CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 144

_id 6c66
authors Perlin, Ken
year 1985
title An Image Synthesizer
source SIGGRAPH '85 Conference Proceedings. July, 1985. vol. 19 ; no. 3: pp. 287- 296 : ill. includes bibliography
summary The authors introduce the concept of a Pixel Stream Editor. This forms the basis for an interactive synthesizer for designing highly realistic Computer Generated Imagery. The designer works in an interactive Very High Level programming environment which provides a very fast concept/implement/view iteration cycle. Naturalistic visual complexity is built up by composition of non-linear functions, as opposed to the more conventional texture mapping or growth model algorithms. Powerful primitives are included for creating controlled stochastic effects. The concept of 'solid texture' to the field of CGI is introduced. The authors have used this system to create very convincing representations of clouds, fire, water, stars, marble, wood, rock, soap films and crystals. The algorithms created with this paradigm are generally extremely fast, highly realistic, and asynchronously parallelizable at the pixel level
keywords computer graphics, programming, algorithms, synthesis, realism
series CADline
last changed 1999/02/12 15:09

_id a0d4
id a0d4
authors Rosa Enrich, Andrea Carnicero, Gustavo Fornari & Pedro Orazzi
year 2004
title ANALYSIS AND EVALUATION OF MATHEMATICAL LEARNING STRUCTURES
source Proceedings of the Fourth International Conference of Mathematics & Design, Spetial Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 13-21.
summary Abstract: A series of practical tasks have been done under the general name of “Surfaces in invisible cities”. Each task was based on a story taken from the book The Invisible Cities by Italo Calvino. The research carried out allows to design a pedagogical project which makes evident , generates and connects several intentions, motivations and learning structures. It proposes the use of multi- level languages and readings. Therefore, each task takes more time than that of the proposed mathematical class. Its implementation generates a broader view than that seen at the time of design.

From the detailed analysis of the results obtained, the following diverse pedagogical aspects of this work project arise: a. The use of several multiple intelligence: Howard Gardner (1985) found that a man has several distinct intelligence types among which Logical-Mathematical; Spatial; Linguistic -oriented; Musical; Intra-personal; Kinesthetic-Corporal; Interpersonal stand out. Only those types used in the task will be analyzed, making a brief description of each type. b. The architectonic-city planning aspects: architectonic-city planning interpretation of the space imagined after reading the text, with the purpose of identifying figures, shapes, volumes and colors which are expressed via an analogous space. They consist of visual, architectonic and territorial speculations without a rigorous spatial theory and it is pretended that they possess a technical precision at mathematical concept level. c. The mathematical contents: a study of the conical and square shapes present in the designs done and used in a creative manner in students’ compositions following the reading of the story chosen is carried out. An analysis of shapes is performed and mathematical problems are posed within the design context.

Traditional sketching methods have been used in task solving and the possibilities offered by the virtual tools are analyzed.

Emphasis has been put on the vertical and horizontal interchanges in the Chair, generating changes in knowledge transmission perspectives, thus allowing the sharing of contents, abilities and resources. The architectonic work imagined and created by the students will focus on these different working lines creating a harmonious and significant whole. The work is the result of multiple connections and creative proposals.

keywords city, geometry, multiple intelligence
series other
type normal paper
email
last changed 2005/04/07 12:46

