CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 143

_id 020d
authors Shaviv, Edna
year 1986
title Layout Design Problems: Systematic Approaches
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 28-52
summary The complexity of the layout design problems known as the 'spatial allocation problems' gave rise to several approaches, which can be generally classified into two main streams. The first attempts to use the computer to generate solutions of the building layout, while in the second, computers are used only to evaluate manually generated solutions. In both classes the generation or evaluation of the layout are performed systematically. Computer algorithms for 'spatial allocation problems' first appeared more than twenty-five years ago (Koopmans, 1957). From 1957 to 1970 over thirty different programs were developed for generating the floor plan layout automatically, as is summarized in CAP-Computer Architecture Program, Vol. 2 (Stewart et al., 1970). It seems that any architect who entered the area of CAAD felt that it was his responsibility to find a solution to this prime architectural problem. Most of the programs were developed for batch processing, and were run on a mainframe without any sophisticated input/output devices. It is interesting to mention that, because of the lack of these sophisticated input/output devices, early researchers used the approach of automatic generation of optimal or quasioptimal layout solution under given constraints. Gradually, we find a recession and slowdown in the development of computer programs for generation of layout solutions. With the improvement of interactive input/output devices and user interfaces, the inclination today is to develop integrated systems in which the architectural solution is obtained manually by the architect and is introduced to the computer for the appraisal of the designer's layout solution (Maver, 1977). The manmachine integrative systems could work well, but it seems that in most of the integrated systems today, and in the commercial ones in particular, there is no route to any appraisal technique of the layout problem. Without any evaluation techniques in commercial integrated systems it seems that the geometrical database exists Just to create working drawings and sometimes also perspectives.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 78ca
authors Friedland, P. (Ed.)
year 1985
title Special Section on Architectures for Knowledge-Based Systems
source CACM (28), 9, September
summary A fundamental shift in the preferred approach to building applied artificial intelligence (AI) systems has taken place since the late 1960s. Previous work focused on the construction of general-purpose intelligent systems; the emphasis was on powerful inference methods that could function efficiently even when the available domain-specific knowledge was relatively meager. Today the emphasis is on the role of specific and detailed knowledge, rather than on reasoning methods.The first successful application of this method, which goes by the name of knowledge-based or expert-system research, was the DENDRAL program at Stanford, a long-term collaboration between chemists and computer scientists for automating the determination of molecular structure from empirical formulas and mass spectral data. The key idea is that knowledge is power, for experts, be they human or machine, are often those who know more facts and heuristics about a domain than lesser problem solvers. The task of building an expert system, therefore, is predominantly one of teaching" a system enough of these facts and heuristics to enable it to perform competently in a particular problem-solving context. Such a collection of facts and heuristics is commonly called a knowledge base. Knowledge-based systems are still dependent on inference methods that perform reasoning on the knowledge base, but experience has shown that simple inference methods like generate and test, backward-chaining, and forward-chaining are very effective in a wide variety of problem domains when they are coupled with powerful knowledge bases. If this methodology remains preeminent, then the task of constructing knowledge bases becomes the rate-limiting factor in expert-system development. Indeed, a major portion of the applied AI research in the last decade has been directed at developing techniques and tools for knowledge representation. We are now in the third generation of such efforts. The first generation was marked by the development of enhanced AI languages like Interlisp and PROLOG. The second generation saw the development of knowledge representation tools at AI research institutions; Stanford, for instance, produced EMYCIN, The Unit System, and MRS. The third generation is now producing fully supported commercial tools like KEE and S.1. Each generation has seen a substantial decrease in the amount of time needed to build significant expert systems. Ten years ago prototype systems commonly took on the order of two years to show proof of concept; today such systems are routinely built in a few months. Three basic methodologies-frames, rules, and logic-have emerged to support the complex task of storing human knowledge in an expert system. Each of the articles in this Special Section describes and illustrates one of these methodologies. "The Role of Frame-Based Representation in Reasoning," by Richard Fikes and Tom Kehler, describes an object-centered view of knowledge representation, whereby all knowldge is partitioned into discrete structures (frames) having individual properties (slots). Frames can be used to represent broad concepts, classes of objects, or individual instances or components of objects. They are joined together in an inheritance hierarchy that provides for the transmission of common properties among the frames without multiple specification of those properties. The authors use the KEE knowledge representation and manipulation tool to illustrate the characteristics of frame-based representation for a variety of domain examples. They also show how frame-based systems can be used to incorporate a range of inference methods common to both logic and rule-based systems.""Rule-Based Systems," by Frederick Hayes-Roth, chronicles the history and describes the implementation of production rules as a framework for knowledge representation. In essence, production rules use IF conditions THEN conclusions and IF conditions THEN actions structures to construct a knowledge base. The autor catalogs a wide range of applications for which this methodology has proved natural and (at least partially) successful for replicating intelligent behavior. The article also surveys some already-available computational tools for facilitating the construction of rule-based knowledge bases and discusses the inference methods (particularly backward- and forward-chaining) that are provided as part of these tools. The article concludes with a consideration of the future improvement and expansion of such tools.The third article, "Logic Programming, " by Michael Genesereth and Matthew Ginsberg, provides a tutorial introduction to the formal method of programming by description in the predicate calculus. Unlike traditional programming, which emphasizes how computations are to be performed, logic programming focuses on the what of objects and their behavior. The article illustrates the ease with which incremental additions can be made to a logic-oriented knowledge base, as well as the automatic facilities for inference (through theorem proving) and explanation that result from such formal descriptions. A practical example of diagnosis of digital device malfunctions is used to show how significantand complex problems can be represented in the formalism.A note to the reader who may infer that the AI community is being split into competing camps by these three methodologies: Although each provides advantages in certain specific domains (logic where the domain can be readily axiomatized and where complete causal models are available, rules where most of the knowledge can be conveniently expressed as experiential heuristics, and frames where complex structural descriptions are necessary to adequately describe the domain), the current view is one of synthesis rather than exclusivity. Both logic and rule-based systems commonly incorporate frame-like structures to facilitate the representation of large amounts of factual information, and frame-based systems like KEE allow both production rules and predicate calculus statements to be stored within and activated from frames to do inference. The next generation of knowledge representation tools may even help users to select appropriate methodologies for each particular class of knowledge, and then automatically integrate the various methodologies so selected into a consistent framework for knowledge. "
series journal paper
last changed 2003/04/23 15:14

