Architecture as a design discipline, therefore, can be considered as a creative expression of the coexistence of form and space on a human scale. As Frank Ching writes in Architecture: Form, Space, and Order, "These elements of form and space are the critical means of architecture. While the utilitarian concerns of function and use can be relatively short lived, and symbolic interpretations can vary from age to age, these primary elements of form and space comprise timeless and fundamental vocabulary of the architectural designer." (1979)

series ACADIA
email
last changed 2022/06/07 07:52

_id 7e54
authors Ömer, Akin
year 1979
title Models of Architectural Knowledge - An Information Processing Model of Design
source Carnegie Mellon University, College of Fine Arts, Pittsburgh
summary Throughout the history of art the position of the artist towards his goals and his product has been constantly redefined. The two opposing views in the above quotation, those of . German Romanticism and Classicism, are typical of the temperamental nature of the state of the art. Today's artist uses intuition as well as reason in his creative work. Similarly, whether we consider the architect an artist or a scientist, he is constantly required to use his intellectal as well as emotional resources while designing. I do not intend to endorse an attitude for the architect which condones only one of those sources at the expense of the other. Today there i s a real opportunity for understanding the reasoning used in problem-solving and applying these to the area of architectural design, the opportunity arises due to a large amount of knowledge accumulated in the area of ' human problem-solving, methods of anlayzing and developing models for human problem solving behavior. The most frequently refered points of departure in this area are Simon's pioneering work in the area of decision-making (1944) and Newell, Shaw and Simon's work on "heuristics" (1957).
series thesis:PhD
email
last changed 2003/02/12 22:39

_id af53
authors Boyer, E. and Mitgang, L.
year 1996
title Building community: a new future for architecture education and practice
source Carnegie Foundation for the Advancement of Teaching
summary Internships, before and after graduation, are the most essential link connecting students to the world of practice. Yet, by all accounts, internship is perhaps the most troubled phase of the continuing education of architects. During this century, as architectural knowledge grew more complex, the apprenticeship system withered away and schools assumed much of the responsibility for preparing architects for practice. However, schools cannot do the whole job. It is widely acknowledged that certain kinds of technical and practical knowledge are best learned in the workplace itself, under the guidance of experienced professionals. All state accrediting boards require a minimum period of internship-usually about three years-before a person is eligible to take the licensing exam. The National Council of Architectural Registration Boards (NCARB) allows students to earn up to two years of work credit prior to acquisition of an accredited degree. The Intern Development Program (IDP), launched by NCARB and the American Institute of Architects in 1979, provides the framework for internship in some forty states. The program was designed to assure that interns receive adequate mentoring, that experiences are well-documented, and that employers and interns allocate enough time to a range of educational and vocational experiences to prepare students for eventual licensure. As the IDP Guidelines state, "The shift from school to office is not a transition from theory to pragmatism. It is a period when theory merges with pragmatism.... It's a time when you: apply your formal education to the daily realities of architectural practice; acquire comprehensive experience in basic practice areas; explore specialized areas of practice; develop professional judgment; continue your formal education in architecture; and refine your career goals." Whatever its accomplishments, however, we found broad consensus that the Intern Development Program has not, by itself, solved the problems of internship. Though we found mutually satisfying internship programs at several of the firms we visited or heard about around the country, at many others interns told us they were not receiving the continuing education and experience they needed. The truth is that architecture has serious, unsolved problems compared with other fields when it comes to supplying on-the-job learning experiences to induct students into the profession on a massive scale. Medicine has teaching hospitals. Beginning teachers work in actual classrooms, supported by school taxes. Law offices are, for the most part, in a better financial position to support young lawyers and pay them living wages. The architecture profession, by contrast, must support a required system of internship prior to licensure in an industry that has neither the financial resources of law or medicine, the stability and public support of teaching, nor a network of locations like hospitals or schools where education and practice can be seamlessly connected. And many employers acknowledged those problems. "The profession has all but undermined the traditional relationship between the profession and the academy," said Neil Frankel, FAIA, executive vice president of Perkins & Will, a multinational firm with offices in New York, Chicago, Washington, and London. "Historically, until the advent of the computer, the profession said, 'Okay, go to school, then we in the profession will teach you what the real world is like.' With the coming of the computer, the profession needed a skill that students had, and has left behind the other responsibilities." One intern told us she had been stuck for months doing relatively menial tasks such as toilet elevations. Another intern at a medium-sized firm told us he had been working sixty to seventy hours per week for a year and a half. "Then my wife had a baby and I 'slacked off' to fifty hours. The partner called me in and I got called on the carpet for not working hard enough." "The whole process of internship is being outmoded by economics," one frustrated intern told us. "There's not the time or the money. There's no conception of people being groomed for careers. The younger staff are chosen for their value as productive workers." "We just don't have the best structure here to use an intern's abilities to their best," said a Mississippi architect. "The people who come out of school are really problems. I lost patience with one intern who was demanding that I switch him to another section so that he could learn what he needed for his IDP. I told him, 'It's not my job to teach you. You are here to produce.'" What steps might help students gain more satisfying work opportunities, both during and after graduation?
series other
last changed 2003/04/23 15:14

