CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 131

_id acfe
authors Archea, John
year 1985
title Architecture's Unique Position Among the Disciplines : Puzzle-Making vs. Problem Solving
source CRIT XV, The Architectural Student Journal. Summer, 1985. pp. 20-22
summary Most disciplines involved in the building process, i.e., programmers, space planners, and engineers work in what may be described as a problem solving mode. They state desired effects as explicit performance criteria before they initiate a decision process and test alternative solutions against those criteria until a fit is attained which falls within known probabilities of success. Architects, however are not problem solvers and they are not seeking explicit information when they design how buildings work. Architects are puzzle- makers, They are primarily concerned with unique design concepts. It is through the act of designing, or puzzle- making, that the architect learn what they want to accomplish and how. With regard to the making of buildings, places or experiences, the architect is a puzzle-maker surrounded by a group of problem solvers who address separate pieces of the puzzle
keywords puzzle making, design process, problem solving, architecture
series CADline
last changed 1999/02/12 15:07

_id 66b3
authors Bollinger, Elizabeth
year 1985
title Integrating CADD into the AEC Process - A Case Study
doi https://doi.org/10.52842/conf.acadia.1985.013
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 13-24
summary A research grant was awarded to the Graduate School of Architecture at the University of Houston by Nash Phillips/Copus, a large homebuilding corporation, to study the integration of computer aided design into the entire building process. A computer aided design system had been utilized by the firm's department of architecture and planning for several months. A team of University faculty and graduate students studied the organization of the firm with respect to functions that could be automated. Its determination was that by utilizing an integrated data base, with information to be extracted from the computer generated drawings, the entire process of bidding and building a structure could be made more efficient and cost effective. The research team developed a system in which cost estimating could be done directly from the drawings. As drawings were modified, new reports could be automatically generated. More design solutions could be studied from the impact of cost as well as aesthetics. Additionally, once plans were drawn, a program written by students would automatically generate elevations of wall panels to be sent to the construction department for its use, and which would also generate material reports. The team also studied techniques of computer modelling for usage by the architectural planning department in client presentations.
series ACADIA
email
last changed 2022/06/07 07:54

_id 63d0
authors Carrara, Gianfranco and Novembri, Gabriele
year 1986
title Constraint-bounded design search
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 146-157
summary The design process requires continual checking of the consistency of design choices against given sets of goals that have been fulfilled. Such a check is generally performed by comparing abstract representations of design goals with these of the sought real building objects (RBO) resulting from complex intellectual activities closely related to the designer's culture and to the environment in which he operates. In this chapter we define a possible formalization of such representations concerning the goals and the RBO that are usually considered in the architectural design process by our culture in our environment. The representation of design goals is performed by expressing their objective aspects (requirements) and by defining their allowable values (performance specifications). The resulting system of requirements defines the set of allowable solutions and infers an abstract representation of the sought building objects (BO) that consists of the set of characteristics (attributes and relations) which are considered relevant to represent the particular kind of RBO with respect to the consistency check with design goals. The values related to such characteristics define the performances of the RBO while their set establishes its behaviour. Generally speaking, there is no single real object corresponding to an abstract representation but the whole class of the RBO that are equivalent with respect to the values assumed by the considered characteristics. The more we increase the number of these, as well as their specifications, the smaller the class becomes until it coincides with a single real object - given that the assessed specifications be fully consistent. On the other hand, the corresponding representation evolves to the total prefiguration of the RBO. It is not therefore possible to completely define a BO representation in advance since this is inferred by the considered goals and is itself a result of the design process. What can only be established in advance is that any set of characteristics assumed to represent any RBO consists of hierarchic, topological, geometrical and functional relations among the parts of the object at any level of aggregation (from components to space units, to building units, to the whole building) that we define representation structure (RS). Consequently the RS may be thought as the elementary structures that, by superposition and interaction, set up the abstract representation that best fit with design goals.
series CAAD Futures
last changed 1999/04/03 17:58

