CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 78

_id cf2011_p170
id cf2011_p170
authors Barros, Mário; Duarte José, Chaparro Bruno
year 2011
title Thonet Chairs Design Grammar: a Step Towards the Mass Customization of Furniture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 181-200.
summary The paper presents the first phase of research currently under development that is focused on encoding Thonet design style into a generative design system using a shape grammar. The ultimate goal of the work is the design and production of customizable chairs using computer assisted tools, establishing a feasible practical model of the paradigm of mass customization (Davis, 1987). The current research step encompasses the following three steps: (1) codification of the rules describing Thonet design style into a shape grammar; (2) implementing the grammar into a computer tool as parametric design; and (3) rapid prototyping of customized chair designs within the style. Future phases will address the transformation of the Thonet’s grammar to create a new style and the production of real chair designs in this style using computer aided manufacturing. Beginning in the 1830’s, Austrian furniture designer Michael Thonet began experimenting with forming steam beech, in order to produce lighter furniture using fewer components, when compared with the standards of the time. Using the same construction principles and standardized elements, Thonet produced different chairs designs with a strong formal resemblance, creating his own design language. The kit assembly principle, the reduced number of elements, industrial efficiency, and the modular approach to furniture design as a system of interchangeable elements that may be used to assemble different objects enable him to become a pioneer of mass production (Noblet, 1993). The most paradigmatic example of the described vision of furniture design is the chair No. 14 produced in 1858, composed of six structural elements. Due to its simplicity, lightness, ability to be stored in flat and cubic packaging for individual of collective transportation, respectively, No. 14 became one of the most sold chairs worldwide, and it is still in production nowadays. Iconic examples of mass production are formally studied to provide insights to mass customization studies. The study of the shape grammar for the generation of Thonet chairs aimed to ensure rules that would make possible the reproduction of the selected corpus, as well as allow for the generation of new chairs within the developed grammar. Due to the wide variety of Thonet chairs, six chairs were randomly chosen to infer the grammar and then this was fine tuned by checking whether it could account for the generation of other designs not in the original corpus. Shape grammars (Stiny and Gips, 1972) have been used with sucesss both in the analysis as in the synthesis of designs at different scales, from product design to building and urban design. In particular, the use of shape grammars has been efficient in the characterization of objects’ styles and in the generation of new designs within the analyzed style, and it makes design rules amenable to computers implementation (Duarte, 2005). The literature includes one other example of a grammar for chair design by Knight (1980). In the second step of the current research phase, the outlined shape grammar was implemented into a computer program, to assist the designer in conceiving and producing customized chairs using a digital design process. This implementation was developed in Catia by converting the grammar into an equivalent parametric design model. In the third phase, physical models of existing and new chair designs were produced using rapid prototyping. The paper describes the grammar, its computer implementation as a parametric model, and the rapid prototyping of physical models. The generative potential of the proposed digital process is discussed in the context of enabling the mass customization of furniture. The role of the furniture designer in the new paradigm and ideas for further work also are discussed.
keywords Thonet; furniture design; chair; digital design process; parametric design; shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ga9809
id ga9809
authors Kälviäinen, Mirja
year 1998
title The ideological basis of generative expression in design
source International Conference on Generative Art
summary This paper will discuss issues concerning the design ideology supporting the use and development of generative design. This design ideology is based on the unique qualities of craft production and on the forms or ideas from nature or the natural characteristics of materials. The main ideology presented here is the ideology of the 1980´s art craft production in Finland. It is connected with the general Finnish design ideology and with the design ideology of other western countries. The ideology for these professions is based on the common background of design principles stated in 19th century England. The early principles developed through the Arts and Crafts tradition which had a great impact on design thinking in Europe and in the United States. The strong continuity of this design ideology from 19th century England to the present computerized age can be detected. The application of these design principles through different eras shows the difference in the interpretations and in the permission of natural decorative forms. The ideology of the 1980ïs art craft in Finland supports the ideas and fulfilment of generative design in many ways. The reasons often given as the basis for making generative design with computers are in very many respects the same as the ideology for art craft. In Finland there is a strong connection between art craft and design ideology. The characteristics of craft have often been seen as the basis for industrial design skills. The main themes in the ideology of the 1980´s art craft in Finland can be compared to the ideas of generative design. The main issues in which the generative approach reflects a distinctive ideological thinking are: Way of Life: The work is the communication of the maker´s inner ideas. The concrete relationship with the environment, personality, uniqueness, communication, visionary qualities, development and growth of the maker are important. The experiments serve as a media for learning. Taste and Aesthetic Education: The real love affair is created by the non living object with the help of memories and thought. At their best objects create the basis in their stability and communication for durable human relationships. People have warm relationships especially with handmade products in which they can detect unique qualities and the feeling that the product has been made solely for them. Counter-culture: The aim of the work is to produce alternatives for technoburocracy and mechanical production and to bring subjective and unique experiences into the customerïs monotonious life. This ideology rejects the usual standardized mass production of our times. Mythical character: There is a metamorphosis in the birth of the product. In many ways the design process is about birth and growth. The creative process is a development story of the maker. The complexity of communication is the expression of the moments that have been lived. If you can sense the process of making in the product it makes it more real and nearer to life. Each piece of wood has its own beauty. Before you can work with it you must find the deep soul of its quality. The distinctive traits of the material, technique and the object are an essential part of the metamorphosis which brings the product into life. The form is not only for formïs sake but for other purposes, too. You cannot find loose forms in nature. Products have their beginnings in the material and are a part of the nature. This art craft ideology that supports the ideas of generative design can be applied either to the hand made crafts production or to the production exploiting new technology. The unique characteristics of craft and the expression of the material based development are a way to broaden the expression and forms of industrial products. However, for a crafts person it is not meaningful to fill the world with objects. In generative, computer based production this is possible. But maybe the production of unique pieces is still slower and makes the industrial production in that sense more ecological. People will be more attached to personal and unique objects, and thus the life cycle of the objects produced will be longer.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id b190
authors Goldberg, Adele and Robson, David
year 1983
title Smalltalk-80: The language and its implementation
source New York, NY: Addison Wesley Co
summary Smalltalk-80 is the classic standard Smalltalk language as described in Smalltalk-80: The Language and Its Implementation by Goldberg and Robson. This book is commonly called "the Blue Book". Squeak implements the dialect of Smalltalk described in this book, but has a different implementation. Overview of the Smalltalk Language Smalltalk is a general purpose, high level programming language. It was the first original "pure" object oriented language, but not the first to use the object oriented concept, which is credited to Simula 67. The explosive growth of Object Oriented Programming (OOP) technologies began in the early 1980's, with Smalltalk's introduction. Behind it was the idea that the individual human user should be the most important component of any computing system, and that programming should be a natural extension of thinking, and also a dynamic and evolutionary process consistent with the model of human learning activity. In Smalltalk, these ideas are embodied in a framework for human-computer communication. In a sense, Smalltalk is yet another language like C and Pascal, and programs can be written in Smalltalk that have the look and feel of such conventional languages. The difference lies * in the amount of code that can be reduced, * less cryptic syntax, * and code that is easier to handle for application maintenance and enhancement. But Smalltalk's most powerful feature is easy code reuse. Smalltalk makes reuse of programs, routines, and subroutines (methods) far easier. Though procedural languages allow reuse too, it is harder to do, and much easier to cheat. It is no surprise that Smalltalk is relatively easy to learn, mainly due to its simple syntax and semantics, as well as few concepts. Objects, classes, messages, and methods form the basis of programming in Smalltalk. The general methodology to use Smalltalk The notion of human-computer interface also results in Smalltalk promoting the development of safer systems. Errors in Smalltalk may be viewed as objects telling users that confusion exists as to how to perform a desired function.
series other
last changed 2003/04/23 15:14