_id cf2015_005
id cf2015_005
authors Celani, Gabriela; Sperling, David M. and Franco, Juarez M. S. (eds.)
year 2015
title Preface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 5-13.
summary Since 1985 the Computer-Aided Architectural Design Futures Foundation has fostered high level discussions about the search for excellence in the built environment through the use of new technologies with an exploratory and critical perspective. In 2015, the 16th CAAD Futures Conference was held, for the first time, in South America, in the lively megalopolis of Sao Paulo, Brazil. In order to establish a connection to local issues, the theme of the conference was "The next city". The city of Sao Paulo was torn down and almost completely rebuilt twice, from the mid 1800s to the mid 1900s, evolving from a city built in rammed-earth to a city built in bricks and then from a city built in bricks to a city built in concrete. In the 21st century, with the widespread use of digital technologies both in the design and production of buildings, cities are changing even faster, in terms of layout, materials, shapes, textures, production methods and, above all, in terms of the information that is now embedded in built systems.Among the 200 abstracts received in the first phase, 64 were selected for presentation in the conference and publication in the Electronic Proceedings, either as long or short papers, after 3 tough evaluation stages. Each paper was reviewed by at least three different experts from an international committee of more than 80 highly experienced researchers. The authors come from 23 different countries. Among all papers, 10 come from Latin-American institutions, which have been usually under-represented in CAAD Futures. The 33 highest rated long papers are also being published in a printed book by Springer. For this reason, only their abstracts were included in this Electronic Proceedings, at the end of each chapter.The papers in this book have been organized under the following topics: (1) modeling, analyzing and simulating the city, (2) sustainability and performance of the built environment, (3) automated and parametric design, (4) building information modeling (BIM), (5) fabrication and materiality, and (6) shape studies. The first topic includes papers describing different uses of computation applied to the study of the urban environment. The second one represents one of the most important current issues in the study and design of the built environment. The third topic, automated and parametric design, is an established field of research that is finally becoming more available to practitioners. Fabrication has been a hot topic in CAAD conferences, and is becoming ever more popular. This new way of making design and buildings will soon start affecting the way cities look like. Finally, shape studies are an established and respected field in design computing that is traditionally discussed in CAAD conferences.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id 02c6
authors Wheeler, B.J.Q
year 1986
title A Unified Model for Building
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 200-231
summary It is commonly recognized that the time-honoured procedure for preparing an architectural design for building on site is inefficient. Each member of a team of consultant professionals makes an independently documented contribution. For a typical project involving an architect and structural, electrical, mechanical and public services engineers there will be at least five separate sets of general- arrangement drawings, each forming a model of the building, primarily illustrating one discipline but often having to include elements of others in order to make the drawing readable. For example, an air-conditioning duct-work layout is more easily understood when superimposed on the room layout it serves which the engineer is not responsible for but has to understand. Both during their parallel evolution and later, when changes have to be made during the detailed design and production drawing stages, it is difficult and time consuming to keep all versions coordinated. Complete coordination is rarely achieved in time, and conflicts between one discipline and another have to be rectified when encountered on site with resulting contractual implications. Add the interior designer, the landscape architect and other specialized consultants at one end of the list and contractors' shop drawings relating to the work of all the consultants at the other, and the number of different versions of the same thing grows, escalating the concomitant task of coordination. The potential for disputes over what is the current status of the design is enormous, first, amongst the consultants and second, between the consultants and the contractor. When amendments are made by one party, delay and confusion tend to follow during the period it takes the other parties to update their versions to include them. The idea of solving this problem by using a common computer-based model which all members of the project team can directly contribute to is surely a universally assumed goal amongst all those involved in computer-aided building production. The architect produces a root drawing or model, the 'Architect's base plan', to which the other consultants have read-only access and on top of which they can add their own write-protected files. Every time they access the model to write in the outcome of their work on the project they see the current version of the 'Architect's base plan' and can thus respond immediately to recent changes and avoid wasting time on redundant work. The architect meanwhile adds uniquely architectural material in his own overlaid files and maintains the root model as everybody's work requires. The traditional working pattern is maintained while all the participants have the ability to see their colleagues, work but only make changes to those parts for which they are responsible.
series CAAD Futures
last changed 1999/04/03 17:58

