CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 145

_id cd92
authors Pavlidis, Theo and Van Wyk, Christopher J.
year 1985
title An Automatic Beautifier for Drawings and Illustrations
source SIGGRAPH '85 Conference Proceedings. July, 1985. vol. 19 ; no. 3: pp. 225- 230. includes bibliography
summary A method for inferring constraints that are desirable for a given (rough) drawing and then modifying the drawing to satisfy the constraints wherever possible, is described. The method has been implemented as part of an online graphics editor running under the UNIX operating system and it has undergone modifications in response to user input. Although the framework discussed is general, the current implementation is polygon-oriented. The relations examined are: approximate equality of the slope or length of sides, collinearity of sides, and vertical and horizontal alignment of points
keywords drafting, computer graphics, algorithms
series CADline
last changed 2003/06/02 13:58

_id 020d
authors Shaviv, Edna
year 1986
title Layout Design Problems: Systematic Approaches
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 28-52
summary The complexity of the layout design problems known as the 'spatial allocation problems' gave rise to several approaches, which can be generally classified into two main streams. The first attempts to use the computer to generate solutions of the building layout, while in the second, computers are used only to evaluate manually generated solutions. In both classes the generation or evaluation of the layout are performed systematically. Computer algorithms for 'spatial allocation problems' first appeared more than twenty-five years ago (Koopmans, 1957). From 1957 to 1970 over thirty different programs were developed for generating the floor plan layout automatically, as is summarized in CAP-Computer Architecture Program, Vol. 2 (Stewart et al., 1970). It seems that any architect who entered the area of CAAD felt that it was his responsibility to find a solution to this prime architectural problem. Most of the programs were developed for batch processing, and were run on a mainframe without any sophisticated input/output devices. It is interesting to mention that, because of the lack of these sophisticated input/output devices, early researchers used the approach of automatic generation of optimal or quasioptimal layout solution under given constraints. Gradually, we find a recession and slowdown in the development of computer programs for generation of layout solutions. With the improvement of interactive input/output devices and user interfaces, the inclination today is to develop integrated systems in which the architectural solution is obtained manually by the architect and is introduced to the computer for the appraisal of the designer's layout solution (Maver, 1977). The manmachine integrative systems could work well, but it seems that in most of the integrated systems today, and in the commercial ones in particular, there is no route to any appraisal technique of the layout problem. Without any evaluation techniques in commercial integrated systems it seems that the geometrical database exists Just to create working drawings and sometimes also perspectives.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id a6f1
authors Bridges, A.H.
year 1986
title Any Progress in Systematic Design?
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 5-15
summary In order to discuss this question it is necessary to reflect awhile on design methods in general. The usual categorization discusses 'generations' of design methods, but Levy (1981) proposes an alternative approach. He identifies five paradigm shifts during the course of the twentieth century which have influenced design methods debate. The first paradigm shift was achieved by 1920, when concern with industrial arts could be seen to have replaced concern with craftsmanship. The second shift, occurring in the early 1930s, resulted in the conception of a design profession. The third happened in the 1950s, when the design methods debate emerged; the fourth took place around 1970 and saw the establishment of 'design research'. Now, in the 1980s, we are going through the fifth paradigm shift, associated with the adoption of a holistic approach to design theory and with the emergence of the concept of design ideology. A major point in Levy's paper was the observation that most of these paradigm shifts were associated with radical social reforms or political upheavals. For instance, we may associate concern about public participation with the 1970s shift and the possible use (or misuse) of knowledge, information and power with the 1980s shift. What has emerged, however, from the work of colleagues engaged since the 1970s in attempting to underpin the practice of design with a coherent body of design theory is increasing evidence of the fundamental nature of a person's engagement with the design activity. This includes evidence of the existence of two distinctive modes of thought, one of which can be described as cognitive modelling and the other which can be described as rational thinking. Cognitive modelling is imagining, seeing in the mind's eye. Rational thinking is linguistic thinking, engaging in a form of internal debate. Cognitive modelling is externalized through action, and through the construction of external representations, especially drawings. Rational thinking is externalized through verbal language and, more formally, through mathematical and scientific notations. Cognitive modelling is analogic, presentational, holistic, integrative and based upon pattern recognition and pattern manipulation. Rational thinking is digital, sequential, analytical, explicatory and based upon categorization and logical inference. There is some relationship between the evidence for two distinctive modes of thought and the evidence of specialization in cerebral hemispheres (Cross, 1984). Design methods have tended to focus upon the rational aspects of design and have, therefore, neglected the cognitive aspects. By recognizing that there are peculiar 'designerly' ways of thinking combining both types of thought process used to perceive, construct and comprehend design representations mentally and then transform them into an external manifestation current work in design theory is promising at last to have some relevance to design practice.
series CAAD Futures
email
last changed 2003/11/21 15:16

