CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 113

_id cf2009_771
id cf2009_771
authors LaBelle, Guillaume; Nembrini, Julien and Huang, Jeffrey
year 2009
title Programming framework for architectural design ANAR+: Object oriented geometry
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 771- 785
summary From the recent advent of scripting tools integrated into commercial CAAD software and everyday design practice, the use of programming applied to an architectural design process becomes a necessary field of study. The presented research explores the use of programming as explorative and reflexive medium (Schön, 1983) through the development of a programming framework for architectural design. Based on Java, the ANAR+ library is a parametric geometry environment meant to be used as programming interface by designers. Form exploration strategies based on parametric variations depend on the internal logic description, a key role for form generation. In most commercial CAD software, geometric data structures are often predefined objects, thus constraining the form exploration, whereas digital architectural research and teaching are in need for an encompassing tool able to step beyond new software products limitations.
keywords Parametric design, programming language, architectural Geometry, pro-cessing
series CAAD Futures
email
last changed 2009/06/08 20:53

_id cf2009_poster_25
id cf2009_poster_25
authors Nembrini, Julien; Guillaume Labelle, Nathaniel Zuelzke, Mark Meagher and Jeffrey Huang
year 2009
title Source Studio: Teaching Programming For Architectural Design
source T. Tidafi and T. Dorta (eds) Joining Languages Cultures and Visions: CAADFutures 2009 CD-Rom
summary The architectural studio framework presented here is based on the use of programming as central form generation reflexive medium (Schon, 1983). Its aim is to teach architectural design while introducing a different approach toward computer tools by enabling students to fully explore variations in their designs through the use of coding for form definition. It proposes the students to reflect on their design process through its confrontation to algorithmic formalization (Mitchell 1990). This results in exercising the synthetic re-thinking of their initial sketch intents to comply with the difficult task of fitting the language syntax. With the proliferation and constant replacement of computer tools among the architectural practice, a shift appears in the attitude towards introducing students to different tools: studio teaching is branded by specific software platforms advocated by the teaching team. A lack of generalized view, independent of commercial CAD software, is problematic for the definition of new teaching tools suited for this constantly evolving situation (Terzidis, 2006).
keywords Programming, studio teaching, scripting, parametric design
series CAAD Futures
type poster
last changed 2009/07/08 22:12

_id 0000
authors Bijl, Aart
year 1983
title Know Your Technology - Or: Can Computers Understand Designers?
source Proceedings of the International Conference eCAADe [European Computer Aided Architectural Design Education] Brussels (Belgium) 1983, pp. V.1-V.11
doi https://doi.org/10.52842/conf.ecaade.1983.x.t5s
summary Any great expansion of the population of computer users, embracing architects and other ordinary people, will happen only if we change from current computing technology to radically new software technology. Criteria for new technology are discussed, with reference to inadequacies of current technology; we should strive for computers that can understand people. Logic programming is described as one development towards this goal, illustrated by the example of Prolog serving as interpreter of user demands and supporting partial and changing logical models of user activity. Architects can choose computing options now that will put them on a path leading to future new technology. Choice is explained, favouring a software environment that is used by researchers and also supports immediate and practical computer applications. Lessons are drawn for architectural education, to prepare for change that will take place during a student's 40-year working life.
keywords Software Technology, Logic Programming
series eCAADe
last changed 2022/06/07 07:50

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id e806
authors Maver, T.W.
year 1987
title The New Studio: CAD and the Workstation - State of the Art
source Architectural Education and the Information Explosion [eCAADe Conference Proceedings] Zurich (Switzerland) 5-7 September 1987.
doi https://doi.org/10.52842/conf.ecaade.1987.x.g1r
summary This presentation draws on three main sources: (i) reportage of the ATHENA project at MIT, (ii) the experience of the author as a Professor of CAAD, (iii) the work of the eCAADe on the social impacts of CAAD. // Project ATHENA was introduced to MIT in May 1983 as an experiment in the potential uses of advanced computer technology throughout the University curriculum. By the end of the project a network of about 2000 high performance graphics workstations - supplied mainly by IBM and DEC - will have been installed; about half of MIT's $20 million investment is being devoted to the development of new applications software for teaching across almost all the academic Departments, including Architecture.