_id cd92
authors Pavlidis, Theo and Van Wyk, Christopher J.
year 1985
title An Automatic Beautifier for Drawings and Illustrations
source SIGGRAPH '85 Conference Proceedings. July, 1985. vol. 19 ; no. 3: pp. 225- 230. includes bibliography
summary A method for inferring constraints that are desirable for a given (rough) drawing and then modifying the drawing to satisfy the constraints wherever possible, is described. The method has been implemented as part of an online graphics editor running under the UNIX operating system and it has undergone modifications in response to user input. Although the framework discussed is general, the current implementation is polygon-oriented. The relations examined are: approximate equality of the slope or length of sides, collinearity of sides, and vertical and horizontal alignment of points
keywords drafting, computer graphics, algorithms
series CADline
last changed 2003/06/02 13:58

_id 8ae8
authors Ayala, D., P. Brunet and Juan (et al)
year 1985
title Object Representation by Means of Nominimal Division Quadtrees and Octrees
source ACM Transactions on Graphics. January, 1985. vol. 4: pp. 41-59 : ill. includes bibliography
summary Quadtree representation of two-dimensional objects is performed with a tree that describes the recursive subdivision of the more complex parts of a picture until the desired resolution is reached. At the end, all the leaves of the tree are square cells that lie completely inside or outside the object. There are two great disadvantages in the use of quadtrees as a representation scheme for objects in geometric modeling system: The amount of memory required for polygonal objects is too great, and it is difficult to recompute the boundary representation of the object after some Boolean operations have been performed. In the present paper a new class of quadtrees, in which nodes may contain zero or one edge, is introduced. By using these quadtrees, storage requirements are reduced and it is possible to obtain the exact backward conversion to boundary representation. Algorithms for the generation of the quadtree, boolean operation, and recomputation of the boundary representation are presented, and their complexities in time and space are discussed. Three- dimensional algorithms working on octrees are also presented. Their use in the geometric modeling of three-dimensional polyhedral objects is discussed
keywords geometric modeling, algorithms, octree, quadtree, curves, curved surfaces, boolean operations
series CADline
last changed 2003/06/02 13:58

