CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 22

_id 898a
authors Bay, J.H.
year 2002
title Cognitive Biases and Precedent Knowledge in Human and Computer-Aided Design Thinking
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 213-220
doi https://doi.org/10.52842/conf.caadria.2002.213
summary Cognitive biases (illusions) and potential errors can occur when using precedent knowledge for analogical, pre-parametric and qualitative design thinking. This paper refers largely to part of a completed research (Bay 2001) on how heuristic biases, discussed by Tversky and Kahneman (1982) in cognitive psychology, can affect judgement and learning of facts from precedents in architectural design, made explicit using a kernel of conceptual system (Tzonis et. al., 1978) and a framework of architectural representation (Tzonis 1992). These are used here to consider how such illusions and errors may be transferred to computer aided design thinking.
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2003_m_040
id cf2003_m_040
authors BAY, Joo-Hwa
year 2003
title Making Rebuttals Available Digitally for Minimising Biases in Mental Judgements
source Digital Design - Research and Practice [Proceedings of the 10th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-1210-1] Tainan (Taiwan) 13–15 October 2003, pp. 147-156
summary The problem of heuristic biases (illusions) discussed by Tversky and Kahneman (1982) that can lead to errors in judgement by human designers, when they use precedent knowledge presented graphically (Bay 2001). A Cognitive framework of belief, goal, and decision, and a framework of representation of architectural knowledge by Tzonis are used to map out the problem of heuristic biases in the human mind. These are used to discuss what aspects of knowledge can be presented explicitly and digitally to users to make rebuttal more available for human thinking at the cognitive level. The discussion is applicable to both inductive and analytic digital knowledge systems that use precedent knowledge. This discussion is targeted directly at means of addressing bias in the human mind using digital means. The problem of human bias in machine learning and generalisation are discussed in a different paper, and the problems of international or non-intentional machine bias are not part of discussion in this paper.
keywords analogy, bias, design thinking, environmental design, heuristics
series CAAD Futures
last changed 2003/11/22 07:26

_id 1b10
id 1b10
authors Bay, Joo-Hwa
year 2001
title Cognitive Biases - The case of tropical architecture
source Delft University of Technology
summary This dissertation investigates, i) How cognitive biases (or illusions) may lead to errors in design thinking, ii) Why architects use architectural precedents as heuristics despite such possible errors, and iii) Develops a design tool that can overcome this type of errors through the introduction of a rebuttal mechanism. The mechanism controls biases and improves accuracy in architectural thinking. // The research method applied is interdisciplinary. It employs knowledge from cognitive science, environmental engineering, and architectural theory. The case study approach is also used. The investigation is made in the case of tropical architecture. The investigation of architectural biases draws from work by A. Tversky and D. Kahneman in 1982 on “Heuristics and biases”. According to Tversky and Kahneman, the use of heuristics of representativeness (based on similarity) and availability (based on ease of recall and imaginability) for judgement of probability can result in cognitive biases of illusions of validity and biases due to imaginability respectively. This theory can be used analogically to understand how errors arise in the judgement of environmental behaviour anticipated from various spatial configurations, leading to designs with dysfunctional performances when built. Incomplete information, limited time, and human mental resources make design thinking in practice difficult and impossible to solve. It is not possible to analyse all possible alternative solutions, multiple contingencies, and multiple conflicting demands, as doing so will lead to combinatorial explosion. One of the ways to cope with the difficult design problem is to use precedents as heuristic devices, as shortcuts in design thinking, and at the risk of errors. This is done with analogical, pre-parametric, and qualitative means of thinking, without quantitative calculations. Heuristics can be efficient and reasonably effective, but may not always be good enough or even correct, because they can have associated cognitive biases that lead to errors. Several debiasing strategies are discussed, and one possibility is to introduce a rebuttal mechanism to refocus the designer’s thinking on the negative and opposite outcomes in his judgements, in order to debias these illusions. The research is carried out within the framework of design theory developed by the Design Knowledge System Research Centre, TUDelft. This strategy is tested with an experiment. The results show that the introduction of a rebuttal mechanism can debias and improve design judgements substantially in environmental control. The tool developed has possible applications in design practice and education, and in particular, in the designing of sustainable environments.
keywords Design bias; Design knowledge; Design rebuttal; Design Precedent; Pre-parametric design; Tropical architecture; Sustainability
series thesis:PhD
type normal paper
email
last changed 2006/05/28 07:42