_id 452c
authors Vanier, D. J. and Worling, Jamie
year 1986
title Three-dimensional Visualization: A Case Study
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 92-102
summary Three-dimensional computer visualization has intrigued both building designers and computer scientists for decades. Research and conference papers present an extensive list of existing and potential uses for threedimensional geometric data for the building industry (Baer et al., 1979). Early studies on visualization include urban planning (Rogers, 1980), treeshading simulation (Schiler and Greenberg, 1980), sun studies (Anon, 1984), finite element analysis (Proulx, 1983), and facade texture rendering (Nizzolese, 1980). With the advent of better interfaces, faster computer processing speeds and better application packages, there had been interest on the part of both researchers and practitioners in three-dimensional -models for energy analysis (Pittman and Greenberg, 1980), modelling with transparencies (Hebert, 1982), super-realistic rendering (Greenberg, 1984), visual impact (Bridges, 1983), interference clash checking (Trickett, 1980), and complex object visualization (Haward, 1984). The Division of Building Research is currently investigating the application of geometric modelling in the building delivery process using sophisticated software (Evans, 1985). The first stage of the project (Vanier, 1985), a feasibility study, deals with the aesthetics of the mode. It identifies two significant requirements for geometric modelling systems: the need for a comprehensive data structure and the requirement for realistic accuracies and tolerances. This chapter presents the results of the second phase of this geometric modelling project, which is the construction of 'working' and 'presentation' models for a building.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 678e
authors Aish, Robert
year 1986
title Three-dimensional Input and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 68-84
summary The aim of this chapter is to investigate techniques by which man-computer interaction could be improved, specifically in the context of architectural applications of CAD. In this application the object being designed is often an assembly of defined components. Even if the building is not actually fabricated from such components, it is usually conceptualized in these terms. In a conventional graphics- based CAD system these components are usually represented by graphical icons which are displayed on the graphics screen and arranged by the user. The system described here consists of three- dimensional modelling elements which the user physically assembles to form his design. Unlike conventional architectural models which are static (i.e. cannot be changed by the users) and passive (i.e. cannot be read by a CAD system), this model is both 'user generated' and 'machine readable'. The user can create, edit and view the model by simple, natural modelling activities and without the need to learn complex operating commands often associated with CAD systems. In particular, the user can view the model, altering his viewpoint and focus of attention in a completely natural way. Conventional computer graphics within an associated CAD system are used to represent the detailed geometry which the different three-dimensional icons may represent. In addition, computer graphics are also used to present the output of the performance attributes of the objects being modelled. In the architectural application described in this chapter an energy- balance evaluation is displayed for a building designed using the modelling device. While this system is not intended to offer a completely free-form input facility it can be considered to be a specialist man-machine interface of particular relevance to architects or engineers.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id 2ae0
authors Bairstow, Jeffrey N.
year 1985
title Chip Design Made Easy
source high Technology. June, 1985. pp. 18-25 : ill. includes bibliography: p. 74
summary The combination of powerful engineering workstations and novel software tools is making custom chip design economical even for engineers without the specific training. The availability of new automated design technology is promoted by the changing market dynamics. The design of an integrated circuit, with hardware choices, is described
keywords business, AI, electrical engineering, hardware
series CADline
last changed 2003/06/02 13:58

_id 4532
authors Bono, Peter R.
year 1985
title A Survey of Graphics Standards and Their Role in Information Interchange
source IEEE Computer. October, 1985. vol. 18: pp. 63-75 : ill. ; tables. includes bibliography
summary The survey describes each graphic standard and explains the interrelationships among the standards. The role and commercial impact of PCs serving as workstations in a distributed, network, multimedia environment is emphasized. It is shown that current graphics standardization activity focused on three principal areas: the application interface, the device interface, and picture exchange. The operator interface and hardware interfaces will be expected to be the subjects for standardization in the future. In addition, picture exchange will be replaced by information exchange, where information includes text, image, and voice components merged with graphics to create an integrated whole
keywords computer graphics, standards, GKS, communication
series CADline
last changed 2003/06/02 13:58

_id 8a90
authors Buchmann, Alejandro P. and Gerzso, Miguel J.
year 1985
title Handling Heterogeneously Formatted Data in an Object Oriented Database Environment
source NCGA - National Computer Graphics Association Conference Proceedings. 1985. vol. 3: pp. 645-655 : ill. includes bibliography
summary The paper discussed the problems associated with handling heterogeneously formatted data and the interfacing of the subsystems of a CAD system that intervene in the handling of these data: the database management system, the graphic display system and application programs. Object-oriented languages with message passing capabilities were offered as a feasible solution which was illustrated through examples in the language TM
keywords CAD, systems, languages, computer graphics, database
series CADline
last changed 2003/06/02 10:24