_id 244d
authors Monedero, J., Casaus, A. and Coll, J.
year 1992
title From Barcelona. Chronicle and Provisional Evaluation of a New Course on Architectural Solid Modelling by Computerized Means
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 351-362
doi https://doi.org/10.52842/conf.ecaade.1992.351
summary The first step made at the ETSAB in the computer field goes back to 1965, when professors Margarit and Buxade acquired an IBM computer, an electromechanical machine which used perforated cards and which was used to produce an innovative method of structural calculation. This method was incorporated in the academic courses and, at that time, this repeated question "should students learn programming?" was readily answered: the exercises required some knowledge of Fortran and every student needed this knowledge to do the exercises. This method, well known in Europe at that time, also provided a service for professional practice and marked the beginning of what is now the CC (Centro de Calculo) of our school. In 1980 the School bought a PDP1134, a computer which had 256 Kb of RAM, two disks of 5 Mb and one of lO Mb, and a multiplexor of 8 lines. Some time later the general politics of the UPC changed their course and this was related to the purchase of a VAX which is still the base of the CC and carries most of the administrative burden of the school. 1985 has probably been the first year in which we can talk of a general policy of the school directed towards computers. A report has been made that year, which includes an inquest adressed to the six Departments of the School (Graphic Expression, Projects, Structures, Construction, Composition and Urbanism) and that contains interesting data. According to the report, there were four departments which used computers in their current courses, while the two others (Projects and Composition) did not use them at all. The main user was the Department of Structures while the incidence of the remaining three was rather sporadic. The kind of problems detected in this report are very typical: lack of resources for hardware and software and for maintenance of the few computers that the school had at that moment; a demand (posed by the students) greatly exceeding the supply (computers and teachers). The main problem appeared to be the lack of computer graphic devices and proper software.