_id cc3e
authors Bloom, Gregory L.
year 1982
title Solving Architectural and Engineering Problems with CADD: Some Guidelines in Choosing the Right System
source computer Graphics News. September/October 1982. [3] p
summary To be useful, a CAD system intended for architectural engineering work must have a number of characteristics in addition to appropriate hardware or software. The article discusses some of these guidelines
keywords CAD, engineering, architecture, practice
series CADline
last changed 2003/06/02 13:58

_id b47b
authors Callender, John Hancock (Ed.)
year 1982
title Time Saver Standards for Architectural Design Data
source McGraw Hill Book. Co., Sixth Ed.
summary From Book News, Inc. The latest version of the venerable reference first published in 1946 and most recently in 1982. Considers such aspects as bioclimate design, life-cycle costing, the building shell, architectural ethics, superstructure, acoustics, construction materials technology, daylighting, environmentally responsible design, and evaluating building performance. A special section features design data formatted according to the Uniformat II classification system, offering easy access to preliminary design and specification by building component, assemble, and place in the system of construction. Useful for any professional in the architecture, design, or construction fields. Book News, Inc.(r), Portland. Book Description Our biggest database of ready-to-use architectural design details ever. A classic reference for over 50 years. Time-Saver Standards for Architectural Design Data, edited by Donald Watson, Michael J. Crosbie, and John Hancock Callender, is the all-in-one desktop database that helps you work faster and smarter with instant design details-ready to incorporate into your architectural drawings the moment you need them. Now in a completely revised and updated seventh edition, this time-saving resource...
series other
last changed 2003/04/23 15:14

_id sigradi2006_e183a
id sigradi2006_e183a
authors Costa Couceiro, Mauro
year 2006
title La Arquitectura como Extensión Fenotípica Humana - Un Acercamiento Basado en Análisis Computacionales [Architecture as human phenotypic extension – An approach based on computational explorations]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 56-60
summary The study describes some of the aspects tackled within a current Ph.D. research where architectural applications of constructive, structural and organization processes existing in biological systems are considered. The present information processing capacity of computers and the specific software development have allowed creating a bridge between two holistic nature disciplines: architecture and biology. The crossover between those disciplines entails a methodological paradigm change towards a new one based on the dynamical aspects of forms and compositions. Recent studies about artificial-natural intelligence (Hawkins, 2004) and developmental-evolutionary biology (Maturana, 2004) have added fundamental knowledge about the role of the analogy in the creative process and the relationship between forms and functions. The dimensions and restrictions of the Evo-Devo concepts are analyzed, developed and tested by software that combines parametric geometries, L-systems (Lindenmayer, 1990), shape-grammars (Stiny and Gips, 1971) and evolutionary algorithms (Holland, 1975) as a way of testing new architectural solutions within computable environments. It is pondered Lamarck´s (1744-1829) and Weismann (1834-1914) theoretical approaches to evolution where can be found significant opposing views. Lamarck´s theory assumes that an individual effort towards a specific evolutionary goal can cause change to descendents. On the other hand, Weismann defended that the germ cells are not affected by anything the body learns or any ability it acquires during its life, and cannot pass this information on to the next generation; this is called the Weismann barrier. Lamarck’s widely rejected theory has recently found a new place in artificial and natural intelligence researches as a valid explanation to some aspects of the human knowledge evolution phenomena, that is, the deliberate change of paradigms in the intentional research of solutions. As well as the analogy between genetics and architecture (Estévez and Shu, 2000) is useful in order to understand and program emergent complexity phenomena (Hopfield, 1982) for architectural solutions, also the consideration of architecture as a product of a human extended phenotype can help us to understand better its cultural dimension.
keywords evolutionary computation; genetic architectures; artificial/natural intelligence
series SIGRADI
email
last changed 2016/03/10 09:49