_id ga0024
id ga0024
authors Ferrara, Paolo and Foglia, Gabriele
year 2000
title TEAnO or the computer assisted generation of manufactured aesthetic goods seen as a constrained flux of technological unconsciousness
source International Conference on Generative Art
summary TEAnO (Telematica, Elettronica, Analisi nell'Opificio) was born in Florence, in 1991, at the age of 8, being the direct consequence of years of attempts by a group of computer science professionals to use the digital computers technology to find a sustainable match among creation, generation (or re-creation) and recreation, the three basic keywords underlying the concept of “Littérature potentielle” deployed by Oulipo in France and Oplepo in Italy (see “La Littérature potentielle (Créations Re-créations Récréations) published in France by Gallimard in 1973). During the last decade, TEAnO has been involving in the generation of “artistic goods” in aesthetic domains such as literature, music, theatre and painting. In all those artefacts in the computer plays a twofold role: it is often a tool to generate the good (e.g. an editor to compose palindrome sonnets of to generate antonymic music) and, sometimes it is the medium that makes the fruition of the good possible (e.g. the generator of passages of definition literature). In that sense such artefacts can actually be considered as “manufactured” goods. A great part of such creation and re-creation work has been based upon a rather small number of generation constraints borrowed from Oulipo, deeply stressed by the use of the digital computer massive combinatory power: S+n, edge extraction, phonetic manipulation, re-writing of well known masterpieces, random generation of plots, etc. Regardless this apparently simple underlying generation mechanisms, the systematic use of computer based tools, as weel the analysis of the produced results, has been the way to highlight two findings which can significantly affect the practice of computer based generation of aesthetic goods: ? the deep structure of an aesthetic work persists even through the more “desctructive” manipulations, (such as the antonymic transformation of the melody and lyrics of a music work) and become evident as a sort of profound, earliest and distinctive constraint; ? the intensive flux of computer generated “raw” material seems to confirm and to bring to our attention the existence of what Walter Benjamin indicated as the different way in which the nature talk to a camera and to our eye, and Franco Vaccari called “technological unconsciousness”. Essential references R. Campagnoli, Y. Hersant, “Oulipo La letteratura potenziale (Creazioni Ri-creazioni Ricreazioni)”, 1985 R. Campagnoli “Oupiliana”, 1995 TEAnO, “Quaderno n. 2 Antologia di letteratura potenziale”, 1996 W. Benjiamin, “Das Kunstwerk im Zeitalter seiner technischen Reprodizierbarkeit”, 1936 F. Vaccari, “Fotografia e inconscio tecnologico”, 1994
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id c361
authors Logan, Brian S.
year 1986
title Representing the Structure of Design Problems
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 158-170
summary In recent years several experimental CAD systems have emerged which, focus specifically on the structure of design problems rather than on solution generation or appraisal (Sussman and Steele, 1980; McCallum, 1982). However, the development of these systems has been hampered by the lack of an adequate theoretical basis. There is little or no argument as to what the statements comprising these models actually mean, or on the types of operations that should be provided. This chapter describes an attempt to develop a semantically adequate basis for a model of the structure of design problems and presents a representation of this model in formal logic.
series CAAD Futures
last changed 1999/04/03 17:58

_id 8f9d
authors Wolchko, Matthew J.
year 1985
title Strategies Toward Architectural Knowledge Engineering
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 69-82
doi https://doi.org/10.52842/conf.acadia.1985.069
summary Conventional CAD-drafting systems become more powerful modeling tools with the addition of a linked attribute spreadsheet module. This affords the designer the ability to make design decisions not only in the graphic environment, but also as a consequence of quantitative design constraints made apparent in the spreadsheet. While the spreadsheet interface is easily understood by the user, it suffers from two limitations: it lacks a variety of functional capabilities that would enable it to solve more complex design tasks; also, it can only report on existing conditions in the graphic environment. A proposal is made for the enhancement of the spreadsheet's programming power, creating an interface for the selection of program modules that can solve various architectural design tasks. Due to the complexity and graphic nature of architectural design, it is suggested that both procedural and propositional programming methods be used in concert within such a system. In the following, a suitable design task (artificial illumination-reflected ceiling layout) is selected, and then decomposed into two parts: the quantitative analysis (via the application of a procedural programming algorithm), and a logical model generation using shape grammar rules in a propositional framework.
series ACADIA
last changed 2022/06/07 07:57