series eCAADe
email
last changed 2022/06/07 07:58

_id 5d5a
authors Richens, P.
year 1980
title The Design of a General Drafting System
source CAD80, 4th International Conference and Exhibition of Computers in Design Engineering, Brighton
series other
email
more http://www.arct.cam.ac.uk/research/pubs/
last changed 2000/03/05 19:05

_id 667a
authors Schneiderman, Ben
year 1980
title Software Psychology : Human Factors in Computer and Information Systems
source xv, 320 p. : ill Cambridge, Mass.: Winthrop Publishers, inc., 1980. includes bibliography: p. 282-302 and index.
summary Human factors in computers and information systems. It addresses concerns such as programming management, interactive systems, database query facilities and more
keywords programming, database, psychology, software, engineering, management, user interface
series CADline
last changed 1999/02/12 15:09

_id 952f
authors Soloway, E., Guzdial, M. and Hay, K.
year 1994
title Learner-Centered Design: The Challenge for HCI in the 21st Century
source Interactions , no. April (1994): 36-48
summary In the 1980's a major transformation took place in the computing world: attention was finally being paid to making computers easier-to-use. You know the history: in the 1970's folks at Xerox were exploring so-called personal computers and developing graphical, point-and-click interfaces. The goal was to make using computers less cognitively taxing, there- by permitting the user to focus more mental cycles on getting the job done. For some time people had recognized that there would be benefits if users could interact with computers using visual cues and motor movements instead of testu- al/linguistic strings. However, computer cycles were costly; they could hardly be wasted on supporting a non-textual interface. There was barely enough zorch (i.e., computer power, measured in your favorite unit) to simply calculate the payroll.
series journal paper
last changed 2003/04/23 15:50

_id caadria2006_589
id caadria2006_589
authors YU-NAN YEH
year 2006
title FREEDOM OF FORM: THE ORIENTAL CALLIGRAPHY AND AESTHETICS IN DIGITAL FABRICATION
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 589-591
doi https://doi.org/10.52842/conf.caadria.2006.x.v6f
summary Computer-Aided Design (CAD) / Computer-Aided Manufacturing (CAM) related research has been discussed since the 1960's (Ryder, G. et al, 2002, Mark Burry, 2002). Indeed, both Frank O. Gehry and Toyo Ito utilized CAD/CAM to create rich architectural form and in so doing gave birth to a new type of aesthetics. The visualization and liberalization of form space is the single most important characteristic attributable to the use of computers as a design tool. By the 1980's, Laser cutting and Rapid Prototyping techniques developed from CAM, became important new digital tools when researchers and designers discussed the development of form in architecture.
series CAADRIA
email
last changed 2022/06/07 07:49

_id 8629
authors Barzilay, Amos
year 1980
title Human Problem Solving on Master Mind
source Carnegie Mellon University
summary The purpose of this work is to analyze the task of playing Master Mind and to examine subjects behaviors on solving that task. The methods and the ideas that are used in the work are the same found in the references for other tasks. The author wants to show that those ideas and methods can be used for that specific task as well. In other words, subjects behave in such a domain as an information processing system. [includes bibliography]
keywords Psychology, Problem Solving
series CADline
last changed 1999/02/15 15:10

