CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 4 of 4

_id a456
authors Gould, J.D., Conti, J. and Hovanyecz, T.
year 1983
title Composing Letters with a Simulated Listening Typewriter
source Communications of the ACM. April, 1983. vol. 26: pp. 295-308 : ill. graphs, tables. includes bibliography
summary With a listening typewriter, what an author says would be automatically recognized and displayed in front of him or her. However, speech recognition is not yet advanced enough to provide people with a reliable listening typewriter. An aim of the authors' experiments was to determine if an imperfect listening typewriter would be useful for composing letters. Participants dictated letters, either in isolated words or in consecutive word speech. They did this with simulations of listening typewriters that recognized either a limited vocabulary (1000 or 5000 words) or an unlimited vocabulary. Results suggest that some versions, even upon first using them, could be at least as good as traditional methods of handwriting and dictating. Isolated word speech with large vocabularies may provide the basis for a useful listening typewriter
keywords natural languages, applications, systems, business, AI
series CADline
last changed 2003/06/02 14:41

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id aba3
authors Laing, Lamond
year 1986
title Computers in Architectural Education
doi https://doi.org/10.52842/conf.ecaade.1986.071
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 71-77
summary Throughout Europe there is a rapidly growing volume of initiatives towards integrating computer aids within all aspects of education. In architectural education, the support offered by these initiatives presents a double-edged sword. On the one hand it is gratifying to see the work of almost two decades of CAAD research bearing fruit and the concepts gaining recognition by the profession. On the other hand the resulting pressures on the few individuals with the necessary knowledge to implement the teaching will stretch many to breaking point. Where resources are so limited it is crucial to clarify the needs and objectives and, thereby, more effectively direct resources. These needs will change over time and, in the world of computers, the means are also changing rapidly as hardware and software improves. This paper therefore outlines a scenario which I believe is relevant at this point in time but the background is constantly changing and I offer no apologies for any shift in emphasis since my last presentation of this topic in 1983.

series eCAADe
last changed 2022/06/07 07:52

_id 0a78
authors McCalla, Gordon and Cercone, Nick
year 1983
title Approaches to Knowledge Representation
source IEEE Computer. October, 1983. vol. 16: pp. 12-18 : ill. includes bibliography
summary In contrast to conventional database systems, AI systems require a knowledge base with diverse kinds of knowledge. These include, but are not limited to knowledge about objects, knowledge about processes, and hard to represent common sense knowledge about goals, motivations, causality, time, actions etc. This article is an introduction to a special issue in which 15 articles contributed by a broad spectrum of researchers discuss various aspects of knowledge representation. It gives some background and context to these articles by mapping out the basic approaches to knowledge representation that have developed over the years
keywords knowledge, representation, AI
series CADline
last changed 2003/06/02 13:58

No more hits.

HOMELOGIN (you are user _anon_277337 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002