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 78ca
authors Friedland, P. (Ed.)
year 1985
title Special Section on Architectures for Knowledge-Based Systems
source CACM (28), 9, September
summary A fundamental shift in the preferred approach to building applied artificial intelligence (AI) systems has taken place since the late 1960s. Previous work focused on the construction of general-purpose intelligent systems; the emphasis was on powerful inference methods that could function efficiently even when the available domain-specific knowledge was relatively meager. Today the emphasis is on the role of specific and detailed knowledge, rather than on reasoning methods.The first successful application of this method, which goes by the name of knowledge-based or expert-system research, was the DENDRAL program at Stanford, a long-term collaboration between chemists and computer scientists for automating the determination of molecular structure from empirical formulas and mass spectral data. The key idea is that knowledge is power, for experts, be they human or machine, are often those who know more facts and heuristics about a domain than lesser problem solvers. The task of building an expert system, therefore, is predominantly one of teaching" a system enough of these facts and heuristics to enable it to perform competently in a particular problem-solving context. Such a collection of facts and heuristics is commonly called a knowledge base. Knowledge-based systems are still dependent on inference methods that perform reasoning on the knowledge base, but experience has shown that simple inference methods like generate and test, backward-chaining, and forward-chaining are very effective in a wide variety of problem domains when they are coupled with powerful knowledge bases. If this methodology remains preeminent, then the task of constructing knowledge bases becomes the rate-limiting factor in expert-system development. Indeed, a major portion of the applied AI research in the last decade has been directed at developing techniques and tools for knowledge representation. We are now in the third generation of such efforts. The first generation was marked by the development of enhanced AI languages like Interlisp and PROLOG. The second generation saw the development of knowledge representation tools at AI research institutions; Stanford, for instance, produced EMYCIN, The Unit System, and MRS. The third generation is now producing fully supported commercial tools like KEE and S.1. Each generation has seen a substantial decrease in the amount of time needed to build significant expert systems. Ten years ago prototype systems commonly took on the order of two years to show proof of concept; today such systems are routinely built in a few months. Three basic methodologies-frames, rules, and logic-have emerged to support the complex task of storing human knowledge in an expert system. Each of the articles in this Special Section describes and illustrates one of these methodologies. "The Role of Frame-Based Representation in Reasoning," by Richard Fikes and Tom Kehler, describes an object-centered view of knowledge representation, whereby all knowldge is partitioned into discrete structures (frames) having individual properties (slots). Frames can be used to represent broad concepts, classes of objects, or individual instances or components of objects. They are joined together in an inheritance hierarchy that provides for the transmission of common properties among the frames without multiple specification of those properties. The authors use the KEE knowledge representation and manipulation tool to illustrate the characteristics of frame-based representation for a variety of domain examples. They also show how frame-based systems can be used to incorporate a range of inference methods common to both logic and rule-based systems.""Rule-Based Systems," by Frederick Hayes-Roth, chronicles the history and describes the implementation of production rules as a framework for knowledge representation. In essence, production rules use IF conditions THEN conclusions and IF conditions THEN actions structures to construct a knowledge base. The autor catalogs a wide range of applications for which this methodology has proved natural and (at least partially) successful for replicating intelligent behavior. The article also surveys some already-available computational tools for facilitating the construction of rule-based knowledge bases and discusses the inference methods (particularly backward- and forward-chaining) that are provided as part of these tools. The article concludes with a consideration of the future improvement and expansion of such tools.The third article, "Logic Programming, " by Michael Genesereth and Matthew Ginsberg, provides a tutorial introduction to the formal method of programming by description in the predicate calculus. Unlike traditional programming, which emphasizes how computations are to be performed, logic programming focuses on the what of objects and their behavior. The article illustrates the ease with which incremental additions can be made to a logic-oriented knowledge base, as well as the automatic facilities for inference (through theorem proving) and explanation that result from such formal descriptions. A practical example of diagnosis of digital device malfunctions is used to show how significantand complex problems can be represented in the formalism.A note to the reader who may infer that the AI community is being split into competing camps by these three methodologies: Although each provides advantages in certain specific domains (logic where the domain can be readily axiomatized and where complete causal models are available, rules where most of the knowledge can be conveniently expressed as experiential heuristics, and frames where complex structural descriptions are necessary to adequately describe the domain), the current view is one of synthesis rather than exclusivity. Both logic and rule-based systems commonly incorporate frame-like structures to facilitate the representation of large amounts of factual information, and frame-based systems like KEE allow both production rules and predicate calculus statements to be stored within and activated from frames to do inference. The next generation of knowledge representation tools may even help users to select appropriate methodologies for each particular class of knowledge, and then automatically integrate the various methodologies so selected into a consistent framework for knowledge. "
series journal paper
last changed 2003/04/23 15:14