_id cf2015_005
id cf2015_005
authors Celani, Gabriela; Sperling, David M. and Franco, Juarez M. S. (eds.)
year 2015
title Preface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 5-13.
summary Since 1985 the Computer-Aided Architectural Design Futures Foundation has fostered high level discussions about the search for excellence in the built environment through the use of new technologies with an exploratory and critical perspective. In 2015, the 16th CAAD Futures Conference was held, for the first time, in South America, in the lively megalopolis of Sao Paulo, Brazil. In order to establish a connection to local issues, the theme of the conference was "The next city". The city of Sao Paulo was torn down and almost completely rebuilt twice, from the mid 1800s to the mid 1900s, evolving from a city built in rammed-earth to a city built in bricks and then from a city built in bricks to a city built in concrete. In the 21st century, with the widespread use of digital technologies both in the design and production of buildings, cities are changing even faster, in terms of layout, materials, shapes, textures, production methods and, above all, in terms of the information that is now embedded in built systems.Among the 200 abstracts received in the first phase, 64 were selected for presentation in the conference and publication in the Electronic Proceedings, either as long or short papers, after 3 tough evaluation stages. Each paper was reviewed by at least three different experts from an international committee of more than 80 highly experienced researchers. The authors come from 23 different countries. Among all papers, 10 come from Latin-American institutions, which have been usually under-represented in CAAD Futures. The 33 highest rated long papers are also being published in a printed book by Springer. For this reason, only their abstracts were included in this Electronic Proceedings, at the end of each chapter.The papers in this book have been organized under the following topics: (1) modeling, analyzing and simulating the city, (2) sustainability and performance of the built environment, (3) automated and parametric design, (4) building information modeling (BIM), (5) fabrication and materiality, and (6) shape studies. The first topic includes papers describing different uses of computation applied to the study of the urban environment. The second one represents one of the most important current issues in the study and design of the built environment. The third topic, automated and parametric design, is an established field of research that is finally becoming more available to practitioners. Fabrication has been a hot topic in CAAD conferences, and is becoming ever more popular. This new way of making design and buildings will soon start affecting the way cities look like. Finally, shape studies are an established and respected field in design computing that is traditionally discussed in CAAD conferences.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id 0faa
authors Duelund Mortensen, Peder
year 1991
title THE FULL-SCALE MODEL WORKSHOP
source Proceedings of the 3rd European Full-Scale Modelling Conference / ISBN 91-7740044-5 / Lund (Sweden) 13-16 September 1990, pp. 10-11
summary The workshop is an institution, available for use by the public and established at the Laboratory of Housing in the Art Academy's school of Architecture for a 3 year trial period beginning April 1985. This resumé contains brief descriptions of a variety of representative model projects and an overview of all projects carried out so far, including the pilot projects from 1983 and planned projects to and including January 1987. The Full Scale Model Workshop builds full size models of buildings, rooms and parts of buildings. The purpose of the Full Scale Model Workshop is to promote communication among building's users. The workshop is a tool in an attempt to build bridges between theory and practice in research, experimentation and communication of research results. New ideas and experiments of various sorts can be tried out cheaply, quickly and efficiently through the building of full scale models. Changes can be done on the spot as a planned part of the project and on the basis of ideas and experiments achieved through the model work itself. Buildings and their space can thus be communicated directly to all involved persons, regardless of technical background or training in evaluation of building projects.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:23