_id 678e
authors Aish, Robert
year 1986
title Three-dimensional Input and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 68-84
summary The aim of this chapter is to investigate techniques by which man-computer interaction could be improved, specifically in the context of architectural applications of CAD. In this application the object being designed is often an assembly of defined components. Even if the building is not actually fabricated from such components, it is usually conceptualized in these terms. In a conventional graphics- based CAD system these components are usually represented by graphical icons which are displayed on the graphics screen and arranged by the user. The system described here consists of three- dimensional modelling elements which the user physically assembles to form his design. Unlike conventional architectural models which are static (i.e. cannot be changed by the users) and passive (i.e. cannot be read by a CAD system), this model is both 'user generated' and 'machine readable'. The user can create, edit and view the model by simple, natural modelling activities and without the need to learn complex operating commands often associated with CAD systems. In particular, the user can view the model, altering his viewpoint and focus of attention in a completely natural way. Conventional computer graphics within an associated CAD system are used to represent the detailed geometry which the different three-dimensional icons may represent. In addition, computer graphics are also used to present the output of the performance attributes of the objects being modelled. In the architectural application described in this chapter an energy- balance evaluation is displayed for a building designed using the modelling device. While this system is not intended to offer a completely free-form input facility it can be considered to be a specialist man-machine interface of particular relevance to architects or engineers.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id acfe
authors Archea, John
year 1985
title Architecture's Unique Position Among the Disciplines : Puzzle-Making vs. Problem Solving
source CRIT XV, The Architectural Student Journal. Summer, 1985. pp. 20-22
summary Most disciplines involved in the building process, i.e., programmers, space planners, and engineers work in what may be described as a problem solving mode. They state desired effects as explicit performance criteria before they initiate a decision process and test alternative solutions against those criteria until a fit is attained which falls within known probabilities of success. Architects, however are not problem solvers and they are not seeking explicit information when they design how buildings work. Architects are puzzle- makers, They are primarily concerned with unique design concepts. It is through the act of designing, or puzzle- making, that the architect learn what they want to accomplish and how. With regard to the making of buildings, places or experiences, the architect is a puzzle-maker surrounded by a group of problem solvers who address separate pieces of the puzzle
keywords puzzle making, design process, problem solving, architecture
series CADline
last changed 1999/02/12 15:07

_id fe6c
authors Clark, R.H. and Pause, M.
year 1985
title Precedents in architecture
source Van Nostrand Reinhold, New York
summary Precedents in Architecture provides a vocabulary for architectural analysis that will help you understand the works of others, and aid you in creating your own designs. Here, you will examine the work of internationally known architects with the help of a unique diagrammatic technique, which you can also use to analyze existing buildings. In addition to the sixteen original contributors, the Second Edition features seven new, distinguished architects. All 23 architects were selected because of the strength, quality, and interest of their designs. Precedents in Architecture, 2/e is an invaluable resource offering: * Factual graphic information on 88 buildings that represent a range of time, function, and style accompanied by detailed analysis of each building * A reference for a technique of graphic analysis as a tool for understanding and designing architecture Whether you are a novice or a seasoned professional, Precedents in Architecture, 2/e will enrich your design vocabulary and give you an invaluable tool for the ongoing assessment of buildings you encounter every day.
series other
last changed 2003/04/23 15:14

