CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 146

_id 6916
authors Gasparski, W.
year 1986
title Design Methodology: How I Understand and Develop it
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 16-27
summary The term 'methodology' is sometimes given two diametrically opposed meanings, well characterized by Mark Blaug in the preface of a very informative book devoted to the methodology of economics. This is also the case with the methodology of design. One can find studies in which 'the methodology of design' is simply a method or methods of design, given a fancy name to make it or them appear more scientific. Authors of such studies should not confuse their readers by taking methodological studies to mean technicalities of design or demanding that their interpretation and assessment of so-called 'practical applicability' should follow this criterion. The methodology of design - as we understand it has parallels in the methodology of Blaug's economics, the philosophy of practical science, the applied sciences or the sciences of artificial objects or artefacts. Understood this way, the methodology of design is neither the method of practising design nor an instruction for its use but a theoretical reflection - in the meaning given to methodology by the philosophy of science - of design. In this connection a study of the methodology of design should be provided with the subtitle, 'How researchers of practical sciences and designers understand the concept of changes'.
series CAAD Futures
last changed 1999/04/03 17:58

_id cf2015_005
id cf2015_005
authors Celani, Gabriela; Sperling, David M. and Franco, Juarez M. S. (eds.)
year 2015
title Preface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 5-13.
summary Since 1985 the Computer-Aided Architectural Design Futures Foundation has fostered high level discussions about the search for excellence in the built environment through the use of new technologies with an exploratory and critical perspective. In 2015, the 16th CAAD Futures Conference was held, for the first time, in South America, in the lively megalopolis of Sao Paulo, Brazil. In order to establish a connection to local issues, the theme of the conference was "The next city". The city of Sao Paulo was torn down and almost completely rebuilt twice, from the mid 1800s to the mid 1900s, evolving from a city built in rammed-earth to a city built in bricks and then from a city built in bricks to a city built in concrete. In the 21st century, with the widespread use of digital technologies both in the design and production of buildings, cities are changing even faster, in terms of layout, materials, shapes, textures, production methods and, above all, in terms of the information that is now embedded in built systems.Among the 200 abstracts received in the first phase, 64 were selected for presentation in the conference and publication in the Electronic Proceedings, either as long or short papers, after 3 tough evaluation stages. Each paper was reviewed by at least three different experts from an international committee of more than 80 highly experienced researchers. The authors come from 23 different countries. Among all papers, 10 come from Latin-American institutions, which have been usually under-represented in CAAD Futures. The 33 highest rated long papers are also being published in a printed book by Springer. For this reason, only their abstracts were included in this Electronic Proceedings, at the end of each chapter.The papers in this book have been organized under the following topics: (1) modeling, analyzing and simulating the city, (2) sustainability and performance of the built environment, (3) automated and parametric design, (4) building information modeling (BIM), (5) fabrication and materiality, and (6) shape studies. The first topic includes papers describing different uses of computation applied to the study of the urban environment. The second one represents one of the most important current issues in the study and design of the built environment. The third topic, automated and parametric design, is an established field of research that is finally becoming more available to practitioners. Fabrication has been a hot topic in CAAD conferences, and is becoming ever more popular. This new way of making design and buildings will soon start affecting the way cities look like. Finally, shape studies are an established and respected field in design computing that is traditionally discussed in CAAD conferences.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id e8ec
authors Weber, Benz
year 1991
title LEARNING FROM THE FULL-SCALE LABORATORY
source Proceedings of the 3rd European Full-Scale Modelling Conference / ISBN 91-7740044-5 / Lund (Sweden) 13-16 September 1990, pp. 12-19
summary The team from the LEA at Lausanne was not actually involved in the construction of the laboratory itself. During the past five years we have been discovering the qualities and limitations of the lab step by step through the experiments we performed. The method in which we use it is quite different from that of its creators. Since 1985 the external services has been limited to clients coming to the laboratory alone. We help them only with basic instructions for the use of the equipment. Most of these experiments are motivated by the excellent possibilities to discuss the design of a new hospital or home for elderly with the people directly affected by it, such as patients, nurses, doctors and specialists for the technical equipment. The main issues discussed in these meetings are of the dimensions and functional organisation of the spaces. The entire process for a normal room including construction, discussions and dismantling of the full-scale model is between three and five days. Today these types of experiments are occupying the lab only about twenty days a year.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:23