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id b04c
authors Goerger, S., Darken, R., Boyd, M., Gagnon, T., Liles, S., Sullivan, J. and Lawson, J.
year 1996
title Spatial Knowledge Acquisition from Maps and Virtual Environments in Complex Architectural Space
source Proc. 16 th Applied Behavioral Sciences Symposium, 22-23 April, U.S. Airforce Academy, Colorado Springs, CO., 1996, 6-10
summary It has often been suggested that due to its inherent spatial nature, a virtual environment (VE) might be a powerful tool for spatial knowledge acquisition of a real environment, as opposed to the use of maps or some other two-dimensional, symbolic medium. While interesting from a psychological point of view, a study of the use of a VE in lieu of a map seems nonsensical from a practical point of view. Why would the use of a VE preclude the use of a map? The more interesting investigation would be of the value added of the VE when used with a map. If the VE could be shown to substantially improve navigation performance, then there might be a case for its use as a training tool. If not, then we have to assume that maps continue to be the best spatial knowledge acquisition tool available. An experiment was conducted at the Naval Postgraduate School to determine if the use of an interactive, three-dimensional virtual environment would enhance spatial knowledge acquisition of a complex architectural space when used in conjunction with floor plan diagrams. There has been significant interest in this research area of late. Witmer, Bailey, and Knerr (1995) showed that a VE was useful in acquiring route knowledge of a complex building. Route knowledge is defined as the procedural knowledge required to successfully traverse paths between distant locations (Golledge, 1991). Configurational (or survey) knowledge is the highest level of spatial knowledge and represents a map-like internal encoding of the environment (Thorndyke, 1980). The Witmer study could not confirm if configurational knowledge was being acquired. Also, no comparison was made to a map-only condition, which we felt is the most obvious alternative. Comparisons were made only to a real world condition and a symbolic condition where the route is presented verbally.
series other
last changed 2003/04/23 15:50

_id f773
id f773
authors Johnson, Brian R.
year 1990
title Inside Out
source From Research to Practice [ACADIA Conference Proceedings] Big Sky (Montana - USA) 4-6 October 1990, pp. 219-231
doi https://doi.org/10.52842/conf.acadia.1990.219
summary An effort to generate discussion, this paper suggests that between 1980 and 1990 a significant and undesirable change has occurred in academic architectural CAD. We have moved from being developers of ideas and technology on the inside of the development loop to being consumers of products developed in the commercial market place, outside the loop. Certain negative consequences are discussed. Finally, some suggestions are made for turning ourselves "right side out" again.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id cdc2008_243
id cdc2008_243
authors Loukissas, Yanni
year 2008
title Keepers of the Geometry: Architects in a Culture of Simulation
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 243-244
summary “Why do we have to change? We’ve been building buildings for years without CATIA?” Roger Norfleet, a practicing architect in his thirties poses this question to Tim Quix, a generation older and an expert in CATIA, a computer-aided design tool developed by Dassault Systemes in the early 1980’s for use by aerospace engineers. It is 2005 and CATIA has just come into use at Paul Morris Associates, the thirty-person architecture firm where Norfleet works; he is struggling with what it will mean for him, for his firm, for his profession. Computer-aided design is about creativity, but also about jurisdiction, about who controls the design process. In Architecture: The Story of Practice, Architectural theorist Dana Cuff writes that each generation of architects is educated to understand what constitutes a creative act and who in the system of their profession is empowered to use it and at what time. Creativity is socially constructed and Norfleet is coming of age as an architect in a time of technological but also social transition. He must come to terms with the increasingly complex computeraided design tools that have changed both creativity and the rules by which it can operate. In today’s practices, architects use computer-aided design software to produce threedimensional geometric models. Sometimes they use off-the-shelf commercial software like CATIA, sometimes they customize this software through plug-ins and macros, sometimes they work with software that they have themselves programmed. And yet, conforming to Larson’s ideas that they claim the higher ground by identifying with art and not with science, contemporary architects do not often use the term “simulation.” Rather, they have held onto traditional terms such as “modeling” to describe the buzz of new activity with digital technology. But whether or not they use the term, simulation is creating new architectural identities and transforming relationships among a range of design collaborators: masters and apprentices, students and teachers, technical experts and virtuoso programmers. These days, constructing an identity as an architect requires that one define oneself in relation to simulation. Case studies, primarily from two architectural firms, illustrate the transformation of traditional relationships, in particular that of master and apprentice, and the emergence of new roles, including a new professional identity, “keeper of the geometry,” defined by the fusion of person and machine. Like any profession, architecture may be seen as a system in flux. However, with their new roles and relationships, architects are learning that the fight for professional jurisdiction is increasingly for jurisdiction over simulation. Computer-aided design is changing professional patterns of production in architecture, the very way in which professionals compete with each other by making new claims to knowledge. Even today, employees at Paul Morris squabble about the role that simulation software should play in the office. Among other things, they fight about the role it should play in promotion and firm hierarchy. They bicker about the selection of new simulation software, knowing that choosing software implies greater power for those who are expert in it. Architects and their collaborators are in a continual struggle to define the creative roles that can bring them professional acceptance and greater control over design. New technologies for computer-aided design do not change this reality, they become players in it.
email
last changed 2009/01/07 08:05