_id c088
authors Biermann, Alan W., Rodman, Robert D. and Rubin, David C. (et al)
year 1985
title Natural Language with Discrete Speech as a Mode for Human- to-Machine Communication
source Communications of the ACM June, 1985. vol. 28: pp. 628-636 : ill. includes bibliography.
summary A voice interactive natural language system, which allows users to solve problems with spoken English commands, has been constructed. The system utilizes a commercially available discrete speech recognizer which requires that each word be followed by approximately a 300 millisecond pause. In a test of the system, subjects were able to learn its use after about two hours of training. The system correctly processed about 77 percent of the over 6000 input sentences spoken in problem-solving sessions. Subjects spoke at the rate of about three sentences per minute and were able to effectively use the system to complete the given tasks. Subjects found the system relatively easy to learn and use, and gave a generally positive report of their experience
keywords user interface, natural languages, speech recognition, AI
series CADline
last changed 2003/06/02 13:58

_id 6de2
authors Burnett, J. Jeffrey
year 1985
title A Prototype Voice Operated Computer Aided Design Workstation Intended for High Productivity Commercial & Educational Use
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 83-95
doi https://doi.org/10.52842/conf.acadia.1985.083
summary The recent availability of easy to use, tow cost voice recognition input devices combined with increasingly sophisticated mini and micro-computer based Computer Aided Design (CAD) systems offer numerous possibilities for quadriplegics to enter (or re-enter) the job market as draft-persons and design professionals. Serious productivity potential needs much more study, however, preliminary benchmarks indicate that it would be reasonable to expect ratios of .9 to 1.4 over manual drafting using the configuration described.
series ACADIA
last changed 2022/06/07 07:54

_id 2ae0
authors Bairstow, Jeffrey N.
year 1985
title Chip Design Made Easy
source high Technology. June, 1985. pp. 18-25 : ill. includes bibliography: p. 74
summary The combination of powerful engineering workstations and novel software tools is making custom chip design economical even for engineers without the specific training. The availability of new automated design technology is promoted by the changing market dynamics. The design of an integrated circuit, with hardware choices, is described
keywords business, AI, electrical engineering, hardware
series CADline
last changed 2003/06/02 13:58

_id a217
authors Bhatt, Rajesh V., Fisher, Edward L. and Rasdorf, William J.
year 1985
title Information Retrieval Architectures For Expert System/DBMS Communication
source Industrial Engineering Fall Conference Proceedings. December, 1985. pp. 315-320. CADLINE has abstract only
summary The development of expert systems (ES) for manufacturing problems indicates a need to interact with potentially large amounts of data, much of which resides elsewhere in the ES user's organization. A large amount of information required for planning, design, and control operations can be made available through an existing database management system (DBMS). The need for an ES to access that data is critical. This paper presents two approaches to the development of ES- DBMS interfaces, both query-language based. One approach uses a procedural attachment to the ES language to obtain the required data via the DBMS query language, while the other one uses a separate interface program between the ES and the query language of the DBMS. The procedural attachment is able to acquire data from a DBMS at a faster rate than the interface program; however, the procedural attachment lacks knowledge of the DBMS schema. On the other hand, the interface program sacrifices speed but promotes flexibility, as it has the capability of selecting which DBMS to extract the required data from and allowing augmentation of schema knowledge outside of the ES. A disadvantage of the interface approach is the amount of time involved in data retrieval. The process of writing information to disk files is I/O intensive. This can be quite slow, particularly in PROLOG, the language used to implement the ES. Thus the use of such an interface is only suitable in applications such as design, where extremely fast I/O is not required
keywords design, engineering, expert systems, information, database, DBMS
series CADline
last changed 2003/06/02 10:24