series eCAADe
email
last changed 2022/06/07 07:50

_id cf2009_poster_43
id cf2009_poster_43
authors Oh, Yeonjoo; Ellen Yi-Luen Do, Mark D Gross, and Suguru Ishizaki
year 2009
title Delivery Types And Communication Modalities In The Flat-Pack Furniture Design Critic
source T. Tidafi and T. Dorta (eds) Joining Languages Cultures and Visions: CAADFutures 2009 CD-Rom
summary A computer-based design critiquing system analyzes a proposed solution and offers critiques (Robbins 1998). Critiques help designers identify problems as well as opportunities to improve their designs. Compared with human critics, today’s computer-based critiquing systems deliver feedback in quite restricted manner. Most systems provide only negative evaluations in text; whereas studio teachers critique by interpreting the student’s design, introducing new ideas, demonstrating and giving examples, and offering evaluations (Bailey 2004; Uluoglu 2000) using speech, writing, and drawing to communicate (Anthony 1991; Schön 1983). This article presents a computer-based critiquing system, Flat-pack Furniture Design Critic (FFDC). This system supports multiple delivery types and modalities, adapting the typical system architecture of constraint-based intelligent tutors (Mitrovic et al. 2007).
keywords Critiquing system, design critiquing
series CAAD Futures
type poster
email
last changed 2009/07/08 22:12

_id 6eaa
authors O’Connell, Dermot
year 1983
title An Educational Strategy for CAAD and its Implementation in a New System with a Sophisticated Interface
source Proceedings of the International Conference eCAADe [European Computer Aided Architectural Design Education] Brussels (Belgium) 1983, pp. I.1-I.19
doi https://doi.org/10.52842/conf.ecaade.1983.x.i0c
summary Reasons are examined for the slower uptake of CAD in architecture than in engineering. An appropriate response to Computer-Aided Architectural Design is overdue from the educational sector. Schools of Architecture should put CAAD to the forefront in their plans, taking an ambitious long-term view and aiming for high-quality system design to anticipate the industry's drive to produce first-class equipment progressively more cheaply. Schools should press for changes in the way facilities are supplied to them. They should discard obsolete software, buy software commercially, stick to what they can do best, and plan for concomitant changes across the curriculum. A new CAAD system with the emphasis on the design interface being implemented in UCD School of Architecture is briefly described.
keywords CAAD, System Design
series eCAADe
last changed 2022/06/07 07:50

_id 0a6e
authors Walters, Roger
year 1986
title CAAD: Shorter-term Gains; Longerterm Costs?
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 185-196
summary Assessment of CAAD systems in use is complex: it needs careful qualifications and is often contradictory. It is suggested that little progress has been made in making sense of the impacts of computing on design and design organizations. Impacts are more diverse and complicated than has been assumed. Assessments tend to be either overtly optimistic or pessimistic, yet the need is to be realistic. Moreover, impacts have been the subject of speculation and marketing rather than systematic study. Carefully documented case studies of projects or longitudinal studies of organizational impacts remain the exception. This chapter draws upon recorded user experience reported elsewhere (Walters, 1983)' and presents an assessment of the performance in use of current production systems. It presents an end-user view and also identifies a number of outstanding design research topics It is suggested that different systems in different organizations in different settings will give rise to new impacts. A wide variety of outcomes is possible. It seems unlikely that any simple set of relationships can account for all the data that inquiry reveals. The task becomes one of identifying variables that lead to differential outcomes, as the same cause may lead to different effects (Attewell and Rule, 1984). This becomes a long-term task. Each optimistic impact may be countered by some other more pessimistic impact. Moreover, the changes brought about on design by computing are significant because both beneficial and non- beneficial impacts are present together. Impacts are held in a dynamic balance that is subject to constant evolution. This viewpoint accounts for otherwise conflicting conclusions. It is unlikely that the full range of impacts is yet known, and a wide range of impacts and outcomes already need to be taken into account. It seems that CAD alone cannot either guarantee improved design or that it inevitably leads to some diminished role for the designer. CAD can lead to either possible outcome, depending upon the particular combination of impacts present. Careful matching of systems to design organization and work environment is therefore needed. The design management role becomes crucial.
series CAAD Futures
last changed 1999/04/03 17:58