_id 4b32
authors Nilsson, Nils J.
year 1980
title Principles of Artificial Intelligence
source xv, 476 p. : ill. Palo Alto, California: Tioga Pub. Co., 1980. includes bibliography: p. 429-465 and index
summary Describes AI ideas based on general computational concepts involving the kind of data structures used, the types of operations performed on these data structures, and the properties of control strategies used by AI systems. The book is designed as a text
keywords AI, education
series CADline
last changed 2003/06/02 10:24

_id 48db
authors Proctor, George
year 2001
title CADD Curriculum - The Issue of Visual Acuity
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 192-200
doi https://doi.org/10.52842/conf.ecaade.2001.192
summary Design educators attempt to train the eyes and minds of students to see and comprehend the world around them with the intention of preparing those students to become good designers, critical thinkers and ultimately responsible architects. Over the last eight years we have been developing the digital media curriculum of our architecture program with these fundamental values. We have built digital media use and instruction on the foundation of our program which has historically been based in physical model making. Digital modeling has gradually replaced the capacity of physical models as an analytical and thinking tool, and as a communication and presentation device. The first year of our program provides a foundation and introduction to 2d and 3d design and composition, the second year explores larger buildings and history, the third year explores building systems and structure through design studies of public buildings, fourth year explores urbanism, theory and technology through topic studios and, during the fifth year students complete a capstone project. Digital media and CADD have and are being synchronized with the existing NAAB accredited regimen while also allowing for alternative career options for students. Given our location in the Los Angeles region, many students with a strong background in digital media have gone on to jobs in video game design and the movie industry. Clearly there is much a student of architecture must learn to attain a level of professional competency. A capacity to think visually is one of those skills and is arguably a skill that distinguishes members of the visual arts (including Architecture) from other disciplines. From a web search of information posted by the American Academy of Opthamology, Visual Acuity is defined as an ability to discriminate fine details when looking at something and is often measured with the Snellen Eye Chart (the 20/20 eye test). In the context of this paper visual acuity refers to a subject’s capacity to discriminate useful abstractions in a visual field for the purposes of Visual Thinking- problem solving through seeing (Arnheim, 1969, Laseau 1980, Hoffman 1998). The growing use of digital media and the expanding ability to assemble design ideas and images through point-and-click methods makes the cultivation and development of visual skills all the more important to today’s crop of young architects. The advent of digital media also brings into question the traditional, static 2d methods used to build visual skills in a design education instead of promoting active 3d methods for teaching, learning and developing visual skills. Interactive digital movies provide an excellent platform for promoting visual acuity, and correlating the innate mechanisms of visual perception with the abstractions and notational systems used in professional discourse. In the context of this paper, pedagogy for building visual acuity is being considered with regard to perception of the real world, for example the visual survey of an environment, a site or a street scene and how that visual survey works in conjunction with practice.
keywords Curriculum, Seeing, Abstracting, Notation
series eCAADe
email
last changed 2022/06/07 08:00