_id 00f3
authors Baybars, Ilker and Eastman, Charles M.
year 1979
title Generating the Underlying Graphs for Architectural Arrangements
source 10 p. : ill. Pittsburgh: School of Urban and Public Affairs, Carnegie Mellon University, April, 1979. Research report No.79. Includes bibliography
summary The mathematical correspondence to a floorplan is a Metric Planar Graph. Several methods for systematic direct generation of metric planar graphs have been developed including polyominoes, March and Matela and shape grammars. Another approach has been to develop a spatial composition in two separate steps. The first step involves discrete variables, and consists of enumerating a defined set of non-metric planar graphs. The second step involves spatial dimensions, e.g. continuous variables, and maps the graphs onto the Euclidean plane, from which a satisfactory or optimal one is selected. This paper focusses on the latter 2-step process. It presents a general method of solving the first step, that is the exhaustive enumeration of a set of planar graphs. The paper consists of three sections: The first section is an introduction to graph theory. The second section presents the generation of maximal planar graphs. The last section summarizes the presentation and comments on the appropriateness of the method
keywords graphs, floor plans, architecture, design, automation, space allocation
series CADline
email
last changed 2003/05/17 10:15

_id fcd6
authors Berger, S.R.
year 1979
title Artificial Intelligence and its impact on Coimputer-Aided Design
source Design Studies, vol 1, no. 3
summary This paper provides, for readers unfamiliar with the field, an introductory account of research which has been carried out in artificial intelligence. It attempts to distingussh between an artificial intelligence and a conventional computing approach and to assess the future influence of the former on computer-aided design.
series journal paper
last changed 2003/04/23 15:14

_id 69b3
authors Markelin, Antero
year 1993
title Efficiency of Model Endoscopic Simulation - An Experimental Research at the University of Stuttgart
source Endoscopy as a Tool in Architecture [Proceedings of the 1st European Architectural Endoscopy Association Conference / ISBN 951-722-069-3] Tampere (Finland), 25-28 August 1993, pp. 31-34
summary At the Institute of Urban Planning at the University of Stuttgart early experiments were made with the help of endoscopes in the late 1970’s. The intention was to find new instruments to visualize urban design projects. The first experiment included the use of a 16 mm film of a 1:170 scale model of the market place at Karlsruhe, including design alternatives (with trees, without trees etc). The film was shown to the Karlsruhe authorities, who had to make the decision about the alternatives. It was said, that the film gave a great help for the decision-making and a design proposition had never before been presented in such understandable way. In 1975-77, with the support of the Deutsche Forschungsgemeinschaft (German Research Foundation) an investigation was carried out into existing endoscopic simulation facilities, such as those in Wageningen, Lund and Berkeley. The resulting publication was mainly concerned with technical installations and their applications. However a key question remained: ”Can reality be simulated with endoscopy?” In 1979-82, in order to answer that question, at the Institute was carried out the most extensive research of the time, into the validity of endoscopic simulation. Of special importance was the inclusion of social scientists and psychologists from the University of Heidelberg and Mannheim. A report was produced in 1983. The research was concerned with the theory of model simulation, its ways of use and its users, and then the establishment of requirements for effective model simulation. For the main research work with models or simulation films, psychological tests were developed which enabled a tested person to give accurate responses or evidence without getting involved in alien technical terminology. It was also thought that the use of semantic differentials would make the work imprecise or arbitrary.

keywords Architectural Endoscopy
series EAEA
more http://info.tuwien.ac.at/eaea/
last changed 2005/09/09 10:43

_id 8911
authors Maver, T.W.
year 1979
title Design, Research and Society
source Praksedogia - Proceedings of Polish Cybernetic Society, NR2(70), ROK, 41-61
series other
email
last changed 2003/06/02 15:00

_id ecaade2016_113
id ecaade2016_113
authors Poinet, Paul, Baharlou, Ehsan, Schwinn, Tobias and Menges, Achim
year 2016
title Adaptive Pneumatic Shell Structures - Feedback-driven robotic stiffening of inflated extensible membranes and further rigidification for architectural applications
doi https://doi.org/10.52842/conf.ecaade.2016.1.549
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 549-558
summary The paper presents the development of a design framework that aims to reduce the complexity of designing and fabricating free-form inflatables structures, which often results in the generation of very complex geometries. In previous research the form-finding potential of actuated and constrained inflatable membranes has already been investigated however without a focus on fabrication (Otto 1979). Consequently, in established design-to-fabrication approaches, complex geometry is typically post-rationalized into smaller parts and are finally fabricated through methods, which need to take into account cutting pattern strategies and material constraints. The design framework developed and presented in this paper aims to transform a complex design process (that always requires further post-rationalization) into a more integrated one that simultaneously unfolds in a physical and digital environment - hence the term cyber-physical (Menges 2015). At a full scale, a flexible material (extensible membrane, e.g. latex) is actuated through inflation and modulated through additive stiffening processes, before being completely rigidified with glass fibers and working as a thin-shell under compression.
wos WOS:000402063700060
keywords pneumatic systems; robotic fabrication; feedback strategy; cyber-physical; scanning processes
series eCAADe
email
last changed 2022/06/07 08:00