_id 4b04
authors De Wilde, W.P., Mollaert, M. and Buelinckx, H. (Ed.)
year 1983
title Proceedings of the International Conference eCAADe 1983
source Proceedings of the International Conference eCAADe [European Computer Aided Architectural Design Education] Brussels (Belgium) 1983
doi https://doi.org/10.52842/conf.ecaade.1983
summary In the beginning of the eighties, a few enthusiastic researchers, under the impulsion of Tom MAVER (director of the ABACUS group) and Rik SCHIJF (TH Delft) initiated a regular, if not formal, convention of people involved in the teaching of computer aided architectural design ECAADE in Europe. In 1982 a first meeting took place in Delft and, taking into consideration the member of attendants and the enthusiasm during this convention, it was decided that CAAD was definitely an important topic and that a more formal symposium was to be organised in the fall of 1983, in the University of Brussels.

The positive evolution of CAAD, not only in educational institutions, but also in professional practice is not surprising: it is to be considered in the global frame of technological and organisational revolution actually taking place. As will be read in the outstanding contribution of the participants it is not a mere choice of increased productivity which attracts the architects; the CAAD techniques also release then from a serious burden : the production of technical drawings and administrative paperwork!

series eCAADe
email
more http://wwwtw.vub.ac.be/ond/memc/Staff/Patrick.htm
last changed 2022/06/07 07:49

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ddssar9616
id ddssar9616
authors Hunt, John
year 1996
title Establishing design directions for complex architectural projects: a decision support strategy
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary The paper seeks to identify characteristics of the design decision-making strategy implicit in the first placed design submissions for three significant architectural competitions: the Sydney Opera House competition, and two recent design competitions for university buildings in New Zealand. Cohn Rowe's (1982) characterisation of the design process is adopted as a basis for the analysis of these case studies. Rowe's fertile analogy between design and (criminal) detection is first outlined, then brought to bear on the case studies. By means of a comparison between the successful and selected unsuccessful design submissions in each case, aspects of Rowe's characterisation of the design process are confirmed. On the basis of this analysis several common features of the competition-winning submissions, and their implicit decision-making processes, are identified. The first of these features relates to establishing project or programmatic requirements and the prioritizing of these. The second concerns the role of design parameters or requirements that appear as conflicting or contradictory, in the development of a design direction and in innovative design outcomes. The third concerns the process of simultaneous consideration given by the designer to both project parameters or requirements, and to design solution possibilities - a process described by Rowe as "dialectical interanimation".
series DDSS
last changed 2003/08/07 16:36

_id c55f
authors Kalay, Yehuda E.
year 1986
title The Impact of CAD On Architectural Design Education in the United States
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 348-355
doi https://doi.org/10.52842/conf.ecaade.1986.348
summary Computer-Aided Design (CAD) began to appear in schools of architecture in the United States over 15 years ago. By 1982, over 50% of all accredited schools of architecture in North America included some form of CAD in their curricula. This number has continued to steadily increase. For the most part, the use of CAD has been restricted to the few individuals working on special "CAD projects" and to the researchers developing CAD products. The reasons for this limitation have included the low availability, difficulty of use, restricted access and high cost of the CAD systems, as well as limited faculty and administrative support. Recently, however, partly due to the introduction of micro- computer CAD software, and partly due to the growing awareness of the importance of CAD in architectural education and practice, some schools have begun to introduce CAD as part of the general design curriculum.
series eCAADe
email
last changed 2022/06/07 07:52