_id a0d4
id a0d4
authors Rosa Enrich, Andrea Carnicero, Gustavo Fornari & Pedro Orazzi
year 2004
title ANALYSIS AND EVALUATION OF MATHEMATICAL LEARNING STRUCTURES
source Proceedings of the Fourth International Conference of Mathematics & Design, Spetial Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 13-21.
summary Abstract: A series of practical tasks have been done under the general name of “Surfaces in invisible cities”. Each task was based on a story taken from the book The Invisible Cities by Italo Calvino. The research carried out allows to design a pedagogical project which makes evident , generates and connects several intentions, motivations and learning structures. It proposes the use of multi- level languages and readings. Therefore, each task takes more time than that of the proposed mathematical class. Its implementation generates a broader view than that seen at the time of design.

From the detailed analysis of the results obtained, the following diverse pedagogical aspects of this work project arise: a. The use of several multiple intelligence: Howard Gardner (1985) found that a man has several distinct intelligence types among which Logical-Mathematical; Spatial; Linguistic -oriented; Musical; Intra-personal; Kinesthetic-Corporal; Interpersonal stand out. Only those types used in the task will be analyzed, making a brief description of each type. b. The architectonic-city planning aspects: architectonic-city planning interpretation of the space imagined after reading the text, with the purpose of identifying figures, shapes, volumes and colors which are expressed via an analogous space. They consist of visual, architectonic and territorial speculations without a rigorous spatial theory and it is pretended that they possess a technical precision at mathematical concept level. c. The mathematical contents: a study of the conical and square shapes present in the designs done and used in a creative manner in students’ compositions following the reading of the story chosen is carried out. An analysis of shapes is performed and mathematical problems are posed within the design context.

Traditional sketching methods have been used in task solving and the possibilities offered by the virtual tools are analyzed.

Emphasis has been put on the vertical and horizontal interchanges in the Chair, generating changes in knowledge transmission perspectives, thus allowing the sharing of contents, abilities and resources. The architectonic work imagined and created by the students will focus on these different working lines creating a harmonious and significant whole. The work is the result of multiple connections and creative proposals.

keywords city, geometry, multiple intelligence
series other
type normal paper
email
last changed 2005/04/07 12:46