_id 78ca
authors Friedland, P. (Ed.)
year 1985
title Special Section on Architectures for Knowledge-Based Systems
source CACM (28), 9, September
summary A fundamental shift in the preferred approach to building applied artificial intelligence (AI) systems has taken place since the late 1960s. Previous work focused on the construction of general-purpose intelligent systems; the emphasis was on powerful inference methods that could function efficiently even when the available domain-specific knowledge was relatively meager. Today the emphasis is on the role of specific and detailed knowledge, rather than on reasoning methods.The first successful application of this method, which goes by the name of knowledge-based or expert-system research, was the DENDRAL program at Stanford, a long-term collaboration between chemists and computer scientists for automating the determination of molecular structure from empirical formulas and mass spectral data. The key idea is that knowledge is power, for experts, be they human or machine, are often those who know more facts and heuristics about a domain than lesser problem solvers. The task of building an expert system, therefore, is predominantly one of teaching" a system enough of these facts and heuristics to enable it to perform competently in a particular problem-solving context. Such a collection of facts and heuristics is commonly called a knowledge base. Knowledge-based systems are still dependent on inference methods that perform reasoning on the knowledge base, but experience has shown that simple inference methods like generate and test, backward-chaining, and forward-chaining are very effective in a wide variety of problem domains when they are coupled with powerful knowledge bases. If this methodology remains preeminent, then the task of constructing knowledge bases becomes the rate-limiting factor in expert-system development. Indeed, a major portion of the applied AI research in the last decade has been directed at developing techniques and tools for knowledge representation. We are now in the third generation of such efforts. The first generation was marked by the development of enhanced AI languages like Interlisp and PROLOG. The second generation saw the development of knowledge representation tools at AI research institutions; Stanford, for instance, produced EMYCIN, The Unit System, and MRS. The third generation is now producing fully supported commercial tools like KEE and S.1. Each generation has seen a substantial decrease in the amount of time needed to build significant expert systems. Ten years ago prototype systems commonly took on the order of two years to show proof of concept; today such systems are routinely built in a few months. Three basic methodologies-frames, rules, and logic-have emerged to support the complex task of storing human knowledge in an expert system. Each of the articles in this Special Section describes and illustrates one of these methodologies. "The Role of Frame-Based Representation in Reasoning," by Richard Fikes and Tom Kehler, describes an object-centered view of knowledge representation, whereby all knowldge is partitioned into discrete structures (frames) having individual properties (slots). Frames can be used to represent broad concepts, classes of objects, or individual instances or components of objects. They are joined together in an inheritance hierarchy that provides for the transmission of common properties among the frames without multiple specification of those properties. The authors use the KEE knowledge representation and manipulation tool to illustrate the characteristics of frame-based representation for a variety of domain examples. They also show how frame-based systems can be used to incorporate a range of inference methods common to both logic and rule-based systems.""Rule-Based Systems," by Frederick Hayes-Roth, chronicles the history and describes the implementation of production rules as a framework for knowledge representation. In essence, production rules use IF conditions THEN conclusions and IF conditions THEN actions structures to construct a knowledge base. The autor catalogs a wide range of applications for which this methodology has proved natural and (at least partially) successful for replicating intelligent behavior. The article also surveys some already-available computational tools for facilitating the construction of rule-based knowledge bases and discusses the inference methods (particularly backward- and forward-chaining) that are provided as part of these tools. The article concludes with a consideration of the future improvement and expansion of such tools.The third article, "Logic Programming, " by Michael Genesereth and Matthew Ginsberg, provides a tutorial introduction to the formal method of programming by description in the predicate calculus. Unlike traditional programming, which emphasizes how computations are to be performed, logic programming focuses on the what of objects and their behavior. The article illustrates the ease with which incremental additions can be made to a logic-oriented knowledge base, as well as the automatic facilities for inference (through theorem proving) and explanation that result from such formal descriptions. A practical example of diagnosis of digital device malfunctions is used to show how significantand complex problems can be represented in the formalism.A note to the reader who may infer that the AI community is being split into competing camps by these three methodologies: Although each provides advantages in certain specific domains (logic where the domain can be readily axiomatized and where complete causal models are available, rules where most of the knowledge can be conveniently expressed as experiential heuristics, and frames where complex structural descriptions are necessary to adequately describe the domain), the current view is one of synthesis rather than exclusivity. Both logic and rule-based systems commonly incorporate frame-like structures to facilitate the representation of large amounts of factual information, and frame-based systems like KEE allow both production rules and predicate calculus statements to be stored within and activated from frames to do inference. The next generation of knowledge representation tools may even help users to select appropriate methodologies for each particular class of knowledge, and then automatically integrate the various methodologies so selected into a consistent framework for knowledge. "
series journal paper
last changed 2003/04/23 15:14

