CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 14 of 14

_id e5c4
authors Johnson-Laird
year 1983
title Mental Models
source Cambridge, MA: Harvard University Press
summary As psychological representations of real, hypothetical, or imaginary situations, mental models were first postulated by the Scottish psychologist Kenneth Craik (1943), who wrote that the mind constructs "small-scale models" of reality to anticipate events, to reason, and to underlie . The models are constructed in working memory as a result of perception, the comprehension of discourse, or imagination (see 1982; Johnson-Laird 1983). A crucial feature is that their structure corresponds to the structure of what they represent. Mental models are accordingly akin to architects' models of buildings and to chemists' models of complex molecules.
series other
last changed 2003/04/23 15:50

_id 0d6d
authors Doyle, Jon
year 1983
title Admissible State Semantics for Representational Systems
source IEEE Computer. IEEE computer society, October, 1983. vol. 16: pp. 119-122. includes bibliography
summary A clear semantic is one of the most important requirements in designing representational systems. This article indicates how many kinds of informal semantics can be transformed directly into formal semantics of no greater complexity. The author focuses on the meaning rather than on the expression within a particular logical language. The distinction of the meaning of mental components from general ecological meaning is done by the name admissible state semantics, leaving the specification of external meaning to the standard tools of model theory. The method of admissible state semantic is simple, resembling the usual explanations of intended meanings given by system designers. The designer explains the meaning of one representation in terms of its relations to other representation in the system. Examples are given
keywords logic, languages, representation, systems, semantics
series CADline
last changed 1999/02/12 15:08

_id 0000
authors Bijl, Aart
year 1983
title Know Your Technology - Or: Can Computers Understand Designers?
source Proceedings of the International Conference eCAADe [European Computer Aided Architectural Design Education] Brussels (Belgium) 1983, pp. V.1-V.11
doi https://doi.org/10.52842/conf.ecaade.1983.x.t5s
summary Any great expansion of the population of computer users, embracing architects and other ordinary people, will happen only if we change from current computing technology to radically new software technology. Criteria for new technology are discussed, with reference to inadequacies of current technology; we should strive for computers that can understand people. Logic programming is described as one development towards this goal, illustrated by the example of Prolog serving as interpreter of user demands and supporting partial and changing logical models of user activity. Architects can choose computing options now that will put them on a path leading to future new technology. Choice is explained, favouring a software environment that is used by researchers and also supports immediate and practical computer applications. Lessons are drawn for architectural education, to prepare for change that will take place during a student's 40-year working life.
keywords Software Technology, Logic Programming
series eCAADe
last changed 2022/06/07 07:50

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 0faa
authors Duelund Mortensen, Peder
year 1991
title THE FULL-SCALE MODEL WORKSHOP
source Proceedings of the 3rd European Full-Scale Modelling Conference / ISBN 91-7740044-5 / Lund (Sweden) 13-16 September 1990, pp. 10-11
summary The workshop is an institution, available for use by the public and established at the Laboratory of Housing in the Art Academy's school of Architecture for a 3 year trial period beginning April 1985. This resumé contains brief descriptions of a variety of representative model projects and an overview of all projects carried out so far, including the pilot projects from 1983 and planned projects to and including January 1987. The Full Scale Model Workshop builds full size models of buildings, rooms and parts of buildings. The purpose of the Full Scale Model Workshop is to promote communication among building's users. The workshop is a tool in an attempt to build bridges between theory and practice in research, experimentation and communication of research results. New ideas and experiments of various sorts can be tried out cheaply, quickly and efficiently through the building of full scale models. Changes can be done on the spot as a planned part of the project and on the basis of ideas and experiments achieved through the model work itself. Buildings and their space can thus be communicated directly to all involved persons, regardless of technical background or training in evaluation of building projects.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:23

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id 4d66
authors Kalay, Yehuda E.
year 1983
title A Relational Database for Non-Manipulative Representation of Solid Objects
source Computer Aided Design September, 1983. vol. 15: pp. 271-276 : ill. includes bibliography.
summary Being the heart of any solid modeling system, much effort has been spent on formulating the data models which represent the shape of a polyhedral solid object within the computer in an accurate, unique and complete manner. This paper presents an example relational model as a complementary logical schema for viewing the shape database. It facilitates compact storage and supports non-manipulative query operations through the projection, selection and join operators defined for the relational model, without requiring expert knowledge of the manipulative structure. The flexibility of the relational model, compared with that of the hierarchical, manipulative one, allows easy extensibility and the association of non- geometric attributes with each data item
keywords solid modeling, polyhedra, relational database, representation
series CADline
email
last changed 2003/06/02 13:58

_id 69b3
authors Markelin, Antero
year 1993
title Efficiency of Model Endoscopic Simulation - An Experimental Research at the University of Stuttgart
source Endoscopy as a Tool in Architecture [Proceedings of the 1st European Architectural Endoscopy Association Conference / ISBN 951-722-069-3] Tampere (Finland), 25-28 August 1993, pp. 31-34
summary At the Institute of Urban Planning at the University of Stuttgart early experiments were made with the help of endoscopes in the late 1970’s. The intention was to find new instruments to visualize urban design projects. The first experiment included the use of a 16 mm film of a 1:170 scale model of the market place at Karlsruhe, including design alternatives (with trees, without trees etc). The film was shown to the Karlsruhe authorities, who had to make the decision about the alternatives. It was said, that the film gave a great help for the decision-making and a design proposition had never before been presented in such understandable way. In 1975-77, with the support of the Deutsche Forschungsgemeinschaft (German Research Foundation) an investigation was carried out into existing endoscopic simulation facilities, such as those in Wageningen, Lund and Berkeley. The resulting publication was mainly concerned with technical installations and their applications. However a key question remained: ”Can reality be simulated with endoscopy?” In 1979-82, in order to answer that question, at the Institute was carried out the most extensive research of the time, into the validity of endoscopic simulation. Of special importance was the inclusion of social scientists and psychologists from the University of Heidelberg and Mannheim. A report was produced in 1983. The research was concerned with the theory of model simulation, its ways of use and its users, and then the establishment of requirements for effective model simulation. For the main research work with models or simulation films, psychological tests were developed which enabled a tested person to give accurate responses or evidence without getting involved in alien technical terminology. It was also thought that the use of semantic differentials would make the work imprecise or arbitrary.