_id 63d0
authors Carrara, Gianfranco and Novembri, Gabriele
year 1986
title Constraint-bounded design search
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 146-157
summary The design process requires continual checking of the consistency of design choices against given sets of goals that have been fulfilled. Such a check is generally performed by comparing abstract representations of design goals with these of the sought real building objects (RBO) resulting from complex intellectual activities closely related to the designer's culture and to the environment in which he operates. In this chapter we define a possible formalization of such representations concerning the goals and the RBO that are usually considered in the architectural design process by our culture in our environment. The representation of design goals is performed by expressing their objective aspects (requirements) and by defining their allowable values (performance specifications). The resulting system of requirements defines the set of allowable solutions and infers an abstract representation of the sought building objects (BO) that consists of the set of characteristics (attributes and relations) which are considered relevant to represent the particular kind of RBO with respect to the consistency check with design goals. The values related to such characteristics define the performances of the RBO while their set establishes its behaviour. Generally speaking, there is no single real object corresponding to an abstract representation but the whole class of the RBO that are equivalent with respect to the values assumed by the considered characteristics. The more we increase the number of these, as well as their specifications, the smaller the class becomes until it coincides with a single real object - given that the assessed specifications be fully consistent. On the other hand, the corresponding representation evolves to the total prefiguration of the RBO. It is not therefore possible to completely define a BO representation in advance since this is inferred by the considered goals and is itself a result of the design process. What can only be established in advance is that any set of characteristics assumed to represent any RBO consists of hierarchic, topological, geometrical and functional relations among the parts of the object at any level of aggregation (from components to space units, to building units, to the whole building) that we define representation structure (RS). Consequently the RS may be thought as the elementary structures that, by superposition and interaction, set up the abstract representation that best fit with design goals.
series CAAD Futures
last changed 1999/04/03 17:58