_id e234
authors Kalay, Yehuda E. and Harfmann, Anton C.
year 1985
title An Integrative Approach to Computer-Aided Design Education in Architecture
source February, 1985. [17] p. : [8] p. of ill
summary With the advent of CAD, schools of architecture are now obliged to prepare their graduates for using the emerging new design tools and methods in architectural practices of the future. In addition to this educational obligation, schools of architecture (possibly in partnership with practicing firms) are also the most appropriate agents for pursuing research in CAD that will lead to the development of better CAD software for use by the profession as a whole. To meet these two rather different obligations, two kinds of CAD education curricula are required: one which prepares tool- users, and another that prepares tool-builders. The first educates students about the use of CAD tools for the design of buildings, whereas the second educates them about the design of CAD tools themselves. The School of Architecture and Planning in SUNY at Buffalo has recognized these two obligations, and in Fall 1982 began to meet them by planning and implementing an integrated CAD environment. This environment now consists of 3 components: a tool-building sequence of courses, an advanced research program, and a general tool-users architectural curriculum. Students in the tool-building course sequence learn the principles of CAD and may, upon graduation, become researchers and the managers of CAD systems in practicing offices. While in school they form a pool of research assistants who may be employed in the research component of the CAD environment, thereby facilitating the design and development of advanced CAD tools. The research component, through its various projects, develops and provides state of the art tools to be used by practitioners as well as by students in the school, in such courses as architectural studio, environmental controls, performance programming, and basic design courses. Students in these courses who use the tools developed by the research group constitute the tool-users component of the CAD environment. While they are being educated in the methods they will be using throughout their professional careers, they also act as a 'real-world' laboratory for testing the software and thereby provide feedback to the research component. The School of Architecture and Planning in SUNY at Buffalo has been the first school to incorporate such a comprehensive CAD environment in its curriculum, thereby successfully fulfilling its obligation to train students in the innovative methods of design that will be used in architectural practices of the future, and at the same time making a significant contribution to the profession of architecture as a whole. This paper describes the methodology and illustrates the history of the CAD environment's implementation in the School
keywords CAD, architecture, education
series CADline
email
last changed 2003/06/02 13:58

_id 4c92
authors Norman, Richard B.
year 1985
title Electronic Color in the Architectural Studio - An Alternative Strategy for Introducing the Computer as a Creative Tool in the Studio Environment
doi https://doi.org/10.52842/conf.acadia.1985.035
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 35-42
summary An alternative strategy is proposed for introducing the computer as a creative tool in the studio environment. It is suggested that computer graphic capabilities, focusing on color as an element of design, be incorporated into basic design studios. Techniques of color drawing on the computer are discussed, and computer modeling of color systems is recommended as a vehicle through which to introduce color theory. The effect of color on the perception of buildings is explored, illustrating how color selection can affect a building's line, form and spatial quality. These techniques enable students to develop an appreciation of the use of color in buildings, reinforcing their knowledge of basic design, and introducing them to graphic computing in a visually provocative manner. The proposal recognizes the importance of both color theory and graphic computers to an evolving architectural curriculum.

series ACADIA
email
last changed 2022/06/07 07:58

_id 8298
authors Quadrel, Richard W. and Chassin, David P.
year 1985
title Energy Graphics: A Progress Report on the Development of Architectural Courseware
doi https://doi.org/10.52842/conf.acadia.1985.129
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 129-141
summary Energy Graphics is a technique for determining the energy performance of buildings at the conceptual stage of the architectural design process. Unlike many energy analysis programs, which only produce results after ail of the building information has been supplied, Energy Graphics works with the designer in understanding how early decisions about building form and configuration affect energy use.

The Energy Graphics technique is currently being "computerized" on a Sun 2/120 graphics workstation, under a grant by the Inter-University Consortium for Educational Computing. The resulting software will be used in the architectural design curriculum so that students will be able to receive an immediate energy evaluation of their design explorations.

For use in the studios, the software must include a powerful graphics interface that allows students to "sketch" their design concepts interactively. The computer will then interpret these sketches as building information, organize them into an integrated database, perform the energy calculations, and inform the student of the results in a graphic format. One of the project's major goals is to provide this graphics interface in the same way that architects think about drawing, and not simply to imitate current computer "drafting" systems.