_id e7b8
authors Dahl, Veronica
year 1983
title Logic Programming as a Representation of Knowledge
source IEEE Computer. IEEE Computer Society, October, 1983. vol. 16: pp. 106-110 : ill. includes bibliography
summary Logic has traditionally provided a firm conceptual framework for representing knowledge. As it can formally deal with the notion of logical consequence, the introduction of Prolog has made it possible to represent knowledge in terms of logic and also to expect appropriate inferences to be drawn from it automatically. This article illustrates and explores these ideas with respect to two central representational issues: problem solving knowledge and database knowledge. The technical aspects of both subjects have been covered elsewhere (Kowalski, R. Logic for problem solving, North- Holland pub. 1979 ; Dahl, V. on database system development through logic ACM Trans.vol.7/no.3/Mar.1982 pp.102). This explanation uses simple, nontechnical terms
keywords PROLOG, knowledge, representation, logic, programming, problem solving, database
series CADline
last changed 1999/02/12 15:08

_id ecaade2009_123
id ecaade2009_123
authors Achten, Henri; Beetz, Jakob
year 2009
title What Happened to Collaborative Design?
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 357-366
doi https://doi.org/10.52842/conf.ecaade.2009.357
wos WOS:000334282200043
summary In this paper we present the results of a comprehensive literature survey on the development of collaborative design. We reviewed 324 papers on collaborative design, taken from various sources (conferences, journals, and PhD-theses). We grouped the papers based on common themes, and in that way derived a classification of themes through the last 25 years (1983-2008). Each category is described, its development, and key publications are identified.
keywords Collaborative design
series eCAADe
email
last changed 2022/06/07 07:54

_id e118
authors Balas, Egon
year 1983
title Disjunctive Programming and a Hierarchy of Relaxations for Discrete Optimization Problems
source December, 1983. 38 p. : ill. includes bibliography
summary The author discuss a new conceptual framework for the convexification of discrete optimization problems, and a general technique for obtaining approximations to the convex hull of the feasible set. The concepts come from disjunctive programming and the key tool is a description of the convex hull of a union of polyhedra in terms of a higher dimensional polyhedron. Although this description was known for several years, only recently was it shown by Jeroslow and Lowe to yield improved representations of discrete optimization problems. The author expresses the feasible set of a discrete optimization problem as the intersection (conjunction) of unions of polyhedra, and define an operation that takes one such expression into another, equivalent one, with fewer conjuncts. He then introduces a class of relaxations based on replacing each conjunct (union of polyhedra) by its convex hull. The strength of the relaxations increases as the number of conjuncts decreases, and the class of relaxations forms a hierarchy that spans the spectrum between the common linear programming relaxation, and the convex hull of the feasible set itself. Instances where this approach presents advantages include critical path problems in disjunctive graphs, network synthesis problems, certain fixed charge network flow problems, etc. The approach on the first of these problems is illustrated, which is a model for machine sequencing
keywords polyhedra, computational geometry, optimization, programming, convex hull, graphs
series CADline
last changed 1999/02/12 15:07