_id 9fcb
authors Steele, Guy Lewis
year 1980
title The Definition and Implementation of a Computer Programming Language Based Constraints
source MIT - AITR-595
summary The constraint paradigm is a model of computation in which values are deduced whenever possible, under the limitation that deductions be local in a certain sense. One may visualize a constraint 'program' as a network of devices connected by wires. Data values may flow along the wires, and computation is performed by the devices. A device computes using only locally available information (with a few exceptions), and places newly derived values on other, locally attached wires. In this way computed values are propagated. An advantage of the constraint paradigm (not unique to it) is that a single relationship can be used in more than one direction. The connections to a device are not labelled as inputs and outputs; a device will compute with whatever values are available, and produce as many new values as it can. General theorem provers are capable of such behavior, but tend to suffer from combinatorial explosion; it is not usually useful to derive all the possible consequences of a set of hypotheses. The constraint paradigm places a certain kind of limitation on the deduction process. The limitations imposed by the constraint paradigm are not the only one possible. It is argued, however, that they are restrictive enough to forestall combinatorial explosion in many interesting computational situations, yet permissive enough to allow useful computations in practical situations. Moreover, the paradigm is intuitive: It is easy to visualize the computational effects of these particular limitations, and the paradigm is a natural way of expressing programs for certain applications, in particular relationships arising in computer-aided design. A number of implementations of constraint-based programming languages are presented. A progression of ever more powerful languages is described, complete implementations are presented and design difficulties and alternatives are discussed. The goal approached, though not quite reached, is a complete programming system which will implicitly support the constraint paradigm to the same extent that LISP, say, supports automatic storage management.
series thesis:PhD
email
more ftp://publications.ai.mit.edu/ai-publications/pdf/AITR-595.pdf
last changed 2003/02/12 22:37

_id fc80
authors Ubbelohde, S. and Humann, C.
year 1998
title Comparative Evaluation of Four Daylighting Software Programs
source 1998 ACEEE Summer Study on Energy Efficiency in Buildings Proceedings. American Council for an Energy-Efficient Economy
summary By the mid-1980's, a number of software packages were under development to predict daylighting performance in buildings, in particular illumination levels in daylighted spaces. An evaluation in 1988 by Ubbelohde et al. demonstrated that none of the software then available was capable of predicting the simplest of real daylighting designs. In the last ten years computer capabilities have evolved rapidly and we have four major packages widely available in the United States. This paper presents a comparative evaluation from the perspective of building and daylighting design practice. A contemporary building completed in 1993 was used as a base case for evaluation. We present the results from field measurements, software predictions and physical modeling as a basis for discussing the capabilities of the software packages in architectural design practice. We found the current software packages far more powerful and nuanced in their ability to predict daylight than previously. Some can accurately predict quantitative daylight performance under varying sky conditions and produce handsome and accurate visualizations of the space. The programs differ significantly, however, in their ease of use, modeling basis and the emphasis between quantitative predictions and visualization in the output.
series other
last changed 2003/04/23 15:50

_id dc49
authors Maver, T.W.
year 1980
title Computer Aided Design: Applications in Architecture
source Chapter in Human Interaction with Computers, (Ed: H Smith et al) Academic Press, 203-229
series other
email
last changed 2003/06/02 15:00

_id 0830
authors Ball, A. A.
year 1980
title How to Make the Bicubic Patch Work Using Reparametrisation
source 1980 ? 11 p. includes bibliography
summary This paper comprises a series of examples in numerical surface definition, loosely strung together, to show the practical limitations of the bicubic patch and how they can be overcome by reparametrisation. The concept of reparametrisation is more general than that used in computer- aided geometric design insofar as the reparametrisation is modeled in addition to the basic parametric equation
keywords CAD, computational geometry, curved surfaces, parametrization
series CADline
last changed 2003/06/02 13:58

_id 2fdd
authors Barsky, Brian A. and Thomas, Spencer W.
year 1980
title Transpline Curve Representation System
source April, 1980. 19 p. : ill. includes bibliography
summary An interactive curve representation system has been developed based on the concept of transforming among several parametric spline curve formulations. The available formulations are the interpolatory spline, uniform B-spline, spline under tension, and NU-spline. The system implementation is described in the context of a sample design session
keywords computational geometry, curves, representation, splines
series CADline
last changed 2003/06/02 13:58

For more results click below:

this is page 0show page 1show page 2show page 3HOMELOGIN (you are user _anon_188641 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002