_id 2c14
authors Sharji, E.A., Hussain, H. and Ahmad, R.E.
year 2002
title Electronic Gallery : Case Study of A New Design Approach in Malaysia
doi https://doi.org/10.52842/conf.ecaade.2002.370
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 370-373
summary A building comprises of more than the skin and the structural works. It is the soul that comes in the form of SPACE that is intriguing and provokes the mind. To be able to experience a building relies heavily on the spatial concept and internal lay out. How one is captured right from entering the entrance and through the layering of space, of horizontal and vertical planes and finally the euphoria, or depressed feeling that concludes the tour depending on the feeling intended (Miller, 1995). The common norm at present celebrates the outer skin and grandeur of facades. Not many include the hidden grids and fragmentation that can lead to a surprisingly good form AND space. Thus a number of them fail, in the sense of a sensuous building. ‘The circulation path can be conceived as the perceptual thread that links the spaces of a building or any series of interior or exterior spaces, together. Since we move in TIME, through SEQUENCE of SPACES, we experience a space in relation to where we’ve been, and where we anticipate going’ (Ching, 1979). This research intends to study and analyze the unconventional electronic gallery or ‘e-gallery’ as a versatile hybrid container. The focus of the research will be on documenting spaces in the e-gallery, bringing to light the unlimited possibilities that can take place in such a space.
series eCAADe
email
last changed 2022/06/07 07:59

_id 452c
authors Vanier, D. J. and Worling, Jamie
year 1986
title Three-dimensional Visualization: A Case Study
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 92-102
summary Three-dimensional computer visualization has intrigued both building designers and computer scientists for decades. Research and conference papers present an extensive list of existing and potential uses for threedimensional geometric data for the building industry (Baer et al., 1979). Early studies on visualization include urban planning (Rogers, 1980), treeshading simulation (Schiler and Greenberg, 1980), sun studies (Anon, 1984), finite element analysis (Proulx, 1983), and facade texture rendering (Nizzolese, 1980). With the advent of better interfaces, faster computer processing speeds and better application packages, there had been interest on the part of both researchers and practitioners in three-dimensional -models for energy analysis (Pittman and Greenberg, 1980), modelling with transparencies (Hebert, 1982), super-realistic rendering (Greenberg, 1984), visual impact (Bridges, 1983), interference clash checking (Trickett, 1980), and complex object visualization (Haward, 1984). The Division of Building Research is currently investigating the application of geometric modelling in the building delivery process using sophisticated software (Evans, 1985). The first stage of the project (Vanier, 1985), a feasibility study, deals with the aesthetics of the mode. It identifies two significant requirements for geometric modelling systems: the need for a comprehensive data structure and the requirement for realistic accuracies and tolerances. This chapter presents the results of the second phase of this geometric modelling project, which is the construction of 'working' and 'presentation' models for a building.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id ddss9503
id ddss9503
authors Wineman, Jean and Serrato, Margaret
year 1994
title Visual and Spatial Analysis in Office Design
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary The demands for rapid response to complex problems, flexibility, and other characteristics of today's workplace, such as a highly trained work force, have led many organizations to move from strict hierarchical structures to a more flexible project team organization. The organizational structure is broader and flatter, with greater independence given to organizational units, in this case the project teams. To understand the relationship between project team communication patterns and the design and layout of team space, a study was conducted of an architectural office before and after a move to new space. The study involved three project teams. Information was collected on individual communication patterns; perceptions of the ease of communication; and the effectiveness of the design and layout of physical space to support these communications. In order to provide guidance for critical decision-making in design, these communication data were correlated with a series of measures for the specification of team space enclosure and layout. These group/team space measures were adaptations of existing measures of individual work space, and included an enclosure measure, based on an enclosure measure developed by Stokols (1990); a measure of visual field, based on the "isovist" fields of Benedikt (1979); and an "integration" measure, based on the work of Hillier and Hanson (1984). Results indicate both linear and non-linear relationships between interaction patterns and physical space measures. This work is the initial stage of a research program to define a set of specific physical measures to guide the design of supportive work space for project teams and work groups within various types of organizations.
series DDSS
email
last changed 2003/08/07 16:36

_id 4240
authors Winograd, Terry
year 1979
title Beyond Programming Languages
source Communications of the ACM. July 1979. Vol. 22: pp. 391-401. includes bibliography
summary As computer technology matures, our growing ability to create large systems is leading to basic changes in the nature of programming. Current programming language concepts will not be adequate for building and maintaining systems of the complexity called for by the tasks we attempt. Just as high level languages enabled the programmer to escape from the intricacies of a machine's order code, higher level programming systems can provide the means to understand and manipulate complex systems and components. In order to develop such systems, attention needs to be shifted away from the detailed specification of algorithms, towards the description of the properties of the package and objects with which we build. This paper analyzes some of the shortcomings of programming languages as they now exist, and lays out some possible directions for future research
keywords programming, languages, systems,
series CADline
last changed 1999/02/12 15:10

No more hits.

HOMELOGIN (you are user _anon_678394 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002