keywords Architectural Endoscopy
series EAEA
more http://info.tuwien.ac.at/eaea/
last changed 2005/09/09 10:43

_id 8e7d
authors Maver, T.W.
year 1983
title Introduction to Computer-Based Models
source Proceedings of Green Chips Landscape Architecture Conference, Glasgow
series other
email
last changed 2003/06/02 15:00

_id 8892
authors Maver, T.W.
year 1983
title CAAD in Onderwijs en Onderzoek [CAAD in Teaching and Design]
source Proceedings of THE-CAAD3 Symposium, Eindhoven
summary Students currently in schools of architecture will be at the peak of their careers around the year 2000. The pressure on the schools to provide an education and training which will stand the student in good stead between now and then is considerable. In an increasing number of departments of architecture and building science, importance is being placed on the concept of modelling: i.e. the development and use of models of the operational behaviour and aesthetic character of design proposals which will allow appraisal of how real buildings will performing the real world.
series other
email
last changed 2003/06/08 23:01

_id 8324
authors Musso, Arne
year 1983
title Justifying Designs
source Proceedings of the International Conference eCAADe [European Computer Aided Architectural Design Education] Brussels (Belgium) 1983, pp. 0.1-0.9
doi https://doi.org/10.52842/conf.ecaade.1983.x.k6l
summary A distinction is made between non-justified (not 'unjustified') and justified designs. A good justification requires that a description of the solution space and a rule for selecting one solution should be given. The old but rarely used concept of the planning model is described and it is stressed that it is a useful aid when justifying design decisions. A simple example is presented to illustrate the method. It is pointed out that the use of computers can be helpful when dealing with large solution spaces, complicated evaluation rules and high demands on the quality of the justification. An increasing demand for design justification is observed, which may result in increased computer application. The hope is expressed that planning models will be used in this connection for better communication.
keywords Planning Model, Design Decisions, Communication
series eCAADe
more http://www.tu-berlin.de
last changed 2022/06/07 07:50

_id 596b
authors Richens, P.
year 1983
title Dis-integrated Models for Building Design
source Proceedings PARC83 International Conference on the Use of Computers in Architecture. Berlin
series other
email
more http://www.arct.cam.ac.uk/research/pubs/
last changed 2000/03/05 19:05

_id 6015
authors Sakurai, H. and Gossard, D.
year 1983
title Solid Model Input Through Orthographic Views
source Computer Graphics, Vol 17, No 3, July
summary This paper describes the results of basic studies on procedures for creating solid models of component geometry from two-dimensional orthographic projections. An interactive graphic program was developed to allow the input of three orthographic views of a component geometry by digitizing from a drawing. The views may contain straight lines and circular arcs, solid or dashed. No restrictions are placed on the order or direction of lines and arcs in any view. Using an extension of the Wesley-Markowski procedure, the program constructs a three-dimensional solid model of the object. When the projections are ambiguous, multiple solid models are produced. The solid model may contain planar, cylindrical, conical, spherical and toroidal surfaces. Topological information of the solid model is sotred in a winged edge sturcture. Geometric information is stored as vertex coordinates and surface equations.
series journal paper
last changed 2003/04/23 15:14

_id 452c
authors Vanier, D. J. and Worling, Jamie
year 1986
title Three-dimensional Visualization: A Case Study
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 92-102
summary Three-dimensional computer visualization has intrigued both building designers and computer scientists for decades. Research and conference papers present an extensive list of existing and potential uses for threedimensional geometric data for the building industry (Baer et al., 1979). Early studies on visualization include urban planning (Rogers, 1980), treeshading simulation (Schiler and Greenberg, 1980), sun studies (Anon, 1984), finite element analysis (Proulx, 1983), and facade texture rendering (Nizzolese, 1980). With the advent of better interfaces, faster computer processing speeds and better application packages, there had been interest on the part of both researchers and practitioners in three-dimensional -models for energy analysis (Pittman and Greenberg, 1980), modelling with transparencies (Hebert, 1982), super-realistic rendering (Greenberg, 1984), visual impact (Bridges, 1983), interference clash checking (Trickett, 1980), and complex object visualization (Haward, 1984). The Division of Building Research is currently investigating the application of geometric modelling in the building delivery process using sophisticated software (Evans, 1985). The first stage of the project (Vanier, 1985), a feasibility study, deals with the aesthetics of the mode. It identifies two significant requirements for geometric modelling systems: the need for a comprehensive data structure and the requirement for realistic accuracies and tolerances. This chapter presents the results of the second phase of this geometric modelling project, which is the construction of 'working' and 'presentation' models for a building.
series CAAD Futures
email
last changed 2003/05/16 20:58

No more hits.

HOMELOGIN (you are user _anon_138297 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002