_id 86cb
authors Bell, John
year 1983
title Designers Get the Picture
source New Scientist March, 1983. pp. 815-[822] : col. ill.
summary One firm that had installed a CAD system is the Somerset Shoemaker Clarks Ltd. It took four years to develop the software that was developed by CADCenter in Cambridge. The article describes the program and the process of shoemaking
keywords CAD, practice, engineering
series CADline
last changed 1999/02/12 15:07

_id 0105
authors Bossan, Mario and Ronchi, Alfredo M.
year 1989
title Presentazione Esperienza Didattica del Dipartimento di Ingegneria dei Sistemi Edilizi e Territoriali - Politecnico di Milano
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.8.1-9.8.19
doi https://doi.org/10.52842/conf.ecaade.1989.x.x4i
summary Didactic and research experience developed at the "Dipartimento di Ingegneria dei Sistemi Edilizi e Territoriali del Politecnico di Milano" in the environment of Computer Aided Architectural Design (CAAD). From the early part of the 1980's, using initially at an experimental level the resources available at the departmental centre of calculation various applications of CAD techniques in the building sector have been effected at DISET (Dipartimento di Ingegneria del Politecnico di Milano). During 1983, after a three year period of experimenting with these systems, it was decided to organise and activate a small computer aided design centre, within the department, the use of which was reserved for dissertation and research students.

series eCAADe
email
last changed 2022/06/07 07:50

_id 8e02
authors Brown, A.G.P. and Coenen, F.P.
year 2000
title Spatial reasoning: improving computational efficiency
source Automation in Construction 9 (4) (2000) pp. 361-367
summary When spatial data is analysed the result is often very computer intensive: even by the standards of contemporary technologies, the machine power needed is great and the processing times significant. This is particularly so in 3-D and 4-D scenarios. What we describe here is a technique, which tackles this and associated problems. The technique is founded in the idea of quad-tesseral addressing; a technique, which was originally applied to the analysis of atomic structures. It is based on ideas concerning Hierarchical clustering developed in the 1960s and 1970s to improve data access time [G.M. Morton, A computer oriented geodetic database and a new technique on file sequencing, IBM Canada, 1996.], and on atomic isohedral (same shape) tiling strategies developed in the 1970s and 1980s concerned with group theory [B. Grunbaum, G.C. Shephard, Tilings and Patterns, Freeman, New York, 1987.]. The technique was first suggested as a suitable representation for GIS in the early 1980s when the two strands were brought together and a tesseral arithmetic applied [F.C. Holdroyd, The Geometry of Tiling Hierarchies, Ars Combanitoria 16B (1983) 211–244.; S.B.M. Bell, B.M. Diaz, F.C. Holroyd, M.J.J. Jackson, Spatially referenced methods of processing raster and vector data, Image and Vision Computing 1 (4) (1983) 211–220.; Diaz, S.B.M. Bell, Spatial Data Processing Using Tesseral Methods, Natural Environment Research Council, Swindon, 1986.]. Here, we describe how that technique can equally be applied to the analysis of environmental interaction with built forms. The way in which the technique deals with the problems described is first to linearise the three-dimensional (3-D) space being investigated. Then, the reasoning applied to that space is applied within the same environment as the definition of the problem data. We show, with an illustrative example, how the technique can be applied. The problem then remains of how to visualise the results of the analysis so undertaken. We show how this has been accomplished so that the 3-D space and the results are represented in a way which facilitates rapid interpretation of the analysis, which has been carried out.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 4b04
authors De Wilde, W.P., Mollaert, M. and Buelinckx, H. (Ed.)
year 1983
title Proceedings of the International Conference eCAADe 1983
source Proceedings of the International Conference eCAADe [European Computer Aided Architectural Design Education] Brussels (Belgium) 1983
doi https://doi.org/10.52842/conf.ecaade.1983
summary In the beginning of the eighties, a few enthusiastic researchers, under the impulsion of Tom MAVER (director of the ABACUS group) and Rik SCHIJF (TH Delft) initiated a regular, if not formal, convention of people involved in the teaching of computer aided architectural design ECAADE in Europe. In 1982 a first meeting took place in Delft and, taking into consideration the member of attendants and the enthusiasm during this convention, it was decided that CAAD was definitely an important topic and that a more formal symposium was to be organised in the fall of 1983, in the University of Brussels.