_id 66b3
authors Bollinger, Elizabeth
year 1985
title Integrating CADD into the AEC Process - A Case Study
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 13-24
doi https://doi.org/10.52842/conf.acadia.1985.013
summary A research grant was awarded to the Graduate School of Architecture at the University of Houston by Nash Phillips/Copus, a large homebuilding corporation, to study the integration of computer aided design into the entire building process. A computer aided design system had been utilized by the firm's department of architecture and planning for several months. A team of University faculty and graduate students studied the organization of the firm with respect to functions that could be automated. Its determination was that by utilizing an integrated data base, with information to be extracted from the computer generated drawings, the entire process of bidding and building a structure could be made more efficient and cost effective. The research team developed a system in which cost estimating could be done directly from the drawings. As drawings were modified, new reports could be automatically generated. More design solutions could be studied from the impact of cost as well as aesthetics. Additionally, once plans were drawn, a program written by students would automatically generate elevations of wall panels to be sent to the construction department for its use, and which would also generate material reports. The team also studied techniques of computer modelling for usage by the architectural planning department in client presentations.
series ACADIA
email
last changed 2022/06/07 07:54

_id cbd0
authors Brown, David C.
year 1985
title Failure Handling in a Design Expert System
source computer Aided Design. November, 1985. vol. 17: pp. 436-442 : ill. Includes bibliography
summary This paper is concerned with how to handle the failures that occur during design problem-solving. Failure handlers and redesigners are introduced. Failure recovery action and the knowledge involved is presented for each agent. The role of suggestions and redesign strategies is discussed. The handling of plan failures is also presented. The paper concludes by surveying other methods of failure handling from the literature
keywords expert systems, problem solving, mechanical engineering, planning,constraints, design, techniques
series CADline
last changed 2003/06/02 13:58

_id 23bc
authors Demko, Stephen, Hodges, Laurie and Naylor, Bruce F.
year 1985
title Construction of Fractal Objects with Iterated Function Systems
source SIGGRAPH '85 Conference Proceedings. July, 1985. vol. 19 ; no. 3: pp. 271-278 : ill. col. includes bibliography
summary In computer graphics, geometric modeling of complex objects is a difficult process. An important class of complex objects arise from natural phenomena: trees, plants, clouds, mountains, etc. Researchers are investigating a variety of techniques for extending modeling capabilities to include these as well as other classes. One mathematical concept that appears to have significant potential for this is fractals. Much interest currently exists in the general scientific community in using fractals as a model of complex natural phenomena. However, only a few methods for generating fractal sets are known. We have been involved in the development of a new approach to computing fractals. Any set of linear maps (affine transformations) and an associated set of probabilities determines an Iterated Function System (IFS). Each IFS has a unique 'attractor' which is typically a fractal set (object). Specification of only a few maps can produce very complicated objects. Design of fractal objects is made relatively simple and intuitive by the discovery of an important mathematical property relating the fractal sets to the IFS. The method also provides the possibility of solving the inverse problem, given the geometry of an object, determine an IFS that will (approximately) generate that geometry. This paper presents the application of the theory of IFS to geometric modeling
keywords computer graphics, geometric modeling, fractals, visualization
series CADline
last changed 2003/06/02 13:58

_id c547
authors Fenves, Stephen J. and Rasdorf, William J.
year 1985
title Treatment of Engineering Design Constraints in a Relational Database
source Engineering with Computers. Springer-Verlag, Spring, 1985. vol. 1: pp. 27-37. includes bibliography
summary A major aspect of engineering design is the formulation, application, evaluation, and satisfaction of design constraints. The ability to represent and process a wide variety of such constraints is a necessary ingredient of an engineering design database. This is especially true in databases integrating several design processes, where the database management system must serve as an active design agent performing many of the consistency and integrity checks that are currently done manually. This paper presents a mechanism for representing and processing engineering design constraints. The mechanism can be used for checking that constraints are satisfied as well as for deriving attribute values that satisfy the applicable constraints. Furthermore, the mechanism provides flexibility in sequencing the enforcement of constraints by allowing new constraints to be applied to a preexisting state of the database as well as to all subsequent operations on the database. In both these respects, the mechanism proposed appears to have applications beyond engineering design. The mechanism presented handles a broad class of single-relation, single-tuple constraints typical in engineering design applications. Instead of relying on normalization where possible, to remove functional dependencies, the mechanism incorporates new attributes that represent the status (satisfied or violated) of each constraint, thereby increasing the functional dependence of the relation. Consequently, passive constraint checking can be readily extended to active assignment of attribute values that automatically satisfy constraints. A prototype system implementing many of the components presented has been programmed in Pascal. In addition, portions of the system were implemented using the Relational Information Management (RIM) system, a commercially available DBMS
keywords civil engineering, design, knowledge, relational database, CAE, constraints management
series CADline
last changed 2003/06/02 13:58