The goals of the project can only be met by developing the software on a powerful workstation system, which provides fast processing time, large memory, multitasking capabilities and high-resolution graphics. This progress report describes our efforts to date on the development of this important software.

series ACADIA
last changed 2022/06/07 08:00

_id 6903
authors Rosenman, Michael A. and Gero, John S.
year 1985
title Design Codes as Expert Systems
source Computer Aided Design. 1985. vol. 17: pp. 399-409. includes bibliography ; appendix
summary An expert system shell written in Prolog has been implemented and examples of the use of the system with the Australian Model Uniform Building Code are presented to demonstrate its capabilities. Some ideas about the future development of a comprehensive expert system and its environment are presented
keywords expert systems, PROLOG, design, codes
series CADline
email
last changed 2003/06/02 13:58

_id 020d
authors Shaviv, Edna
year 1986
title Layout Design Problems: Systematic Approaches
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 28-52
summary The complexity of the layout design problems known as the 'spatial allocation problems' gave rise to several approaches, which can be generally classified into two main streams. The first attempts to use the computer to generate solutions of the building layout, while in the second, computers are used only to evaluate manually generated solutions. In both classes the generation or evaluation of the layout are performed systematically. Computer algorithms for 'spatial allocation problems' first appeared more than twenty-five years ago (Koopmans, 1957). From 1957 to 1970 over thirty different programs were developed for generating the floor plan layout automatically, as is summarized in CAP-Computer Architecture Program, Vol. 2 (Stewart et al., 1970). It seems that any architect who entered the area of CAAD felt that it was his responsibility to find a solution to this prime architectural problem. Most of the programs were developed for batch processing, and were run on a mainframe without any sophisticated input/output devices. It is interesting to mention that, because of the lack of these sophisticated input/output devices, early researchers used the approach of automatic generation of optimal or quasioptimal layout solution under given constraints. Gradually, we find a recession and slowdown in the development of computer programs for generation of layout solutions. With the improvement of interactive input/output devices and user interfaces, the inclination today is to develop integrated systems in which the architectural solution is obtained manually by the architect and is introduced to the computer for the appraisal of the designer's layout solution (Maver, 1977). The manmachine integrative systems could work well, but it seems that in most of the integrated systems today, and in the commercial ones in particular, there is no route to any appraisal technique of the layout problem. Without any evaluation techniques in commercial integrated systems it seems that the geometrical database exists Just to create working drawings and sometimes also perspectives.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 02c6
authors Wheeler, B.J.Q
year 1986
title A Unified Model for Building
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 200-231
summary It is commonly recognized that the time-honoured procedure for preparing an architectural design for building on site is inefficient. Each member of a team of consultant professionals makes an independently documented contribution. For a typical project involving an architect and structural, electrical, mechanical and public services engineers there will be at least five separate sets of general- arrangement drawings, each forming a model of the building, primarily illustrating one discipline but often having to include elements of others in order to make the drawing readable. For example, an air-conditioning duct-work layout is more easily understood when superimposed on the room layout it serves which the engineer is not responsible for but has to understand. Both during their parallel evolution and later, when changes have to be made during the detailed design and production drawing stages, it is difficult and time consuming to keep all versions coordinated. Complete coordination is rarely achieved in time, and conflicts between one discipline and another have to be rectified when encountered on site with resulting contractual implications. Add the interior designer, the landscape architect and other specialized consultants at one end of the list and contractors' shop drawings relating to the work of all the consultants at the other, and the number of different versions of the same thing grows, escalating the concomitant task of coordination. The potential for disputes over what is the current status of the design is enormous, first, amongst the consultants and second, between the consultants and the contractor. When amendments are made by one party, delay and confusion tend to follow during the period it takes the other parties to update their versions to include them. The idea of solving this problem by using a common computer-based model which all members of the project team can directly contribute to is surely a universally assumed goal amongst all those involved in computer-aided building production. The architect produces a root drawing or model, the 'Architect's base plan', to which the other consultants have read-only access and on top of which they can add their own write-protected files. Every time they access the model to write in the outcome of their work on the project they see the current version of the 'Architect's base plan' and can thus respond immediately to recent changes and avoid wasting time on redundant work. The architect meanwhile adds uniquely architectural material in his own overlaid files and maintains the root model as everybody's work requires. The traditional working pattern is maintained while all the participants have the ability to see their colleagues, work but only make changes to those parts for which they are responsible.
series CAAD Futures
last changed 1999/04/03 17:58