_id c898
authors Gero, John S.
year 1986
title An Overview of Knowledge Engineering and its Relevance to CAAD
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 107-119
summary Computer-aided architectural design (CAAD) has come to mean a number of often disparate activities. These can be placed into one of two categories: using the computer as a drafting and, to a lesser extent, modelling system; and using it as a design medium. The distinction between the two categories is often blurred. Using the computer as a drafting and modelling tool relies on computing notions concerned with representing objects and structures numerically and with ideas of computer programs as procedural algorithms. Similar notions underly the use of computers as a design medium. We shall return to these later. Clearly, all computer programs contain knowledge, whether methodological knowledge about processes or knowledge about structural relationships in models or databases. However, this knowledge is so intertwined with the procedural representation within the program that it can no longer be seen or found. Architecture is concerned with much more than numerical descriptions of buildings. It is concerned with concepts, ideas, judgement and experience. All these appear to be outside the realm of traditional computing. Yet architects discoursing use models of buildings largely unrelated to either numerical descriptions or procedural representations. They make use of knowledge - about objects, events and processes - and make nonprocedural (declarative) statements that can only be described symbolically. The limits of traditional computing are the limits of traditional computer-aided design systems, namely, that it is unable directly to represent and manipulate declarative, nonalgorithmic, knowledge or to perform symbolic reasoning. Developments in artificial intelligence have opened up ways of increasing the applicability of computers by acquiring and representing knowledge in computable forms. These approaches supplement rather than supplant existing uses of computers. They begin to allow the explicit representations of human knowledge. The remainder of this chapter provides a brief introduction to this field and describes, through applications, its relevance to computer- aided architectural design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 298e
authors Dave, Bharat and Woodbury, Robert
year 1990
title Computer Modeling: A First Course in Design Computing
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 61-76
summary Computation in design has long been a focus in our department. In recent years our faculty has paid particular attention to the use of computation in professional architectural education. The result is a shared vision of computers in the curriculum [Woodbury 1985] and a set of courses, some with considerable historyland others just now being initiated. We (Dave and Woodbury) have jointly developed and at various times over the last seven years have taught Computer Modeling, the most introductory of these courses. This is a required course for all the incoming freshmen students in the department. In this paper we describe Computer Modeling: its context, the issues and topics it addresses, the tasks it requires of students, and the questions and opportunities that it raises. Computer Modeling is a course about concepts, about ways of explicitly understanding design and its relation to computation. Procedural skills and algorithmic problem solving techniques are given only secondary emphasis. In essential terms, the course is about models, of design processes, of designed objects, of computation and of computational design. Its lessons are intended to communicate a structure of such models to students and through this structure to demonstrate a relationship between computation and design. It is hoped that this structure can be used as a framework, around which students can continue to develop an understanding of computers in design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2dd3
authors Hall, Theodore W.
year 1985
title Design-Aided Computing: Adapting Old Spaces to New Uses
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 25-34
doi https://doi.org/10.52842/conf.acadia.1985.025
summary The introduction of computer-aided design to an architecture school requires many departures from tradition—not only in the curriculum, but also in the facilities. Although there is an abundance of technical information available for the design of new computer rooms, building one from scratch is a luxury that few architecture schools can afford. To catch up with the computer revolution - and, it is to be hoped, come to lead it—colleges must engage in the adaptive re-use of spaces that are often not particularly well-suited to the special needs of computing. This paper describes some of the issues that should be considered when an architecture school takes its first plunge into computing. It is not a technical reference, but rather an overview General guidelines are discussed, followed by a detailed case history of our own mixed experience The emphasis is on the need for developing specific plans regarding computer applications before making any big commitments.
series ACADIA
email
last changed 2022/06/07 07:50

_id ed59
authors Hart, Anna
year 1985
title Knowledge Elicitation : Issues and Methods
source Computer Aided Design. November, 1985. vol. 17: pp. 455-462 : ill. includes bibliography
summary The paper, after briefly outlining the stages in the development of an expert system, describes and reviews methods for knowledge elicitation. These methods include: interview techniques; protocol analysis; induction; and the repertory grid technique
keywords knowledge acquisition, expert systems, protocol analysis, psychology
series CADline
last changed 1999/02/12 15:08

_id 2a4f
authors Jordani, David A.
year 1985
title The Management of CADD Systems in the AEC Office
source 1985. [17] p
summary A well known A/E firm purchased a CAAD system two years ago. They report great success and satisfaction. Their staff is enthused and more importantly so are their clients. Other firms watched them, and after six months one of their competitors purchased the identical CADD system. But that's where the similarities end. At the second firm, the system is under-utilized, management and staff appear to regret their decision and there has been little impact on the firm's work, its profitability and its clients. Identical systems installed in very similar firms with totally different results. What's the difference? MANAGEMENT...Even with the brief history of CADD in the AEC office we can see that the success or failure of CADD system implementation is more likely traced to the effectiveness of management than accuracy of system selection. The information conveyed in this paper is directed at new and experienced planners and managers of turnkey CADD systems in AEC or facilities management environments. With a focus on real solutions to real problems, it addresses some of the critical issues that will help you successfully plan and implements your own CADD system
keywords practice, management, architecture, CAD, integration, systems
series CADline
last changed 2003/06/02 13:58

