CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 132

_id 644f
authors Bijl, Aart
year 1986
title Designing with Words and Pictures in a Logic Modelling Environment
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 128-145
summary At EdCAAD we are interested in design as something people do. Designed artefacts, the products of designing, are interesting only in so far as they tell us something about design. An extreme expression of this position is to say that the world of design is the thoughts in the heads of designers, plus the skills of designers in externalizing their thoughts; design artifacts, once perceived and accepted in the worlds of other people, are no longer part of the world of design. We can describe design, briefly, as a process of synthesis. Design has to achieve a fusion between parts to create new parts, so that the products are recognized, as having a right and proper place in the world of people. Parts should be understood as referring to anything - physical objects, abstract ideas, aspirations. These parts occur in some design environment from which parts are extracted, designed upon and results replaced; in the example of buildings, the environment is people and results have to be judged by reference to that environment. It is characteristic of design that both the process and the product are not subject to explicit and complete criteria. This view of design differs sharply from the more orthodox understanding of scientific and technological endeavours which rely predominantly on a process of analysis. In the latter case, the approach is to decompose a problem into parts until individual parts are recognized as being amenable to known operations and results are reassembled into a solution. This process has a peripheral role in design when evaluating selected aspects of tentative design proposals, but the absence of well-defined and widely recognized criteria for design excludes it from the main stream of analytical developments.
series CAAD Futures
last changed 2003/11/21 15:16

_id 678e
authors Aish, Robert
year 1986
title Three-dimensional Input and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 68-84
summary The aim of this chapter is to investigate techniques by which man-computer interaction could be improved, specifically in the context of architectural applications of CAD. In this application the object being designed is often an assembly of defined components. Even if the building is not actually fabricated from such components, it is usually conceptualized in these terms. In a conventional graphics- based CAD system these components are usually represented by graphical icons which are displayed on the graphics screen and arranged by the user. The system described here consists of three- dimensional modelling elements which the user physically assembles to form his design. Unlike conventional architectural models which are static (i.e. cannot be changed by the users) and passive (i.e. cannot be read by a CAD system), this model is both 'user generated' and 'machine readable'. The user can create, edit and view the model by simple, natural modelling activities and without the need to learn complex operating commands often associated with CAD systems. In particular, the user can view the model, altering his viewpoint and focus of attention in a completely natural way. Conventional computer graphics within an associated CAD system are used to represent the detailed geometry which the different three-dimensional icons may represent. In addition, computer graphics are also used to present the output of the performance attributes of the objects being modelled. In the architectural application described in this chapter an energy- balance evaluation is displayed for a building designed using the modelling device. While this system is not intended to offer a completely free-form input facility it can be considered to be a specialist man-machine interface of particular relevance to architects or engineers.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id 66b3
authors Bollinger, Elizabeth
year 1985
title Integrating CADD into the AEC Process - A Case Study
doi https://doi.org/10.52842/conf.acadia.1985.013
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 13-24
summary A research grant was awarded to the Graduate School of Architecture at the University of Houston by Nash Phillips/Copus, a large homebuilding corporation, to study the integration of computer aided design into the entire building process. A computer aided design system had been utilized by the firm's department of architecture and planning for several months. A team of University faculty and graduate students studied the organization of the firm with respect to functions that could be automated. Its determination was that by utilizing an integrated data base, with information to be extracted from the computer generated drawings, the entire process of bidding and building a structure could be made more efficient and cost effective. The research team developed a system in which cost estimating could be done directly from the drawings. As drawings were modified, new reports could be automatically generated. More design solutions could be studied from the impact of cost as well as aesthetics. Additionally, once plans were drawn, a program written by students would automatically generate elevations of wall panels to be sent to the construction department for its use, and which would also generate material reports. The team also studied techniques of computer modelling for usage by the architectural planning department in client presentations.
series ACADIA
email
last changed 2022/06/07 07:54