_id ce52
authors Abram, Greg, Weslover, Lee and Whitted, Turner
year 1985
title Efficient Alias-Free Rendering using Bit-masks and Look-up Tables
source SIGGRAPH '85 Conference Proceedings. July, 1985. vol. 19 ; no. 3: pp. 53-59 : ill. (some col.). includes bibliography
summary The authors demonstrate methods of rendering alias-free synthetic images using a precomputed convolution integral. The method is based on the observation that a visible polygon fragment's contribution to an image is solely a function of its position and shape, and that within a reasonable level of accuracy, a limited number of shapes represent the majority of cases encountered in images commonly rendered. The basic technique has been applied to several different rendering algorithms. A version of the newly non-uniform sampling technique implemented in the same program but with different tables values was introduced
keywords algorithms, computer graphics, anti-aliasing
series CADline
last changed 2003/06/02 13:58

_id 678e
authors Aish, Robert
year 1986
title Three-dimensional Input and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 68-84
summary The aim of this chapter is to investigate techniques by which man-computer interaction could be improved, specifically in the context of architectural applications of CAD. In this application the object being designed is often an assembly of defined components. Even if the building is not actually fabricated from such components, it is usually conceptualized in these terms. In a conventional graphics- based CAD system these components are usually represented by graphical icons which are displayed on the graphics screen and arranged by the user. The system described here consists of three- dimensional modelling elements which the user physically assembles to form his design. Unlike conventional architectural models which are static (i.e. cannot be changed by the users) and passive (i.e. cannot be read by a CAD system), this model is both 'user generated' and 'machine readable'. The user can create, edit and view the model by simple, natural modelling activities and without the need to learn complex operating commands often associated with CAD systems. In particular, the user can view the model, altering his viewpoint and focus of attention in a completely natural way. Conventional computer graphics within an associated CAD system are used to represent the detailed geometry which the different three-dimensional icons may represent. In addition, computer graphics are also used to present the output of the performance attributes of the objects being modelled. In the architectural application described in this chapter an energy- balance evaluation is displayed for a building designed using the modelling device. While this system is not intended to offer a completely free-form input facility it can be considered to be a specialist man-machine interface of particular relevance to architects or engineers.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id 2d64
authors Batori, D.S. and Kim, W.
year 1985
title Modeling Concepts for VLSI CAD Objects
source ACM Transactions on Database Systems 10 No. 3 - pp. 322-346
summary VLSI CAD applications deal with design objects that have an interface description and an implementation description. Versions of design objects have a common interface but differ in their implementations. A molecular object is a modeling construct which enables a database entity to be represented by two sets of heterogeneous records, one set describes the object's interface and the other describes its implementation. Thus a reasonable starting point for modeling design objects is to begin with the concept of molecular objects. In this paper, we identify modeling concepts that are fundamental to capturing the semantics of VLSI CAD design objects and versions in terms of molecular objects. A provisional set of user operations on design objects, consistent with these modeling concepts, is also defined. The modeling framework that we present has been found useful for investigating physical storage techniques and change notification problems in version control. REFERENCES
series journal paper
last changed 2003/11/21 15:16