_id e115
authors Pipes, Alan (Ed.)
year 1986
title Computer-Aided Architectural Design Futures [Conference Proceedings]
source International Conference on Computer-Aided Architectural Design / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, 245 p.
summary Computer-Aided Architectural Design Futures was conceived late one evening in the bar of the Metropole Hotel in Brighton, UK. Those present - veterans of a hundred and one CAD conferences - were bemoaning the degree to which big business was taking over the conference scene: exhibiting was replacing conferring, selling was replacing thinking, products were replacing ideas. Wouldn't it be nice, we agreed, to get back to an 'academic' conference which would take stock of current developments in CAAD and attempt to anticipate the direction of future developments and their impact on architectural practice, on the building industry and on the quality of the built environment? Four major themes are explored in CAAD Futures: (1) Systematic design; (2) Drawing and visualization; (3) Artificial intelligence and knowledge engineering; (4) Implications for practice. // Stimulus papers on these four themes were circulated prior to the Conference, and the conference papers themselves elaborated the issues raised in the stimulus papers in such a way as to encourage discussion. The resulting book, we believe, will be a major reference text for students, researchers and practitioners.
series CAAD Futures
last changed 1999/04/03 17:58

_id 20a8
authors Ruffle, Simon
year 1986
title How Can CAD Provide for the Changing Role of the Architect?
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 197-199
summary At the RIBA Conference of 1981 entitled 'New Opportunities', and more recently at the 1984 ACA Annual Conference on 'Architects in Competition' there has been talk of marketing, new areas of practice, recapturing areas of practice lost to other professions, more accountability to client and public 'the decline of the mystique of the professional'. It is these issues, rather than technical advances in software and hardware, that will be the prime movers in getting computers into widespread practice in the future. In this chapter we will examine how changing attitudes in the profession might affect three practical issues in computing with which the author has been preoccupied in the past year. We will conclude by considering how, in future, early design stage computing may need to be linked to architectural theory, and, as this is a conference where we are encouraged to be outspoken, we will raise the issue of a computer-based theory of architecture.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 6686
authors Straub, K.
year 1986
title Problems in CAD Practice
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 232-234
summary CAD's greatest promise is as a creative, interactive tool, and planning and construction will be more complex as the need to expand information grows. Our tools not only shape our products, they shape our lives. Technology can influence everyday life and also affect the structure of our society. Architecture is an information-intensive profession, and throughout the world information-intensive activities are being changed by technology. The use of computer-aided information processing in planning and construction brings about a period of dramatic change, and the dimensions of technological change will be breathtaking. In the years to come, CAD will be an expanding field in the architectural office, but how long will it be before architecture is routinely produced on a CAD system? There appear to be three issues: (1) cost; (2) time; (3) quality.
series CAAD Futures
last changed 1999/04/03 17:58

_id e235
authors Van Norman, Mark
year 1985
title THE USER INTERFACE IN PROGRAMS FOR DESIGN EDUCATION: ISSUES AND CRITERIA
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 155-168
doi https://doi.org/10.52842/conf.acadia.1985.155
summary Due to inexpensive mass-marketed microcomputers and CAAD software the type of "clients" we serve as CAAD educators will soon change. In addition to teaching CAAD programming to 20 students a semester, we may soon be serving a much larger group of casual users from design studios and technical courses. These casual users will require that we provide programs and hardware which allow them to design a better product more swiftly and with less effort than by hand. The most crucial factor in meeting these criteria is the quality of the user interface of the programs and equipment we provide.

At Harvard, we have studied the user interfaces of more than 80 programs used in 10 areas of design. This paper is a summary of a 90 page report in which issues are raised, the answers to which determine the quality of the user interface of a program. In the summarized report, different approaches to resolving each issue are discussed, but no "answers" are provided. In our roles as authors, teachers, and now, consumers of CAAD programs, we must - explicitly or by default - address these issues before designing or purchasing programs and hardware for design education.

series ACADIA
type normal paper
last changed 2022/06/07 07:58

_id c89d
authors Bancroft, Pamela J.
year 1987
title The Integration of Computing into Architectural Education Through Computer Literate Faculty
source Integrating Computers into the Architectural Curriculum [ACADIA Conference Proceedings] Raleigh (North Carolina / USA) 1987, pp. 109-120
doi https://doi.org/10.52842/conf.acadia.1987.109
summary This paper discusses the apparent correlation between faculty computer literacy and the success of integrating computing into architectural education. Relevant questions of a 1985 national survey which was conducted to study the historical development of faculty computer utilization are analyzed and interpreted. The survey results are then used as the basis for a series of recommendations given for increasing computer literacy among faculty in architectural schools, thus increasing the integration of computing.