_id cf2015_005
id cf2015_005
authors Celani, Gabriela; Sperling, David M. and Franco, Juarez M. S. (eds.)
year 2015
title Preface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 5-13.
summary Since 1985 the Computer-Aided Architectural Design Futures Foundation has fostered high level discussions about the search for excellence in the built environment through the use of new technologies with an exploratory and critical perspective. In 2015, the 16th CAAD Futures Conference was held, for the first time, in South America, in the lively megalopolis of Sao Paulo, Brazil. In order to establish a connection to local issues, the theme of the conference was "The next city". The city of Sao Paulo was torn down and almost completely rebuilt twice, from the mid 1800s to the mid 1900s, evolving from a city built in rammed-earth to a city built in bricks and then from a city built in bricks to a city built in concrete. In the 21st century, with the widespread use of digital technologies both in the design and production of buildings, cities are changing even faster, in terms of layout, materials, shapes, textures, production methods and, above all, in terms of the information that is now embedded in built systems.Among the 200 abstracts received in the first phase, 64 were selected for presentation in the conference and publication in the Electronic Proceedings, either as long or short papers, after 3 tough evaluation stages. Each paper was reviewed by at least three different experts from an international committee of more than 80 highly experienced researchers. The authors come from 23 different countries. Among all papers, 10 come from Latin-American institutions, which have been usually under-represented in CAAD Futures. The 33 highest rated long papers are also being published in a printed book by Springer. For this reason, only their abstracts were included in this Electronic Proceedings, at the end of each chapter.The papers in this book have been organized under the following topics: (1) modeling, analyzing and simulating the city, (2) sustainability and performance of the built environment, (3) automated and parametric design, (4) building information modeling (BIM), (5) fabrication and materiality, and (6) shape studies. The first topic includes papers describing different uses of computation applied to the study of the urban environment. The second one represents one of the most important current issues in the study and design of the built environment. The third topic, automated and parametric design, is an established field of research that is finally becoming more available to practitioners. Fabrication has been a hot topic in CAAD conferences, and is becoming ever more popular. This new way of making design and buildings will soon start affecting the way cities look like. Finally, shape studies are an established and respected field in design computing that is traditionally discussed in CAAD conferences.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ascaad2006_paper20
id ascaad2006_paper20
authors Chougui, Ali
year 2006
title The Digital Design Process: reflections on architectural design positions on complexity and CAAD
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary These instructions are intended to guide contributors to the Second Architecture is presently engaged in an impatient search for solutions to critical questions about the nature and the identity of the discipline, and digital technology is a key agent for prevailing innovations in architectural design. The problem of complexity underlies all design problems. With the advent of CAD however, Architect’s ability to truly represent complexity has increased considerably. Another source that provides information about dealing with complexity is architectural theory. As Rowe (1987) states, architectural theory constitutes “a corpus of principles that are agreed upon and therefore worthy of emulation”. Architectural theory often is a mixed reflection on the nature of architectural design, design processes, made in descriptive and prescriptive terms (see Kruft 1985). Complexity is obviously not a new issue in architectural theory. Since it is an inherent characteristic of design problems, it has been dealt with in many different ways throughout history. Contemporary architects incorporate the computer in their design process. They produce architecture that is generated by the use of particle systems, simulation software, animation software, but also the more standard modelling tools. The architects reflect on the impact of the computer in their theories, and display changes in style by using information modelling techniques that have become versatile enough to encompass the complexity of information in the architectural design process. In this way, architectural style and theory can provide directions to further develop CAD. Most notable is the acceptance of complexity as a given fact, not as a phenomenon to oppose in systems of organization, but as a structuring principle to begin with. No matter what information modelling paradigm is used, complex and huge amounts of information need to be processed by designers. A key aspect in the combination of CAD, complexity, and architectural design is the role of the design representation. The way the design is presented and perceived during the design process is instrumental to understanding the design task. More architects are trying to reformulate this working of the representation. The intention of this paper is to present and discuss the current state of the art in architectural design positions on complexity and CAAD, and to reflect in particular on the role of digital design representations in this discussion. We also try to investigate how complexity can be dealt with, by looking at architects, in particular their styles and theories. The way architects use digital media and graphic representations can be informative how units of information can be formed and used in the design process. A case study is a concrete architect’s design processes such as Peter Eisenman Rem Koolhaas, van Berkel, Lynn, and Franke gehry, who embrace complexity and make it a focus point in their design, Rather than viewing it as problematic issue, by using computer as an indispensable instrument in their approaches.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 6947
authors Foxley, Eric, McGettrick, A. D. and van Leeuwen, J. (consulting editors)
year 1985
title UNIX for Super Users
source xiv, 213 p. Wokingham, England: Addison-Wesley Pub. Co., 1985. includes index -- (International Computer Science Series)
summary For the person responsible for managing a UNIX system. A description of key management functions like : Bringing up the system and taking it down, creation of new login names, maintenance of file-store security, monitoring user resource usage, and machine performance considerations. Outlines of shell scripts and C programs for various system management function are given. All major versions, at the time, of UNIX and its derivatives are covered
keywords UNIX, operating systems
series CADline
last changed 2003/06/02 13:58

_id 027b
authors Griffiths, J.G.
year 1985
title Table-Driven Algorithms for Generating Space-Filling Curves
source Computer Aided Design. January/ February, 1985. vol. 17: pp. 37-41 : ill. includes bibliography
summary A simple general method for constructing space-filling curves is presented, based on the use of tables. It is shown how the use of Hilbert's curve can enhance the performance of Warnock's algorithm. A procedure is given which generates Hilbert curves or Sierpinski curves. A second procedure is given which generates Warnock's windows in Hilbert order
keywords computer graphics, rendering, algorithms, curves, representation, display
series CADline
last changed 2003/06/02 13:58