_id ddssar0206
id ddssar0206
authors Bax, M.F.Th. and Trum, H.M.G.J.
year 2002
title Faculties of Architecture
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary In order to be inscribed in the European Architect’s register the study program leading to the diploma ‘Architect’ has to meet the criteria of the EC Architect’s Directive (1985). The criteria are enumerated in 11 principles of Article 3 of the Directive. The Advisory Committee, established by the European Council got the task to examine such diplomas in the case some doubts are raised by other Member States. To carry out this task a matrix was designed, as an independent interpreting framework that mediates between the principles of Article 3 and the actual study program of a faculty. Such a tool was needed because of inconsistencies in the list of principles, differences between linguistic versions ofthe Directive, and quantification problems with time, devoted to the principles in the study programs. The core of the matrix, its headings, is a categorisation of the principles on a higher level of abstractionin the form of a taxonomy of domains and corresponding concepts. Filling in the matrix means that each study element of the study programs is analysed according to their content in terms of domains; thesummation of study time devoted to the various domains results in a so-called ‘profile of a faculty’. Judgement of that profile takes place by committee of peers. The domains of the taxonomy are intrinsically the same as the concepts and categories, needed for the description of an architectural design object: the faculties of architecture. This correspondence relates the taxonomy to the field of design theory and philosophy. The taxonomy is an application of Domain theory. This theory,developed by the authors since 1977, takes as a view that the architectural object only can be described fully as an integration of all types of domains. The theory supports the idea of a participatory andinterdisciplinary approach to design, which proved to be awarding both from a scientific and a social point of view. All types of domains have in common that they are measured in three dimensions: form, function and process, connecting the material aspects of the object with its social and proceduralaspects. In the taxonomy the function dimension is emphasised. It will be argued in the paper that the taxonomy is a categorisation following the pragmatistic philosophy of Charles Sanders Peirce. It will bedemonstrated as well that the taxonomy is easy to handle by giving examples of its application in various countries in the last 5 years. The taxonomy proved to be an adequate tool for judgement ofstudy programs and their subsequent improvement, as constituted by the faculties of a Faculty of Architecture. The matrix is described as the result of theoretical reflection and practical application of a matrix, already in use since 1995. The major improvement of the matrix is its direct connection with Peirce’s universal categories and the self-explanatory character of its structure. The connection with Peirce’s categories gave the matrix a more universal character, which enables application in other fieldswhere the term ‘architecture’ is used as a metaphor for artefacts.
series DDSS
last changed 2003/11/21 15:16

_id ddss9408
id ddss9408
authors Bax, Thijs and Trum, Henk
year 1994
title A Taxonomy of Architecture: Core of a Theory of Design
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary The authors developed a taxonomy of concepts in architectural design. It was accepted by the Advisory Committee for education in the field of architecture, a committee advising the European Commission and Member States, as a reference for their task to harmonize architectural education in Europe. The taxonomy is based on Domain theory, a theory developed by the authors, based on General Systems Theory and the notion of structure according to French Structuralism, takes a participatory viewpoint for the integration of knowledge and interests by parties in the architectural design process. The paper discusses recent developments of the taxonomy, firstly as a result of a confrontation with similar endeavours to structure the field of architectural design, secondly as a result of applications of education and architectural design practice, and thirdly as a result of theapplication of some views derived from the philosophical work from Charles Benjamin Peirce. Developments concern the structural form of the taxonomy comprising basic concepts and levelbound scale concepts, and the specification of the content of the fields which these concepts represent. The confrontation with similar endeavours concerns mainly the work of an ARCUK workingparty, chaired by Tom Marcus, based on the European Directive from 1985. The application concerns experiences with a taxonomy-based enquiry in order to represent the profile of educational programmes of schools and faculties of architecture in Europe in qualitative and quantitative terms. This enquiry was carried out in order to achieve a basis for comparison and judgement, and a basis for future guidelines including quantitative aspects. Views of Peirce, more specifically his views on triarchy as a way of ordering and structuring processes of thinking,provide keys for a re-definition of concepts as building stones of the taxonomy in terms of the form-function-process-triad, which strengthens the coherence of the taxonomy, allowing for a more regular representation in the form of a hierarchical ordered matrix.
series DDSS
last changed 2003/08/07 16:36

_id 4316
authors Bentley, Jon L.
year 1985
title Associative Arrays -- Programming Pearls
source communications of the ACM. June, 1985. vol. 28: pp. 570-576 : ill
summary Anthropological studies have shown that one's language has a profound effect on one's view of the world. This column is about a language feature outside the Algol heritage: associative arrays. The column examines the associative arrays provided by the AWK language
keywords techniques, programming, algorithms, data structures
series CADline
last changed 2003/06/02 13:58