series ACADIA
last changed 2022/06/07 07:54

_id ddssar0206
id ddssar0206
authors Bax, M.F.Th. and Trum, H.M.G.J.
year 2002
title Faculties of Architecture
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary In order to be inscribed in the European Architect’s register the study program leading to the diploma ‘Architect’ has to meet the criteria of the EC Architect’s Directive (1985). The criteria are enumerated in 11 principles of Article 3 of the Directive. The Advisory Committee, established by the European Council got the task to examine such diplomas in the case some doubts are raised by other Member States. To carry out this task a matrix was designed, as an independent interpreting framework that mediates between the principles of Article 3 and the actual study program of a faculty. Such a tool was needed because of inconsistencies in the list of principles, differences between linguistic versions ofthe Directive, and quantification problems with time, devoted to the principles in the study programs. The core of the matrix, its headings, is a categorisation of the principles on a higher level of abstractionin the form of a taxonomy of domains and corresponding concepts. Filling in the matrix means that each study element of the study programs is analysed according to their content in terms of domains; thesummation of study time devoted to the various domains results in a so-called ‘profile of a faculty’. Judgement of that profile takes place by committee of peers. The domains of the taxonomy are intrinsically the same as the concepts and categories, needed for the description of an architectural design object: the faculties of architecture. This correspondence relates the taxonomy to the field of design theory and philosophy. The taxonomy is an application of Domain theory. This theory,developed by the authors since 1977, takes as a view that the architectural object only can be described fully as an integration of all types of domains. The theory supports the idea of a participatory andinterdisciplinary approach to design, which proved to be awarding both from a scientific and a social point of view. All types of domains have in common that they are measured in three dimensions: form, function and process, connecting the material aspects of the object with its social and proceduralaspects. In the taxonomy the function dimension is emphasised. It will be argued in the paper that the taxonomy is a categorisation following the pragmatistic philosophy of Charles Sanders Peirce. It will bedemonstrated as well that the taxonomy is easy to handle by giving examples of its application in various countries in the last 5 years. The taxonomy proved to be an adequate tool for judgement ofstudy programs and their subsequent improvement, as constituted by the faculties of a Faculty of Architecture. The matrix is described as the result of theoretical reflection and practical application of a matrix, already in use since 1995. The major improvement of the matrix is its direct connection with Peirce’s universal categories and the self-explanatory character of its structure. The connection with Peirce’s categories gave the matrix a more universal character, which enables application in other fieldswhere the term ‘architecture’ is used as a metaphor for artefacts.
series DDSS
last changed 2003/11/21 15:16

_id 66b3
authors Bollinger, Elizabeth
year 1985
title Integrating CADD into the AEC Process - A Case Study
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 13-24
doi https://doi.org/10.52842/conf.acadia.1985.013
summary A research grant was awarded to the Graduate School of Architecture at the University of Houston by Nash Phillips/Copus, a large homebuilding corporation, to study the integration of computer aided design into the entire building process. A computer aided design system had been utilized by the firm's department of architecture and planning for several months. A team of University faculty and graduate students studied the organization of the firm with respect to functions that could be automated. Its determination was that by utilizing an integrated data base, with information to be extracted from the computer generated drawings, the entire process of bidding and building a structure could be made more efficient and cost effective. The research team developed a system in which cost estimating could be done directly from the drawings. As drawings were modified, new reports could be automatically generated. More design solutions could be studied from the impact of cost as well as aesthetics. Additionally, once plans were drawn, a program written by students would automatically generate elevations of wall panels to be sent to the construction department for its use, and which would also generate material reports. The team also studied techniques of computer modelling for usage by the architectural planning department in client presentations.
series ACADIA
email
last changed 2022/06/07 07:54