_id e234
authors Kalay, Yehuda E. and Harfmann, Anton C.
year 1985
title An Integrative Approach to Computer-Aided Design Education in Architecture
source February, 1985. [17] p. : [8] p. of ill
summary With the advent of CAD, schools of architecture are now obliged to prepare their graduates for using the emerging new design tools and methods in architectural practices of the future. In addition to this educational obligation, schools of architecture (possibly in partnership with practicing firms) are also the most appropriate agents for pursuing research in CAD that will lead to the development of better CAD software for use by the profession as a whole. To meet these two rather different obligations, two kinds of CAD education curricula are required: one which prepares tool- users, and another that prepares tool-builders. The first educates students about the use of CAD tools for the design of buildings, whereas the second educates them about the design of CAD tools themselves. The School of Architecture and Planning in SUNY at Buffalo has recognized these two obligations, and in Fall 1982 began to meet them by planning and implementing an integrated CAD environment. This environment now consists of 3 components: a tool-building sequence of courses, an advanced research program, and a general tool-users architectural curriculum. Students in the tool-building course sequence learn the principles of CAD and may, upon graduation, become researchers and the managers of CAD systems in practicing offices. While in school they form a pool of research assistants who may be employed in the research component of the CAD environment, thereby facilitating the design and development of advanced CAD tools. The research component, through its various projects, develops and provides state of the art tools to be used by practitioners as well as by students in the school, in such courses as architectural studio, environmental controls, performance programming, and basic design courses. Students in these courses who use the tools developed by the research group constitute the tool-users component of the CAD environment. While they are being educated in the methods they will be using throughout their professional careers, they also act as a 'real-world' laboratory for testing the software and thereby provide feedback to the research component. The School of Architecture and Planning in SUNY at Buffalo has been the first school to incorporate such a comprehensive CAD environment in its curriculum, thereby successfully fulfilling its obligation to train students in the innovative methods of design that will be used in architectural practices of the future, and at the same time making a significant contribution to the profession of architecture as a whole. This paper describes the methodology and illustrates the history of the CAD environment's implementation in the School
keywords CAD, architecture, education
series CADline
email
last changed 2003/06/02 13:58

_id 0711
authors Kunnath, S.K., Reinhorn, A.M. and Abel, J.F.
year 1990
title A Computational Tool for Evaluation of Seismic Performance of RC Buildings
source February, 1990. [1] 15 p. : ill. graphs, tables. includes bibliography: p. 10-11
summary Recent events have demonstrated the damaging power of earthquakes on structural assemblages resulting in immense loss of life and property (Mexico City, 1985; Armenia, 1988; San Francisco, 1989). While the present state-of-the-art in inelastic seismic response analysis of structures is capable of estimating response quantities in terms of deformations, stresses, etc., it has not established a physical qualification of these end-results into measures of damage sustained by the structure wherein system vulnerability is ascertained in terms of serviceability, repairability, and/or collapse. An enhanced computational tool is presented in this paper for evaluation of reinforced concrete structures (such as buildings and bridges) subjected to seismic loading. The program performs a series of tasks to enable a complete evaluation of the structural system: (a) elastic collapse- mode analysis to determine the base shear capacity of the system; (b) step-by-step time history analysis using a macromodel approach in which the inelastic behavior of RC structural components is incorporated; (c) reduction of the response quantities to damage indices so that a physical interpretation of the response is possible. The program is built around two graphical interfaces: one for preprocessing of structural and loading data; and the other for visualization of structural damage following the seismic analysis. This program can serve as an invaluable tool in estimating the seismic performance of existing RC buildings and for designing new structures within acceptable levels of damage
keywords seismic, structures, applications, evaluation, civil engineering, CAD
series CADline
last changed 2003/06/02 14:41