_id a6f1
authors Bridges, A.H.
year 1986
title Any Progress in Systematic Design?
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 5-15
summary In order to discuss this question it is necessary to reflect awhile on design methods in general. The usual categorization discusses 'generations' of design methods, but Levy (1981) proposes an alternative approach. He identifies five paradigm shifts during the course of the twentieth century which have influenced design methods debate. The first paradigm shift was achieved by 1920, when concern with industrial arts could be seen to have replaced concern with craftsmanship. The second shift, occurring in the early 1930s, resulted in the conception of a design profession. The third happened in the 1950s, when the design methods debate emerged; the fourth took place around 1970 and saw the establishment of 'design research'. Now, in the 1980s, we are going through the fifth paradigm shift, associated with the adoption of a holistic approach to design theory and with the emergence of the concept of design ideology. A major point in Levy's paper was the observation that most of these paradigm shifts were associated with radical social reforms or political upheavals. For instance, we may associate concern about public participation with the 1970s shift and the possible use (or misuse) of knowledge, information and power with the 1980s shift. What has emerged, however, from the work of colleagues engaged since the 1970s in attempting to underpin the practice of design with a coherent body of design theory is increasing evidence of the fundamental nature of a person's engagement with the design activity. This includes evidence of the existence of two distinctive modes of thought, one of which can be described as cognitive modelling and the other which can be described as rational thinking. Cognitive modelling is imagining, seeing in the mind's eye. Rational thinking is linguistic thinking, engaging in a form of internal debate. Cognitive modelling is externalized through action, and through the construction of external representations, especially drawings. Rational thinking is externalized through verbal language and, more formally, through mathematical and scientific notations. Cognitive modelling is analogic, presentational, holistic, integrative and based upon pattern recognition and pattern manipulation. Rational thinking is digital, sequential, analytical, explicatory and based upon categorization and logical inference. There is some relationship between the evidence for two distinctive modes of thought and the evidence of specialization in cerebral hemispheres (Cross, 1984). Design methods have tended to focus upon the rational aspects of design and have, therefore, neglected the cognitive aspects. By recognizing that there are peculiar 'designerly' ways of thinking combining both types of thought process used to perceive, construct and comprehend design representations mentally and then transform them into an external manifestation current work in design theory is promising at last to have some relevance to design practice.
series CAAD Futures
email
last changed 2003/11/21 15:16

_id cf2015_005
id cf2015_005
authors Celani, Gabriela; Sperling, David M. and Franco, Juarez M. S. (eds.)
year 2015
title Preface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 5-13.
summary Since 1985 the Computer-Aided Architectural Design Futures Foundation has fostered high level discussions about the search for excellence in the built environment through the use of new technologies with an exploratory and critical perspective. In 2015, the 16th CAAD Futures Conference was held, for the first time, in South America, in the lively megalopolis of Sao Paulo, Brazil. In order to establish a connection to local issues, the theme of the conference was "The next city". The city of Sao Paulo was torn down and almost completely rebuilt twice, from the mid 1800s to the mid 1900s, evolving from a city built in rammed-earth to a city built in bricks and then from a city built in bricks to a city built in concrete. In the 21st century, with the widespread use of digital technologies both in the design and production of buildings, cities are changing even faster, in terms of layout, materials, shapes, textures, production methods and, above all, in terms of the information that is now embedded in built systems.Among the 200 abstracts received in the first phase, 64 were selected for presentation in the conference and publication in the Electronic Proceedings, either as long or short papers, after 3 tough evaluation stages. Each paper was reviewed by at least three different experts from an international committee of more than 80 highly experienced researchers. The authors come from 23 different countries. Among all papers, 10 come from Latin-American institutions, which have been usually under-represented in CAAD Futures. The 33 highest rated long papers are also being published in a printed book by Springer. For this reason, only their abstracts were included in this Electronic Proceedings, at the end of each chapter.The papers in this book have been organized under the following topics: (1) modeling, analyzing and simulating the city, (2) sustainability and performance of the built environment, (3) automated and parametric design, (4) building information modeling (BIM), (5) fabrication and materiality, and (6) shape studies. The first topic includes papers describing different uses of computation applied to the study of the urban environment. The second one represents one of the most important current issues in the study and design of the built environment. The third topic, automated and parametric design, is an established field of research that is finally becoming more available to practitioners. Fabrication has been a hot topic in CAAD conferences, and is becoming ever more popular. This new way of making design and buildings will soon start affecting the way cities look like. Finally, shape studies are an established and respected field in design computing that is traditionally discussed in CAAD conferences.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ascaad2006_paper20
id ascaad2006_paper20
authors Chougui, Ali
year 2006
title The Digital Design Process: reflections on architectural design positions on complexity and CAAD
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary These instructions are intended to guide contributors to the Second Architecture is presently engaged in an impatient search for solutions to critical questions about the nature and the identity of the discipline, and digital technology is a key agent for prevailing innovations in architectural design. The problem of complexity underlies all design problems. With the advent of CAD however, Architect’s ability to truly represent complexity has increased considerably. Another source that provides information about dealing with complexity is architectural theory. As Rowe (1987) states, architectural theory constitutes “a corpus of principles that are agreed upon and therefore worthy of emulation”. Architectural theory often is a mixed reflection on the nature of architectural design, design processes, made in descriptive and prescriptive terms (see Kruft 1985). Complexity is obviously not a new issue in architectural theory. Since it is an inherent characteristic of design problems, it has been dealt with in many different ways throughout history. Contemporary architects incorporate the computer in their design process. They produce architecture that is generated by the use of particle systems, simulation software, animation software, but also the more standard modelling tools. The architects reflect on the impact of the computer in their theories, and display changes in style by using information modelling techniques that have become versatile enough to encompass the complexity of information in the architectural design process. In this way, architectural style and theory can provide directions to further develop CAD. Most notable is the acceptance of complexity as a given fact, not as a phenomenon to oppose in systems of organization, but as a structuring principle to begin with. No matter what information modelling paradigm is used, complex and huge amounts of information need to be processed by designers. A key aspect in the combination of CAD, complexity, and architectural design is the role of the design representation. The way the design is presented and perceived during the design process is instrumental to understanding the design task. More architects are trying to reformulate this working of the representation. The intention of this paper is to present and discuss the current state of the art in architectural design positions on complexity and CAAD, and to reflect in particular on the role of digital design representations in this discussion. We also try to investigate how complexity can be dealt with, by looking at architects, in particular their styles and theories. The way architects use digital media and graphic representations can be informative how units of information can be formed and used in the design process. A case study is a concrete architect’s design processes such as Peter Eisenman Rem Koolhaas, van Berkel, Lynn, and Franke gehry, who embrace complexity and make it a focus point in their design, Rather than viewing it as problematic issue, by using computer as an indispensable instrument in their approaches.
series ASCAAD
email
last changed 2007/04/08 19:47