_id e234
authors Kalay, Yehuda E. and Harfmann, Anton C.
year 1985
title An Integrative Approach to Computer-Aided Design Education in Architecture
source February, 1985. [17] p. : [8] p. of ill
summary With the advent of CAD, schools of architecture are now obliged to prepare their graduates for using the emerging new design tools and methods in architectural practices of the future. In addition to this educational obligation, schools of architecture (possibly in partnership with practicing firms) are also the most appropriate agents for pursuing research in CAD that will lead to the development of better CAD software for use by the profession as a whole. To meet these two rather different obligations, two kinds of CAD education curricula are required: one which prepares tool- users, and another that prepares tool-builders. The first educates students about the use of CAD tools for the design of buildings, whereas the second educates them about the design of CAD tools themselves. The School of Architecture and Planning in SUNY at Buffalo has recognized these two obligations, and in Fall 1982 began to meet them by planning and implementing an integrated CAD environment. This environment now consists of 3 components: a tool-building sequence of courses, an advanced research program, and a general tool-users architectural curriculum. Students in the tool-building course sequence learn the principles of CAD and may, upon graduation, become researchers and the managers of CAD systems in practicing offices. While in school they form a pool of research assistants who may be employed in the research component of the CAD environment, thereby facilitating the design and development of advanced CAD tools. The research component, through its various projects, develops and provides state of the art tools to be used by practitioners as well as by students in the school, in such courses as architectural studio, environmental controls, performance programming, and basic design courses. Students in these courses who use the tools developed by the research group constitute the tool-users component of the CAD environment. While they are being educated in the methods they will be using throughout their professional careers, they also act as a 'real-world' laboratory for testing the software and thereby provide feedback to the research component. The School of Architecture and Planning in SUNY at Buffalo has been the first school to incorporate such a comprehensive CAD environment in its curriculum, thereby successfully fulfilling its obligation to train students in the innovative methods of design that will be used in architectural practices of the future, and at the same time making a significant contribution to the profession of architecture as a whole. This paper describes the methodology and illustrates the history of the CAD environment's implementation in the School
keywords CAD, architecture, education
series CADline
email
last changed 2003/06/02 13:58

_id 5509
authors Koutamanis, Alexandros
year 1990
title Development of a computerized handbook of architectural plans
source Delft University of Technology
summary The dissertation investigates an approach to the development of visual / spatial computer representations for architectural purposes through the development of the computerized handbook of architectural plans (chap), a knowledge-based computer system capable of recognizing the metric properties of architectural plans. This investigation can be summarized as an introduction of computer vision to the computerization of architectural representations: chap represents an attempt to automate recognition of the most essential among conventional architectural drawings, floor plans. The system accepts as input digitized images of architectural plans and recognizes their spatial primitives (locations) and their spatial articulation on a variety of abstraction levels. The final output of chap is a description of the plan in terms of the grouping formations detected in its spatial articulation. The overall structure of the description is based on an analysis of its conformity to the formal rules of its “stylistic” context (which in the initial version of chap is classical architecture). Chapter 1 suggests that the poor performance of computerized architectural drawing and design systems is among others evidence of the necessity to computerize visual / spatial architectural representations. A recognition system such as chap offers comprehensive means for the investigation of a methodology for the development and use of such representations. Chapter 2 describes a fundamental task of chap: recognition of the position and shape of locations, the atomic parts of the description of an architectural plan in chap. This operation represents the final and most significant part of the first stage in processing an image input in machine environment. Chapter 3 moves to the next significant problem, recognition of the spatial arrangement of locations in an architectural plan, that is, recognition of grouping relationships that determine the subdivision of a plan into parts. In the absence of systematic and exhaustive typologic studies of classical architecture that would allow us to define a repertory of the location group types possible in classical architectural plans, Chapter 3 follows a bottom-up approach based on grouping relationships derived from elementary architectural knowledge and formalized with assistance from Gestalt theory and its antecedents. The grouping process described in Chapter 3 corresponds both in purpose and in structure to the derivation of a description of an image in computer vision [Marr 1982]. Chapter 4 investigates the well-formedness of the description of a classical architectural plan in an analytical manner: each relevant level (or sublevel) of the classical canon according to Tzonis & Lefaivre [1986] is transformed into a single group of criteria of well-formedness which is investigated independently. The hierarchical structure of the classical canon determines the coordination of these criteria into a sequence of cognitive filters which progressively analyses the correspondence of the descriptions derived as in Chapter 3 to the constraints of the canon. The methodology and techniques presented in the dissertation are primarily considered with respect to chap, a specific recognition system. The resulting specification of chap gives a measure of the use of such a system within the context of a computerized collection of architectural precedents and also presents several extensions to other areas of architecture. Although these extensions are not considered as verifiable claims, Chapter 5 describes some of their implications, including on the role of architectural drawing in computerized design systems, on architectural typologies, and on the nature and structure of generative systems in architecture.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 79bb
authors Laing Lamond W. W.
year 1982
title Computer aided architectural design simulation by computer of the flow of people through a variety of building types
source University of Strathclyde
series thesis:PhD
last changed 2003/02/12 22:37