The positive evolution of CAAD, not only in educational institutions, but also in professional practice is not surprising: it is to be considered in the global frame of technological and organisational revolution actually taking place. As will be read in the outstanding contribution of the participants it is not a mere choice of increased productivity which attracts the architects; the CAAD techniques also release then from a serious burden : the production of technical drawings and administrative paperwork!

series eCAADe
email
more http://wwwtw.vub.ac.be/ond/memc/Staff/Patrick.htm
last changed 2022/06/07 07:49

_id 0faa
authors Duelund Mortensen, Peder
year 1991
title THE FULL-SCALE MODEL WORKSHOP
source Proceedings of the 3rd European Full-Scale Modelling Conference / ISBN 91-7740044-5 / Lund (Sweden) 13-16 September 1990, pp. 10-11
summary The workshop is an institution, available for use by the public and established at the Laboratory of Housing in the Art Academy's school of Architecture for a 3 year trial period beginning April 1985. This resumé contains brief descriptions of a variety of representative model projects and an overview of all projects carried out so far, including the pilot projects from 1983 and planned projects to and including January 1987. The Full Scale Model Workshop builds full size models of buildings, rooms and parts of buildings. The purpose of the Full Scale Model Workshop is to promote communication among building's users. The workshop is a tool in an attempt to build bridges between theory and practice in research, experimentation and communication of research results. New ideas and experiments of various sorts can be tried out cheaply, quickly and efficiently through the building of full scale models. Changes can be done on the spot as a planned part of the project and on the basis of ideas and experiments achieved through the model work itself. Buildings and their space can thus be communicated directly to all involved persons, regardless of technical background or training in evaluation of building projects.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:23

_id e8c7
authors Feigenbaum, Edward A. and McCorduck, Pamela
year 1983
title The Fifth Generation : Artificial Intelligence and Japan's Computer Challenge to the World
source ix, 275 p. Reading, Mass.: Addison- Wesley Pub. Co., 1983. includes bibliography: p. 268
summary Knowledge is the future power and Japan wants to be the first in developing and marketing the Fifth Generation of computers
keywords What is The Fifth Generation? Why Japan ? and how would it affect the Western world? expert systems, hardware, AI
series CADline
last changed 2003/06/02 10:24

_id 620a
authors Galle, Per
year 1983
title A Theorem Relating to Exhaustive Generation of Floor Plans
source Bulletin of Computer Aided Architectural Design. May, 1983. pp. 30-33 : ill
summary Many problems arise in connection with automated design of architectural floor plans. If modular grids are used, one problem is to avoid repeated generation of the same plan on different modular grids. Using the concept of 'modular complexity,' the paper presents and proves a theorem which offers a solution to this problem
keywords automation, design, planning, architecture, floor plans, grids, search, synthesis
series CADline
last changed 1999/02/12 15:08

_id 4052
authors Gero, John S., Akiner , Tuncer V. and Radford, Antony D.
year 1983
title What's What and What's Where : Knowledge Engineering in the Representation of Building by Computer
source 1983. 205-215 pp. : ill. floor planes. include a short bibliography
summary Knowledge engineering allows for the encoding of both numeric and symbolic knowledge as inferences. It provides a fundamentally different means of representing buildings than do traditional data structures and databases. A prototypical knowledge engineering reasoning system which reasons about topological relationships, geometric entities and attributes of buildings is described. It is applied in the analysis of an existing small hotel. Using knowledge engineering we can expect future CAAD system to be different to the one with which we have become familiar
keywords building, representation, reasoning, knowledge, analysis, evaluation, systems
series CADline
email
last changed 2003/06/02 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5HOMELOGIN (you are user _anon_236556 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002