_id c898
authors Gero, John S.
year 1986
title An Overview of Knowledge Engineering and its Relevance to CAAD
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 107-119
summary Computer-aided architectural design (CAAD) has come to mean a number of often disparate activities. These can be placed into one of two categories: using the computer as a drafting and, to a lesser extent, modelling system; and using it as a design medium. The distinction between the two categories is often blurred. Using the computer as a drafting and modelling tool relies on computing notions concerned with representing objects and structures numerically and with ideas of computer programs as procedural algorithms. Similar notions underly the use of computers as a design medium. We shall return to these later. Clearly, all computer programs contain knowledge, whether methodological knowledge about processes or knowledge about structural relationships in models or databases. However, this knowledge is so intertwined with the procedural representation within the program that it can no longer be seen or found. Architecture is concerned with much more than numerical descriptions of buildings. It is concerned with concepts, ideas, judgement and experience. All these appear to be outside the realm of traditional computing. Yet architects discoursing use models of buildings largely unrelated to either numerical descriptions or procedural representations. They make use of knowledge - about objects, events and processes - and make nonprocedural (declarative) statements that can only be described symbolically. The limits of traditional computing are the limits of traditional computer-aided design systems, namely, that it is unable directly to represent and manipulate declarative, nonalgorithmic, knowledge or to perform symbolic reasoning. Developments in artificial intelligence have opened up ways of increasing the applicability of computers by acquiring and representing knowledge in computable forms. These approaches supplement rather than supplant existing uses of computers. They begin to allow the explicit representations of human knowledge. The remainder of this chapter provides a brief introduction to this field and describes, through applications, its relevance to computer- aided architectural design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 0551
authors Haller, Fritz
year 1985
title The Design of Buildings Which Have Complex Mechanical Infrastructure Using Expert Systems
source 1985? 24 p. : ill. Co-authored by several contributors. Includes bibliography
summary The paper presents a project whose aim is to find better methods for the design of buildings like laboratories, office buildings, schools, hospitals etc., which have complex mechanical systems. The design of the mechanical infrastructure in such buildings is as important as the design of other architectural or construction parts. The fundamental idea of the project is to integrate design problems of the mechanical system into the design of the architectural and structural concepts of the entire building. This is based on the belief that using an expert system containing computer programs for the solution of design problems can support the whole design process and that the design of buildings having complex mechanical infrastructure can be qualitatively better and more efficient than the design with traditional methods
keywords architecture, expert systems, mechanical, systems, applications, design, building, construction
series CADline
last changed 1999/02/12 15:08