_id c361
authors Logan, Brian S.
year 1986
title Representing the Structure of Design Problems
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 158-170
summary In recent years several experimental CAD systems have emerged which, focus specifically on the structure of design problems rather than on solution generation or appraisal (Sussman and Steele, 1980; McCallum, 1982). However, the development of these systems has been hampered by the lack of an adequate theoretical basis. There is little or no argument as to what the statements comprising these models actually mean, or on the types of operations that should be provided. This chapter describes an attempt to develop a semantically adequate basis for a model of the structure of design problems and presents a representation of this model in formal logic.
series CAAD Futures
last changed 1999/04/03 17:58

_id e5d0
authors Lowe, John P.
year 1994
title Computer-Aided-Design in the Studio Setting: A Paradigm Shift in Architectural Education
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 230
doi https://doi.org/10.52842/conf.ecaade.1994.x.g6j
summary The introduction of the personal computer in 1982 set forth a revolution that will continue to transform the profession of Architecture. Most architectural practices in America have embraced this revolution realizing the potentials of the computer. However, education seems to have been slower accepting the potentials and challenges of computers. Computer technology will change the design studio setting and therefore the fundamental way architects are educated. The Department of Architecture at Kansas State University has made a commitment to move toward a computer based design studio. In the fall of 1990, discussions began among the faculty to search for the placement of a computer studio within the five year program. Curriculum, staffing, and funding were issues that had to be overcome to make this commitment work. The strategy that was adopted involved placing the computer studio at the fourth year level in phase one. Phase two will progress as more staff are trained on the computer and course work was adapted to accommodate other year levels for a computer based design studios. Funding was a major obstacle. The decision was made to move from a position of being the primary suppliers of computing technology to one of support for student purchased computers. This strategy alleviated the department from maintaining and upgrading the technology. There was great enthusiasm and support from the faculty as a whole for the use of computers in the studio setting. However, the pedagogical impacts of such a change are just beginning to be realized.

series eCAADe
last changed 2022/06/07 07:50

_id ceb1
authors Maver, T.
year 1984
title What is eCAADe?
source The Third European Conference on CAD in the Education of Architecture [eCAADe Conference Proceedings] Helsinki (Finnland) 20-22 September 1984.
doi https://doi.org/10.52842/conf.ecaade.1984.x.d0s
summary The main interest of the organisation is to improve the design, teaching. The design remains the core of the professional education, while computer science can support a better understanding of the design methods. Computers should amplify the human capabilities like engines allowed to carry higher forces, radio and television enabled communication over larger distances and computers today should aid the human intellectual activities, to gain a better insight in design methodology, to investigate the design process.Design research should study more extensively how buildings behave, the integration and interaction of different disciplines which contribute to the optimization of a design and the design criteria. Computers could increase the possibility to satisfy building regulations, to access and update information, to model the design process and to understand how decisions affect the building quality (functional and economical as well as formal aspects). More effort and money should be spent on this research. The organisation has been sponsored by the EEC for bringing CAAD (Computer Aided Architectural Design) educational material at the disposal of the design teachers. The Helsinki conference is the third European meeting (after Delft 1982 and Brussels 1983) which concentrates on information and experience exchange in CAAD-education and looks for common interests and collaboration. A specific joint study program works on typical audiovisual material and lecture notes, which will be updated according to teacher's needs. A demand has been done to implement an integrated CAAD package. eCAADe focuses to integrate computer approaches across country boundaries as well as across disciplinary boundaries, as to reach a higher quality of the design education.