_id 0faa
authors Duelund Mortensen, Peder
year 1991
title THE FULL-SCALE MODEL WORKSHOP
source Proceedings of the 3rd European Full-Scale Modelling Conference / ISBN 91-7740044-5 / Lund (Sweden) 13-16 September 1990, pp. 10-11
summary The workshop is an institution, available for use by the public and established at the Laboratory of Housing in the Art Academy's school of Architecture for a 3 year trial period beginning April 1985. This resumé contains brief descriptions of a variety of representative model projects and an overview of all projects carried out so far, including the pilot projects from 1983 and planned projects to and including January 1987. The Full Scale Model Workshop builds full size models of buildings, rooms and parts of buildings. The purpose of the Full Scale Model Workshop is to promote communication among building's users. The workshop is a tool in an attempt to build bridges between theory and practice in research, experimentation and communication of research results. New ideas and experiments of various sorts can be tried out cheaply, quickly and efficiently through the building of full scale models. Changes can be done on the spot as a planned part of the project and on the basis of ideas and experiments achieved through the model work itself. Buildings and their space can thus be communicated directly to all involved persons, regardless of technical background or training in evaluation of building projects.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:23

_id 0551
authors Haller, Fritz
year 1985
title The Design of Buildings Which Have Complex Mechanical Infrastructure Using Expert Systems
source 1985? 24 p. : ill. Co-authored by several contributors. Includes bibliography
summary The paper presents a project whose aim is to find better methods for the design of buildings like laboratories, office buildings, schools, hospitals etc., which have complex mechanical systems. The design of the mechanical infrastructure in such buildings is as important as the design of other architectural or construction parts. The fundamental idea of the project is to integrate design problems of the mechanical system into the design of the architectural and structural concepts of the entire building. This is based on the belief that using an expert system containing computer programs for the solution of design problems can support the whole design process and that the design of buildings having complex mechanical infrastructure can be qualitatively better and more efficient than the design with traditional methods
keywords architecture, expert systems, mechanical, systems, applications, design, building, construction
series CADline
last changed 1999/02/12 15:08

_id 0e5e
authors Kociolek, A.
year 1986
title CAD in Polish Building
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 235-245
summary There is little CAAD in Polish architectural design offices, and only recently have practising architects discovered the computer. On the other hand, CAAD has been used for some time in research and development based at universities or in large design organizations. This chapter gives a broad picture of the computerization of building design in Poland, a complex process which concerns planning and financing, hardware, software, CAD practice, standardization, training, education, etc. Here architectural applications are treated on an equal basis, together with other applications representing design disciplines involved in design, such as structural and mechanical engineering. The underlying philosophy of this chapter is a belief that proper and well-balanced computerization of design in building which leaves creative work to human beings should result in better design and eventually in improvements in the built environment. Therefore integration of the design process in building seems more important for design practice than attempts to replace an architect by a computer, although the intellectual attraction of this problem is recognized.
series CAAD Futures
last changed 1999/04/03 17:58

_id e02f
authors Lenart, Mihaly
year 1985
title The Design of Buildings which Have Complex Mechanical Infrastructure using Expert Systems
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 52-68
doi https://doi.org/10.52842/conf.acadia.1985.052
summary This paper presents a project under development at the University of Karlsruhe in which the author took part for two years. The aim of this project which was supported by the German Research Association (Deutsche Forschungsgemeinschaft) is to find better methods for the design of buildings having complex mechanical systems like laboratories, office buildings, schools, hospitals. etc. The design of the mechanical infrastructure in such buildings is as important as the design of other architectural or construction parts. The fundamental idea of the project is to consider design problems of the mechanical system as part of the design of the architectural and structural concepts of the entire building. This is based on the belief that the use of an expert system containing computer programs for the solution of design problems can support the whole design procedure and that the design of buildings having complex mechanical infrastructure can be qualitatively better and more efficient than the design with traditional methods.

series ACADIA
last changed 2022/06/07 07:52

_id 4e29
authors Gero, John S. and Coyne, Richard D.
year 1985
title Logic Programming As a Means of Representing Semantics in Design Languages
source Environment and Planning B. 1985. vol. 12: pp. 351-369 : ill. includes bibliography
summary Logic programming is discussed as a method for representing aspects of design language: Descriptions of designs domain knowledge, transformation rules, design grammar and control mechanisms necessary to implement rules. The applicability of logic programming to the representation of semantics in design is also explored. Control at the semantic level provides a means of directing the automated generation of designs. Examples are drawn from a rule-based design system written in the logic programming language PROLOG
keywords PROLOG, logic, programming, design, shape grammars, semantics, languages, representation
series CADline
email
last changed 2003/05/17 10:17

_id 07c6
authors Kalay, Y.E., Harfmann, A.C. and Swerdloff, L.M.
year 1985
title ALEX: A Knowledge-Based Architectural Design System
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 96-108
doi https://doi.org/10.52842/conf.acadia.1985.096
summary A methodology for the development of a knowledge-based computer-aided design system and its experimental application in the domain of single family house design are presented.