_id e234
authors Kalay, Yehuda E. and Harfmann, Anton C.
year 1985
title An Integrative Approach to Computer-Aided Design Education in Architecture
source February, 1985. [17] p. : [8] p. of ill
summary With the advent of CAD, schools of architecture are now obliged to prepare their graduates for using the emerging new design tools and methods in architectural practices of the future. In addition to this educational obligation, schools of architecture (possibly in partnership with practicing firms) are also the most appropriate agents for pursuing research in CAD that will lead to the development of better CAD software for use by the profession as a whole. To meet these two rather different obligations, two kinds of CAD education curricula are required: one which prepares tool- users, and another that prepares tool-builders. The first educates students about the use of CAD tools for the design of buildings, whereas the second educates them about the design of CAD tools themselves. The School of Architecture and Planning in SUNY at Buffalo has recognized these two obligations, and in Fall 1982 began to meet them by planning and implementing an integrated CAD environment. This environment now consists of 3 components: a tool-building sequence of courses, an advanced research program, and a general tool-users architectural curriculum. Students in the tool-building course sequence learn the principles of CAD and may, upon graduation, become researchers and the managers of CAD systems in practicing offices. While in school they form a pool of research assistants who may be employed in the research component of the CAD environment, thereby facilitating the design and development of advanced CAD tools. The research component, through its various projects, develops and provides state of the art tools to be used by practitioners as well as by students in the school, in such courses as architectural studio, environmental controls, performance programming, and basic design courses. Students in these courses who use the tools developed by the research group constitute the tool-users component of the CAD environment. While they are being educated in the methods they will be using throughout their professional careers, they also act as a 'real-world' laboratory for testing the software and thereby provide feedback to the research component. The School of Architecture and Planning in SUNY at Buffalo has been the first school to incorporate such a comprehensive CAD environment in its curriculum, thereby successfully fulfilling its obligation to train students in the innovative methods of design that will be used in architectural practices of the future, and at the same time making a significant contribution to the profession of architecture as a whole. This paper describes the methodology and illustrates the history of the CAD environment's implementation in the School
keywords CAD, architecture, education
series CADline
email
last changed 2003/06/02 13:58

_id 8e75
authors Kalay, Yehuda E.
year 1985
title Redefining the Role of Computers in Architecture : From Drafting/Modeling Tools to Knowledge- Based Design Assistants
source Computer Aided Design September, 1985. vol. 17: pp. 319-328 : ill. includes bibliography.
summary This paper argues that the modeling/drafting role computers have been assigned in architectural design should be changed, so that computers will become intelligent assistants to designers, relieving them from the need to perform the more trivial design tasks and augmenting their decision making capabilities. A conceptual framework of a knowledge-based computer-aided design system is presented, and its potential for increasing the utility of computers in the design buildings is discussed
keywords AI, architecture, design, knowledge base, intelligence, building, CAD
series CADline
email
last changed 2003/06/02 13:58

_id e02f
authors Lenart, Mihaly
year 1985
title The Design of Buildings which Have Complex Mechanical Infrastructure using Expert Systems
doi https://doi.org/10.52842/conf.acadia.1985.052
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 52-68
summary This paper presents a project under development at the University of Karlsruhe in which the author took part for two years. The aim of this project which was supported by the German Research Association (Deutsche Forschungsgemeinschaft) is to find better methods for the design of buildings having complex mechanical systems like laboratories, office buildings, schools, hospitals. etc. The design of the mechanical infrastructure in such buildings is as important as the design of other architectural or construction parts. The fundamental idea of the project is to consider design problems of the mechanical system as part of the design of the architectural and structural concepts of the entire building. This is based on the belief that the use of an expert system containing computer programs for the solution of design problems can support the whole design procedure and that the design of buildings having complex mechanical infrastructure can be qualitatively better and more efficient than the design with traditional methods.