_id e11a
authors Nishita, Tomoyuki and Nakamae, Eihachiro
year 1985
title Continuous Tone Representation of Three-Dimensional Objects Taking Account of Shadows and Interreflection
source SIGGRAPH '85 Conference Proceedings. July, 1985. vol. 19 ; no. 3: pp. 23-30 : ill. some col. includes bibliography
summary The effect of shadows and interreflection created by room obstructions is an important factor in the continuous tone representation of interiors. For indirect illumination, in most cases a uniform ambient light has been considered, even though the interreflection gives very complex effects with the shaded images. The proposed method for indirect lighting with shadows results in the following advanced points: (1) The indirect illuminance caused by the surfaces of objects such as ceilings, floors, walls, desks, bookcases etc. gives added realism to images. (2) The proposed method is suitable for every type of light source such as point sources, linear sources, and area sources
keywords shadowing, shading, computer graphics, display, rendering, architecture, lighting
series CADline
last changed 2003/06/02 13:58

_id ee4b
id ee4b
authors Ozel, Filiz
year 1985
title Using CAD in Fire Safety Research
doi https://doi.org/10.52842/conf.acadia.1985.142
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 142-154
summary While architecture offices are increasingly using CADD systems for drafting purposes, architectural schools are pursuing projects that use the CAD data base for new applications in the analysis and evaluation of buildings. This paper summarizes two studies done at the University of Michigan, Architecture Research laboratory, where the CAD system was used to develop a fire safety code evaluation program, and an emergency egress behavior simulation.

The former one takes the National Fire Protection Association (NFPA) Life safety Code 101 as a basis, and generates the code compliance requirements of a given project. The ether study accepts people as information processing beings and simulates their way finding behavior under emergency conditions. Both of these studies utilize the graphic characteristics of the CAD system, producing color displays on the CRT screen, and also outputting information in tabular form which refers to the display on the screen. Both of them also have plotting options.

series ACADIA
email
last changed 2022/06/07 08:00

_id 62ff
authors Peckham, R. J.
year 1985
title Shading Evaluations with General Three- Dimensional Models
source Computer Aided Design. September, 1985. vol. 17: pp. 305-310 : ill. includes bibliography
summary The SHADOWPACK package of computer programs has been developed to facilitate shading evaluations, for the direct component of solar radiation, with general 3D models. An interactive solid modelling program allows the user to construct and view the 3D model before saving it for further analysis and display. Other programs permit the graphical display of the shading situation throughout the year, the quantitative assessment of energy received on different faces of the model, and the display of the distribution of energy received on particular faces by means of contour plots. The use of the computer graphics approach has proved particularly convenient because of the similarity between the techniques used for graphical and numerical algorithms
keywords shading, solid modeling, evaluation, energy, computer graphics
series CADline
last changed 2003/06/02 13:58

_id 8298
authors Quadrel, Richard W. and Chassin, David P.
year 1985
title Energy Graphics: A Progress Report on the Development of Architectural Courseware
doi https://doi.org/10.52842/conf.acadia.1985.129
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 129-141
summary Energy Graphics is a technique for determining the energy performance of buildings at the conceptual stage of the architectural design process. Unlike many energy analysis programs, which only produce results after ail of the building information has been supplied, Energy Graphics works with the designer in understanding how early decisions about building form and configuration affect energy use.

The Energy Graphics technique is currently being "computerized" on a Sun 2/120 graphics workstation, under a grant by the Inter-University Consortium for Educational Computing. The resulting software will be used in the architectural design curriculum so that students will be able to receive an immediate energy evaluation of their design explorations.

For use in the studios, the software must include a powerful graphics interface that allows students to "sketch" their design concepts interactively. The computer will then interpret these sketches as building information, organize them into an integrated database, perform the energy calculations, and inform the student of the results in a graphic format. One of the project's major goals is to provide this graphics interface in the same way that architects think about drawing, and not simply to imitate current computer "drafting" systems.

The goals of the project can only be met by developing the software on a powerful workstation system, which provides fast processing time, large memory, multitasking capabilities and high-resolution graphics. This progress report describes our efforts to date on the development of this important software.

series ACADIA
last changed 2022/06/07 08:00

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_168292 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002