The methodology involves integrating within a unified design environment, tools and techniques that have been independently developed in various disciplines (including knowledge representation, information management, geometric modeling, human,machine interface, and architectural design). By assuming the role of active design partners, the resulting systems are expected to increase the productivity of designers, improve the quality of their products, and reduce cost and lead time of the design process as a whole.

ALEX (Architecture Learning Expert), a particular application of this methodology, is a prototype knowledge-based CAD system in the domain of single family house design. It employs user-interactive, goal directed heuristic search strategies in a solution space that consists of a network of objects. Message-based change propagation techniques, guided by domain-specific knowledge, are used to ensure database integrity and well-formedness.

The significance of the methodology and its application is threefold: it furthers our knowledge of the architectural design process, explores the utilization of knowledge engineering methods in design, and serves as a prototype for developing the next generation of computer-aided architectural design systems.

series ACADIA
email
last changed 2022/06/07 07:52

_id 6db4
authors Karakatsanis, Andreas Georgiou
year 1985
title Floder: A Floor Designer Expert System
source Department of Civil Engineering, Carnegie Mellon University, Pittsburgh PA
summary The use of computers in structural design for the last two decades has been limited to algorithmic and procedural tasks. The use of expert system environments facilitates the implementation of conceptual tasks in computer programs. The goal of this study is to develop an expert system for the structural design of floor framings. FLODER, the resulting expert system, generates, analyzes, and evaluates floor framings for a given architectural plan. Framing generation consists of determination of the locations of structural elements in the architectural plan. Analysis involves an approximation of the dimensions of the slabs. Evaluation numerically ranks all generated framings using heuristic features for the alternatives. FLODER is implemented in OPS5 and LISP. The primary representations used are OPS5 production rules for the knowledge-base, and OPS5 working memory elements, for the context. Tasks amenable to algorithmic approaches are implemented in LISP. FLODER, even in its present state, can be viewed as a useful assistant to a designer. It can rapidly generate and evaluate alternative framings for a given architectural plan and thus increase the work productivity of its users [includes bibliography].
keywords Knowledge Base, Systems, Design, Architecture, Civil Engineering, Representation, Expert Systems, Floor Plans, Synthesis, Structures
series CADline
last changed 1999/02/15 15:27

_id a127
authors Rasdorf, William J. and Salley, George C.
year 1985
title Generative Engineering Databases - Toward Expert Systems
source Computers and Structures. Pergamon Press, 1985. vol. 22: pp. 11-15
summary CADLINE has abstract only. Engineering data management, incorporating concepts of optimization with data representation, is receiving increasing attention. Research in this area promises advantages for many engineering applications, particularly those which use data innovatively. This paper presents a framework for a comprehensive, relational database management system that combines a knowledge base (KB) of design constraints with a database (DB) of engineering data items to achieve a 'generative database' - one which automatically generates new engineering design data according to the design constraints stored in the knowledge base. Thus, in addition to the designer and engineering design and analysis application programs, the database itself contributes to the design process. The KB/DB framework proposed here requires a database that is able to store all of the data normally associated with engineering design and to accurately represent the interactions between constraints and the stored data while guaranteeing its integrity. The framework also requires a knowledge base that is able to store all the constraints imposed upon the engineering design process. The goal sought is a central integrated repository of data, supporting interfaces to a wide variety of application programs and supporting processing capabilities for maintaining integrity while generating new data. The resulting system permits the unaided generation of constrained data values, thereby serving as an active design assistant. This paper suggests this new conceptual framework as a means of improving engineering data representation, generation, use, and management
keywords management, optimization, synthesis, database, expert systems, civil engineering
series CADline
last changed 2003/06/02 10:24

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_421336 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002