_id c898
authors Gero, John S.
year 1986
title An Overview of Knowledge Engineering and its Relevance to CAAD
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 107-119
summary Computer-aided architectural design (CAAD) has come to mean a number of often disparate activities. These can be placed into one of two categories: using the computer as a drafting and, to a lesser extent, modelling system; and using it as a design medium. The distinction between the two categories is often blurred. Using the computer as a drafting and modelling tool relies on computing notions concerned with representing objects and structures numerically and with ideas of computer programs as procedural algorithms. Similar notions underly the use of computers as a design medium. We shall return to these later. Clearly, all computer programs contain knowledge, whether methodological knowledge about processes or knowledge about structural relationships in models or databases. However, this knowledge is so intertwined with the procedural representation within the program that it can no longer be seen or found. Architecture is concerned with much more than numerical descriptions of buildings. It is concerned with concepts, ideas, judgement and experience. All these appear to be outside the realm of traditional computing. Yet architects discoursing use models of buildings largely unrelated to either numerical descriptions or procedural representations. They make use of knowledge - about objects, events and processes - and make nonprocedural (declarative) statements that can only be described symbolically. The limits of traditional computing are the limits of traditional computer-aided design systems, namely, that it is unable directly to represent and manipulate declarative, nonalgorithmic, knowledge or to perform symbolic reasoning. Developments in artificial intelligence have opened up ways of increasing the applicability of computers by acquiring and representing knowledge in computable forms. These approaches supplement rather than supplant existing uses of computers. They begin to allow the explicit representations of human knowledge. The remainder of this chapter provides a brief introduction to this field and describes, through applications, its relevance to computer- aided architectural design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 68aa
authors Greenberg, Donald P.
year 1986
title Computer Graphics and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 63-67
summary The field of computer graphics has made enormous progress during the past decade. It is rapidly approaching the time when we will be able to create images of such realism that it will be possible to 'walk through' nonexistent spaces and to evaluate their aesthetic quality based on the simulations. In this chapter we wish to document the historical development of computer graphics image creation and describe some techniques which are currently being developed. We will try to explain some pilot projects that we are just beginning to undertake at the Program of Computer Graphics and the Center for Theory and Simulation in Science and Engineering at Cornell University.
series CAAD Futures
last changed 1999/04/03 17:58

_id 07c6
authors Kalay, Y.E., Harfmann, A.C. and Swerdloff, L.M.
year 1985
title ALEX: A Knowledge-Based Architectural Design System
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 96-108
doi https://doi.org/10.52842/conf.acadia.1985.096
summary A methodology for the development of a knowledge-based computer-aided design system and its experimental application in the domain of single family house design are presented.

The methodology involves integrating within a unified design environment, tools and techniques that have been independently developed in various disciplines (including knowledge representation, information management, geometric modeling, human,machine interface, and architectural design). By assuming the role of active design partners, the resulting systems are expected to increase the productivity of designers, improve the quality of their products, and reduce cost and lead time of the design process as a whole.

ALEX (Architecture Learning Expert), a particular application of this methodology, is a prototype knowledge-based CAD system in the domain of single family house design. It employs user-interactive, goal directed heuristic search strategies in a solution space that consists of a network of objects. Message-based change propagation techniques, guided by domain-specific knowledge, are used to ensure database integrity and well-formedness.