series ACADIA
last changed 2022/06/07 07:52

_id 244d
authors Monedero, J., Casaus, A. and Coll, J.
year 1992
title From Barcelona. Chronicle and Provisional Evaluation of a New Course on Architectural Solid Modelling by Computerized Means
doi https://doi.org/10.52842/conf.ecaade.1992.351
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 351-362
summary The first step made at the ETSAB in the computer field goes back to 1965, when professors Margarit and Buxade acquired an IBM computer, an electromechanical machine which used perforated cards and which was used to produce an innovative method of structural calculation. This method was incorporated in the academic courses and, at that time, this repeated question "should students learn programming?" was readily answered: the exercises required some knowledge of Fortran and every student needed this knowledge to do the exercises. This method, well known in Europe at that time, also provided a service for professional practice and marked the beginning of what is now the CC (Centro de Calculo) of our school. In 1980 the School bought a PDP1134, a computer which had 256 Kb of RAM, two disks of 5 Mb and one of lO Mb, and a multiplexor of 8 lines. Some time later the general politics of the UPC changed their course and this was related to the purchase of a VAX which is still the base of the CC and carries most of the administrative burden of the school. 1985 has probably been the first year in which we can talk of a general policy of the school directed towards computers. A report has been made that year, which includes an inquest adressed to the six Departments of the School (Graphic Expression, Projects, Structures, Construction, Composition and Urbanism) and that contains interesting data. According to the report, there were four departments which used computers in their current courses, while the two others (Projects and Composition) did not use them at all. The main user was the Department of Structures while the incidence of the remaining three was rather sporadic. The kind of problems detected in this report are very typical: lack of resources for hardware and software and for maintenance of the few computers that the school had at that moment; a demand (posed by the students) greatly exceeding the supply (computers and teachers). The main problem appeared to be the lack of computer graphic devices and proper software.

series eCAADe
email
last changed 2022/06/07 07:58

_id 4c92
authors Norman, Richard B.
year 1985
title Electronic Color in the Architectural Studio - An Alternative Strategy for Introducing the Computer as a Creative Tool in the Studio Environment
doi https://doi.org/10.52842/conf.acadia.1985.035
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 35-42
summary An alternative strategy is proposed for introducing the computer as a creative tool in the studio environment. It is suggested that computer graphic capabilities, focusing on color as an element of design, be incorporated into basic design studios. Techniques of color drawing on the computer are discussed, and computer modeling of color systems is recommended as a vehicle through which to introduce color theory. The effect of color on the perception of buildings is explored, illustrating how color selection can affect a building's line, form and spatial quality. These techniques enable students to develop an appreciation of the use of color in buildings, reinforcing their knowledge of basic design, and introducing them to graphic computing in a visually provocative manner. The proposal recognizes the importance of both color theory and graphic computers to an evolving architectural curriculum.

series ACADIA
email
last changed 2022/06/07 07:58

_id 62ff
authors Peckham, R. J.
year 1985
title Shading Evaluations with General Three- Dimensional Models
source Computer Aided Design. September, 1985. vol. 17: pp. 305-310 : ill. includes bibliography
summary The SHADOWPACK package of computer programs has been developed to facilitate shading evaluations, for the direct component of solar radiation, with general 3D models. An interactive solid modelling program allows the user to construct and view the 3D model before saving it for further analysis and display. Other programs permit the graphical display of the shading situation throughout the year, the quantitative assessment of energy received on different faces of the model, and the display of the distribution of energy received on particular faces by means of contour plots. The use of the computer graphics approach has proved particularly convenient because of the similarity between the techniques used for graphical and numerical algorithms
keywords shading, solid modeling, evaluation, energy, computer graphics
series CADline
last changed 2003/06/02 13:58

_id 8298
authors Quadrel, Richard W. and Chassin, David P.
year 1985
title Energy Graphics: A Progress Report on the Development of Architectural Courseware
doi https://doi.org/10.52842/conf.acadia.1985.129
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 129-141
summary Energy Graphics is a technique for determining the energy performance of buildings at the conceptual stage of the architectural design process. Unlike many energy analysis programs, which only produce results after ail of the building information has been supplied, Energy Graphics works with the designer in understanding how early decisions about building form and configuration affect energy use.

The Energy Graphics technique is currently being "computerized" on a Sun 2/120 graphics workstation, under a grant by the Inter-University Consortium for Educational Computing. The resulting software will be used in the architectural design curriculum so that students will be able to receive an immediate energy evaluation of their design explorations.

For use in the studios, the software must include a powerful graphics interface that allows students to "sketch" their design concepts interactively. The computer will then interpret these sketches as building information, organize them into an integrated database, perform the energy calculations, and inform the student of the results in a graphic format. One of the project's major goals is to provide this graphics interface in the same way that architects think about drawing, and not simply to imitate current computer "drafting" systems.