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ascaad2006_paper20
id ascaad2006_paper20
authors Chougui, Ali
year 2006
title The Digital Design Process: reflections on architectural design positions on complexity and CAAD
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary These instructions are intended to guide contributors to the Second Architecture is presently engaged in an impatient search for solutions to critical questions about the nature and the identity of the discipline, and digital technology is a key agent for prevailing innovations in architectural design. The problem of complexity underlies all design problems. With the advent of CAD however, Architect’s ability to truly represent complexity has increased considerably. Another source that provides information about dealing with complexity is architectural theory. As Rowe (1987) states, architectural theory constitutes “a corpus of principles that are agreed upon and therefore worthy of emulation”. Architectural theory often is a mixed reflection on the nature of architectural design, design processes, made in descriptive and prescriptive terms (see Kruft 1985). Complexity is obviously not a new issue in architectural theory. Since it is an inherent characteristic of design problems, it has been dealt with in many different ways throughout history. Contemporary architects incorporate the computer in their design process. They produce architecture that is generated by the use of particle systems, simulation software, animation software, but also the more standard modelling tools. The architects reflect on the impact of the computer in their theories, and display changes in style by using information modelling techniques that have become versatile enough to encompass the complexity of information in the architectural design process. In this way, architectural style and theory can provide directions to further develop CAD. Most notable is the acceptance of complexity as a given fact, not as a phenomenon to oppose in systems of organization, but as a structuring principle to begin with. No matter what information modelling paradigm is used, complex and huge amounts of information need to be processed by designers. A key aspect in the combination of CAD, complexity, and architectural design is the role of the design representation. The way the design is presented and perceived during the design process is instrumental to understanding the design task. More architects are trying to reformulate this working of the representation. The intention of this paper is to present and discuss the current state of the art in architectural design positions on complexity and CAAD, and to reflect in particular on the role of digital design representations in this discussion. We also try to investigate how complexity can be dealt with, by looking at architects, in particular their styles and theories. The way architects use digital media and graphic representations can be informative how units of information can be formed and used in the design process. A case study is a concrete architect’s design processes such as Peter Eisenman Rem Koolhaas, van Berkel, Lynn, and Franke gehry, who embrace complexity and make it a focus point in their design, Rather than viewing it as problematic issue, by using computer as an indispensable instrument in their approaches.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 0533
authors Clemons, Eric K. and Greenfield, Arnold J.
year 1985
title The SAGE System Architecture: A System for the Rapid Development of Graphics Interfaces for Decision Support
source IEEE Computer Graphics and Applications. November, 1985. vol. 5: pp. 38-50 : ill. includes bibliography
summary Graphics interfaces support the decision maker in sensitivity analysis - the exploration of proposed solutions and examination of alternatives. The authors present an architecture for rapid preparation of graphics interfaces for large classes of management sciences, operations research, and expert systems models. This architecture is based on a detailed study of sensitivity analysis requests is also presented. The architecture was the basis of a prototype, now operational, which is illustrated through a case study of sensitivity analysis in a vehicle-routing system
keywords expert systems, user interface, operations research
series CADline
last changed 2003/06/02 10:24

_id 07c6
authors Kalay, Y.E., Harfmann, A.C. and Swerdloff, L.M.
year 1985
title ALEX: A Knowledge-Based Architectural Design System
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 96-108
doi https://doi.org/10.52842/conf.acadia.1985.096
summary A methodology for the development of a knowledge-based computer-aided design system and its experimental application in the domain of single family house design are presented.

The methodology involves integrating within a unified design environment, tools and techniques that have been independently developed in various disciplines (including knowledge representation, information management, geometric modeling, human,machine interface, and architectural design). By assuming the role of active design partners, the resulting systems are expected to increase the productivity of designers, improve the quality of their products, and reduce cost and lead time of the design process as a whole.

ALEX (Architecture Learning Expert), a particular application of this methodology, is a prototype knowledge-based CAD system in the domain of single family house design. It employs user-interactive, goal directed heuristic search strategies in a solution space that consists of a network of objects. Message-based change propagation techniques, guided by domain-specific knowledge, are used to ensure database integrity and well-formedness.

The significance of the methodology and its application is threefold: it furthers our knowledge of the architectural design process, explores the utilization of knowledge engineering methods in design, and serves as a prototype for developing the next generation of computer-aided architectural design systems.

series ACADIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_17675 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002