_id a217
authors Bhatt, Rajesh V., Fisher, Edward L. and Rasdorf, William J.
year 1985
title Information Retrieval Architectures For Expert System/DBMS Communication
source Industrial Engineering Fall Conference Proceedings. December, 1985. pp. 315-320. CADLINE has abstract only
summary The development of expert systems (ES) for manufacturing problems indicates a need to interact with potentially large amounts of data, much of which resides elsewhere in the ES user's organization. A large amount of information required for planning, design, and control operations can be made available through an existing database management system (DBMS). The need for an ES to access that data is critical. This paper presents two approaches to the development of ES- DBMS interfaces, both query-language based. One approach uses a procedural attachment to the ES language to obtain the required data via the DBMS query language, while the other one uses a separate interface program between the ES and the query language of the DBMS. The procedural attachment is able to acquire data from a DBMS at a faster rate than the interface program; however, the procedural attachment lacks knowledge of the DBMS schema. On the other hand, the interface program sacrifices speed but promotes flexibility, as it has the capability of selecting which DBMS to extract the required data from and allowing augmentation of schema knowledge outside of the ES. A disadvantage of the interface approach is the amount of time involved in data retrieval. The process of writing information to disk files is I/O intensive. This can be quite slow, particularly in PROLOG, the language used to implement the ES. Thus the use of such an interface is only suitable in applications such as design, where extremely fast I/O is not required
keywords design, engineering, expert systems, information, database, DBMS
series CADline
last changed 2003/06/02 10:24

_id a6f1
authors Bridges, A.H.
year 1986
title Any Progress in Systematic Design?
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 5-15
summary In order to discuss this question it is necessary to reflect awhile on design methods in general. The usual categorization discusses 'generations' of design methods, but Levy (1981) proposes an alternative approach. He identifies five paradigm shifts during the course of the twentieth century which have influenced design methods debate. The first paradigm shift was achieved by 1920, when concern with industrial arts could be seen to have replaced concern with craftsmanship. The second shift, occurring in the early 1930s, resulted in the conception of a design profession. The third happened in the 1950s, when the design methods debate emerged; the fourth took place around 1970 and saw the establishment of 'design research'. Now, in the 1980s, we are going through the fifth paradigm shift, associated with the adoption of a holistic approach to design theory and with the emergence of the concept of design ideology. A major point in Levy's paper was the observation that most of these paradigm shifts were associated with radical social reforms or political upheavals. For instance, we may associate concern about public participation with the 1970s shift and the possible use (or misuse) of knowledge, information and power with the 1980s shift. What has emerged, however, from the work of colleagues engaged since the 1970s in attempting to underpin the practice of design with a coherent body of design theory is increasing evidence of the fundamental nature of a person's engagement with the design activity. This includes evidence of the existence of two distinctive modes of thought, one of which can be described as cognitive modelling and the other which can be described as rational thinking. Cognitive modelling is imagining, seeing in the mind's eye. Rational thinking is linguistic thinking, engaging in a form of internal debate. Cognitive modelling is externalized through action, and through the construction of external representations, especially drawings. Rational thinking is externalized through verbal language and, more formally, through mathematical and scientific notations. Cognitive modelling is analogic, presentational, holistic, integrative and based upon pattern recognition and pattern manipulation. Rational thinking is digital, sequential, analytical, explicatory and based upon categorization and logical inference. There is some relationship between the evidence for two distinctive modes of thought and the evidence of specialization in cerebral hemispheres (Cross, 1984). Design methods have tended to focus upon the rational aspects of design and have, therefore, neglected the cognitive aspects. By recognizing that there are peculiar 'designerly' ways of thinking combining both types of thought process used to perceive, construct and comprehend design representations mentally and then transform them into an external manifestation current work in design theory is promising at last to have some relevance to design practice.
series CAAD Futures
email
last changed 2003/11/21 15:16

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5show page 6HOMELOGIN (you are user _anon_432372 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002