The goals of the project can only be met by developing the software on a powerful workstation system, which provides fast processing time, large memory, multitasking capabilities and high-resolution graphics. This progress report describes our efforts to date on the development of this important software.

series ACADIA
last changed 2022/06/07 08:00

_id 452c
authors Vanier, D. J. and Worling, Jamie
year 1986
title Three-dimensional Visualization: A Case Study
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 92-102
summary Three-dimensional computer visualization has intrigued both building designers and computer scientists for decades. Research and conference papers present an extensive list of existing and potential uses for threedimensional geometric data for the building industry (Baer et al., 1979). Early studies on visualization include urban planning (Rogers, 1980), treeshading simulation (Schiler and Greenberg, 1980), sun studies (Anon, 1984), finite element analysis (Proulx, 1983), and facade texture rendering (Nizzolese, 1980). With the advent of better interfaces, faster computer processing speeds and better application packages, there had been interest on the part of both researchers and practitioners in three-dimensional -models for energy analysis (Pittman and Greenberg, 1980), modelling with transparencies (Hebert, 1982), super-realistic rendering (Greenberg, 1984), visual impact (Bridges, 1983), interference clash checking (Trickett, 1980), and complex object visualization (Haward, 1984). The Division of Building Research is currently investigating the application of geometric modelling in the building delivery process using sophisticated software (Evans, 1985). The first stage of the project (Vanier, 1985), a feasibility study, deals with the aesthetics of the mode. It identifies two significant requirements for geometric modelling systems: the need for a comprehensive data structure and the requirement for realistic accuracies and tolerances. This chapter presents the results of the second phase of this geometric modelling project, which is the construction of 'working' and 'presentation' models for a building.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 0faa
authors Duelund Mortensen, Peder
year 1991
title THE FULL-SCALE MODEL WORKSHOP
source Proceedings of the 3rd European Full-Scale Modelling Conference / ISBN 91-7740044-5 / Lund (Sweden) 13-16 September 1990, pp. 10-11
summary The workshop is an institution, available for use by the public and established at the Laboratory of Housing in the Art Academy's school of Architecture for a 3 year trial period beginning April 1985. This resumé contains brief descriptions of a variety of representative model projects and an overview of all projects carried out so far, including the pilot projects from 1983 and planned projects to and including January 1987. The Full Scale Model Workshop builds full size models of buildings, rooms and parts of buildings. The purpose of the Full Scale Model Workshop is to promote communication among building's users. The workshop is a tool in an attempt to build bridges between theory and practice in research, experimentation and communication of research results. New ideas and experiments of various sorts can be tried out cheaply, quickly and efficiently through the building of full scale models. Changes can be done on the spot as a planned part of the project and on the basis of ideas and experiments achieved through the model work itself. Buildings and their space can thus be communicated directly to all involved persons, regardless of technical background or training in evaluation of building projects.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:23

_id c89d
authors Bancroft, Pamela J.
year 1987
title The Integration of Computing into Architectural Education Through Computer Literate Faculty
doi https://doi.org/10.52842/conf.acadia.1987.109
source Integrating Computers into the Architectural Curriculum [ACADIA Conference Proceedings] Raleigh (North Carolina / USA) 1987, pp. 109-120
summary This paper discusses the apparent correlation between faculty computer literacy and the success of integrating computing into architectural education. Relevant questions of a 1985 national survey which was conducted to study the historical development of faculty computer utilization are analyzed and interpreted. The survey results are then used as the basis for a series of recommendations given for increasing computer literacy among faculty in architectural schools, thus increasing the integration of computing.

series ACADIA
last changed 2022/06/07 07:54

_id 2928
authors Barsky, Brian A. and De Rose, Tony D.
year 1985
title The Beta2-spline : A Special Case of the Beta-spline Curve and Surface Representation
source IEEE Computer Graphics and Applications September, 1985. vol. 5: pp. 46-58 : ill. includes bibliography.
summary This article develops a special case of the Beta-spline curve and surface technique called the Beta2-spline. While a general Beta-spline has two parameters (B1 and B2) controlling its shape, the special case presented here has only the single parameter B2. Experience has shown this to be a simple but very useful special case that is computationally more efficient than the general case. Optimized algorithms for the evaluation of the Beta2-spline basis functions and rendering of Beta2-spline curves and surfaces via subdivision are presented. This technique is proving to be quite useful in the modeling of complex shapes. The representation is sufficiently general and flexible so as to be capable of modeling irregular curved-surface objects such as automobile bodies, aircraft fuselages, ship hulls, turbine blades, and bottles
keywords B-splines, curved surfaces, computational geometry, representation, algorithms, computer graphics, rendering
series CADline
last changed 2003/06/02 14:41

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5show page 6HOMELOGIN (you are user _anon_847077 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002