The significance of the methodology and its application is threefold: it furthers our knowledge of the architectural design process, explores the utilization of knowledge engineering methods in design, and serves as a prototype for developing the next generation of computer-aided architectural design systems.

series ACADIA
email
last changed 2022/06/07 07:52

_id a48a
authors Kalay, Yehuda E. and Shibley, Robert G.
year 1985
title Computer-Aided Design Research and Technology Transfer : Report of the SUNY-AB Symposium
source Buffalo: November, 1985. pp. 1-16
summary To explore modes of creative relationship between the university, government, industry and professional practice for the purpose of computer-aided design (CAD) research, development, and education in the disciplines that relate to design, construction and management of building, the School of Architecture and Planning of the State University of New York Buffalo, in cooperation with the Maedl Group of Buffalo New York, have assembled a panel of experts to deliberate and to explore how the transfer of CAD technology from research laboratories to architectural and engineering practices can best be accomplished. Institutionally the panel consisted of representatives of the university researchers and educators, private research and development corporations, a governmental agency that supports basic research and technology transfer, and the professional community who will ultimately use the produce
keywords architecture, technology transfer, CAD, research, practice, education
series CADline
email
last changed 2003/06/02 13:58

_id 4f6f
authors Kalay, Yehuda E.
year 1985
title Knowledge-Based Computer-Aided Design to Assist Designers of Physical Artifacts
source 1985. [15] p. : ill. includes bibliography
summary The objectives of this project are to increase the productivity of physical designers, and to improve the quality of designed artifacts and environments. The means for achieving these objectives include the development, implementation and verification of a broad-based methodology to be used for building context-sensitive computer-aided design systems to facilitate the design and fabrication of physical artifacts. Such systems will extend computer aides for design over the earliest phases of the design process and thus facilitate design-capture in addition to the common design-communication utilities they currently provide. They will thus constitute intelligent design assistants that will relieve the designer from the necessity to deal with some design details, as well as the need to explicitly manage the consistency of the design database. The project employs principles developed by Artificial Intelligence methods that are used in non-deterministic problem solving processes that represent data and knowledge in distributed networks. Principles such as object-centered data factorization and message-based change propagation techniques are implemented in an existing architectural computer-aided design system and field-tested in a practicing Architectural/Engineering office
keywords CAD, knowledge base, design methods, design process, architecture
series CADline
email
last changed 2003/06/02 13:58

_id 6db4
authors Karakatsanis, Andreas Georgiou
year 1985
title Floder: A Floor Designer Expert System
source Department of Civil Engineering, Carnegie Mellon University, Pittsburgh PA
summary The use of computers in structural design for the last two decades has been limited to algorithmic and procedural tasks. The use of expert system environments facilitates the implementation of conceptual tasks in computer programs. The goal of this study is to develop an expert system for the structural design of floor framings. FLODER, the resulting expert system, generates, analyzes, and evaluates floor framings for a given architectural plan. Framing generation consists of determination of the locations of structural elements in the architectural plan. Analysis involves an approximation of the dimensions of the slabs. Evaluation numerically ranks all generated framings using heuristic features for the alternatives. FLODER is implemented in OPS5 and LISP. The primary representations used are OPS5 production rules for the knowledge-base, and OPS5 working memory elements, for the context. Tasks amenable to algorithmic approaches are implemented in LISP. FLODER, even in its present state, can be viewed as a useful assistant to a designer. It can rapidly generate and evaluate alternative framings for a given architectural plan and thus increase the work productivity of its users [includes bibliography].
keywords Knowledge Base, Systems, Design, Architecture, Civil Engineering, Representation, Expert Systems, Floor Plans, Synthesis, Structures
series CADline
last changed 1999/02/15 15:27

_id 0e5e
authors Kociolek, A.
year 1986
title CAD in Polish Building
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 235-245
summary There is little CAAD in Polish architectural design offices, and only recently have practising architects discovered the computer. On the other hand, CAAD has been used for some time in research and development based at universities or in large design organizations. This chapter gives a broad picture of the computerization of building design in Poland, a complex process which concerns planning and financing, hardware, software, CAD practice, standardization, training, education, etc. Here architectural applications are treated on an equal basis, together with other applications representing design disciplines involved in design, such as structural and mechanical engineering. The underlying philosophy of this chapter is a belief that proper and well-balanced computerization of design in building which leaves creative work to human beings should result in better design and eventually in improvements in the built environment. Therefore integration of the design process in building seems more important for design practice than attempts to replace an architect by a computer, although the intellectual attraction of this problem is recognized.
series CAAD Futures
last changed 1999/04/03 17:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_924136 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002