series eCAADe
email
last changed 2022/06/07 07:50

_id eb3d
authors Maver, T.W.
year 1982
title The New Generation of Computer Based Design Aids in Architectural Practice and Education
source Proceedings of Design Policy Conference
series other
email
last changed 2003/06/02 15:00

_id 807e
authors Maver, Thomas W. and Petric, Jelena (Eds.)
year 1994
title The Virtual Studio [Conference Proceedings]
source eCAADe Conference Proceedings / ISBN 0-9523687-0-6 / Glasgow (Scotland) 7-10 September 1994, 262 p.
doi https://doi.org/10.52842/conf.ecaade.1994
summary ECAADE was established in 1982 with the intention, across Europe, of facilitating the adoption of the Information Technologies - particularly Computer Aided Architectural Design (CAAD) - within the system of architectural education. The Association, in the 12 years of its existence, has grown in its membership (now close to 350) and in its importance. The annual conferences (Delft 82, Brussels 83, Helsinki 84, Rotterdam 85, Rome 86, Zurich 87, Aarhus 89, Budapest 90, Munich 91, Barcelona 92 and Eindhoven 93) now number 12 and this volume records the 70 or so contributions to the Conference held in Glasgow over the period 7-10 September 1994.The proceedings are arranged according to a number of themes. Theories and Ideas, Teaching and Learning, Visualisation, Multi-Media, Virtual Reality, Virtual Design Studios, Functional Analysis, Design Support Systems and Surveys of Activity. The Conference featured 'long presentations'; and 'short presentations'; the length of these presentations is reflected in the two main sections of this text. To preserve the spirit of conference communication and ensure the rapid dissemination of ideas in a fast grown community of polyglot Europeans, no changes to the papers, which were submitted in Apple Mac and/or PC diskettes, have been imposed; you see them as they were submitted and as the authors intended.
series eCAADe
email
last changed 2022/06/07 07:49

_id maver_102
id maver_102
authors Maver, Thomas W.
year 1982
title Computer Aided Architectural Design. Implication for Practice + Education
source Proceedings of Aicographics 82 Conference, Milano (Italy), 26/29 October, pp. 21-39
summary Design, the highest endeavour to which man can aspire, may be defined as the activity of making explicit proposals for a change from some existing state to some future state which more closely approximates to mankind's concept of the ideal. As such, it embraces a wide spectrum of human endeavour; the outcomes of the design activity are part and parcel of our everyday life and are determinants, for better or worse, of our man-made future. In common with all complex human functions the activity of design still understood; it involves the most rational and systematic proceses of human thought and also the most intuitive conjectural leaps within the mind.
series other
type normal paper
email
last changed 2015/02/20 11:28

_id 46b0
authors Schijf, Rik
year 1986
title CAD in the Netherlands: Integrated CAD
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 176-184
summary One of the things in which a small country can excel is its number of architects' offices per inhabitant. In the Netherlands this is approximately one in 6500, or twice the UK density (CBS, 1984; CICA, 1982). Of the 2150 Dutch offices, 88 per cent employ less than 10 people, which compares rather well with the British Situation. For the Netherlands it is interesting that its boom in CAD, on average an annual doubling or tripling for the next few years, is likely to coincide with a revolution in CAD itself. There is no doubt that very soon the personal and larger CAD systems will clash at supermicro-level.
series CAAD Futures
last changed 1999/04/03 17:58

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_119460 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002