CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 141

_id 678e
authors Aish, Robert
year 1986
title Three-dimensional Input and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 68-84
summary The aim of this chapter is to investigate techniques by which man-computer interaction could be improved, specifically in the context of architectural applications of CAD. In this application the object being designed is often an assembly of defined components. Even if the building is not actually fabricated from such components, it is usually conceptualized in these terms. In a conventional graphics- based CAD system these components are usually represented by graphical icons which are displayed on the graphics screen and arranged by the user. The system described here consists of three- dimensional modelling elements which the user physically assembles to form his design. Unlike conventional architectural models which are static (i.e. cannot be changed by the users) and passive (i.e. cannot be read by a CAD system), this model is both 'user generated' and 'machine readable'. The user can create, edit and view the model by simple, natural modelling activities and without the need to learn complex operating commands often associated with CAD systems. In particular, the user can view the model, altering his viewpoint and focus of attention in a completely natural way. Conventional computer graphics within an associated CAD system are used to represent the detailed geometry which the different three-dimensional icons may represent. In addition, computer graphics are also used to present the output of the performance attributes of the objects being modelled. In the architectural application described in this chapter an energy- balance evaluation is displayed for a building designed using the modelling device. While this system is not intended to offer a completely free-form input facility it can be considered to be a specialist man-machine interface of particular relevance to architects or engineers.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id 644f
authors Bijl, Aart
year 1986
title Designing with Words and Pictures in a Logic Modelling Environment
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 128-145
summary At EdCAAD we are interested in design as something people do. Designed artefacts, the products of designing, are interesting only in so far as they tell us something about design. An extreme expression of this position is to say that the world of design is the thoughts in the heads of designers, plus the skills of designers in externalizing their thoughts; design artifacts, once perceived and accepted in the worlds of other people, are no longer part of the world of design. We can describe design, briefly, as a process of synthesis. Design has to achieve a fusion between parts to create new parts, so that the products are recognized, as having a right and proper place in the world of people. Parts should be understood as referring to anything - physical objects, abstract ideas, aspirations. These parts occur in some design environment from which parts are extracted, designed upon and results replaced; in the example of buildings, the environment is people and results have to be judged by reference to that environment. It is characteristic of design that both the process and the product are not subject to explicit and complete criteria. This view of design differs sharply from the more orthodox understanding of scientific and technological endeavours which rely predominantly on a process of analysis. In the latter case, the approach is to decompose a problem into parts until individual parts are recognized as being amenable to known operations and results are reassembled into a solution. This process has a peripheral role in design when evaluating selected aspects of tentative design proposals, but the absence of well-defined and widely recognized criteria for design excludes it from the main stream of analytical developments.
series CAAD Futures
last changed 2003/11/21 15:16

_id 66b3
authors Bollinger, Elizabeth
year 1985
title Integrating CADD into the AEC Process - A Case Study
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 13-24
doi https://doi.org/10.52842/conf.acadia.1985.013
summary A research grant was awarded to the Graduate School of Architecture at the University of Houston by Nash Phillips/Copus, a large homebuilding corporation, to study the integration of computer aided design into the entire building process. A computer aided design system had been utilized by the firm's department of architecture and planning for several months. A team of University faculty and graduate students studied the organization of the firm with respect to functions that could be automated. Its determination was that by utilizing an integrated data base, with information to be extracted from the computer generated drawings, the entire process of bidding and building a structure could be made more efficient and cost effective. The research team developed a system in which cost estimating could be done directly from the drawings. As drawings were modified, new reports could be automatically generated. More design solutions could be studied from the impact of cost as well as aesthetics. Additionally, once plans were drawn, a program written by students would automatically generate elevations of wall panels to be sent to the construction department for its use, and which would also generate material reports. The team also studied techniques of computer modelling for usage by the architectural planning department in client presentations.
series ACADIA
email
last changed 2022/06/07 07:54

_id a6f1
authors Bridges, A.H.
year 1986
title Any Progress in Systematic Design?
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 5-15
summary In order to discuss this question it is necessary to reflect awhile on design methods in general. The usual categorization discusses 'generations' of design methods, but Levy (1981) proposes an alternative approach. He identifies five paradigm shifts during the course of the twentieth century which have influenced design methods debate. The first paradigm shift was achieved by 1920, when concern with industrial arts could be seen to have replaced concern with craftsmanship. The second shift, occurring in the early 1930s, resulted in the conception of a design profession. The third happened in the 1950s, when the design methods debate emerged; the fourth took place around 1970 and saw the establishment of 'design research'. Now, in the 1980s, we are going through the fifth paradigm shift, associated with the adoption of a holistic approach to design theory and with the emergence of the concept of design ideology. A major point in Levy's paper was the observation that most of these paradigm shifts were associated with radical social reforms or political upheavals. For instance, we may associate concern about public participation with the 1970s shift and the possible use (or misuse) of knowledge, information and power with the 1980s shift. What has emerged, however, from the work of colleagues engaged since the 1970s in attempting to underpin the practice of design with a coherent body of design theory is increasing evidence of the fundamental nature of a person's engagement with the design activity. This includes evidence of the existence of two distinctive modes of thought, one of which can be described as cognitive modelling and the other which can be described as rational thinking. Cognitive modelling is imagining, seeing in the mind's eye. Rational thinking is linguistic thinking, engaging in a form of internal debate. Cognitive modelling is externalized through action, and through the construction of external representations, especially drawings. Rational thinking is externalized through verbal language and, more formally, through mathematical and scientific notations. Cognitive modelling is analogic, presentational, holistic, integrative and based upon pattern recognition and pattern manipulation. Rational thinking is digital, sequential, analytical, explicatory and based upon categorization and logical inference. There is some relationship between the evidence for two distinctive modes of thought and the evidence of specialization in cerebral hemispheres (Cross, 1984). Design methods have tended to focus upon the rational aspects of design and have, therefore, neglected the cognitive aspects. By recognizing that there are peculiar 'designerly' ways of thinking combining both types of thought process used to perceive, construct and comprehend design representations mentally and then transform them into an external manifestation current work in design theory is promising at last to have some relevance to design practice.
series CAAD Futures
email
last changed 2003/11/21 15:16

_id cbd0
authors Brown, David C.
year 1985
title Failure Handling in a Design Expert System
source computer Aided Design. November, 1985. vol. 17: pp. 436-442 : ill. Includes bibliography
summary This paper is concerned with how to handle the failures that occur during design problem-solving. Failure handlers and redesigners are introduced. Failure recovery action and the knowledge involved is presented for each agent. The role of suggestions and redesign strategies is discussed. The handling of plan failures is also presented. The paper concludes by surveying other methods of failure handling from the literature
keywords expert systems, problem solving, mechanical engineering, planning,constraints, design, techniques
series CADline
last changed 2003/06/02 13:58

_id 63d0
authors Carrara, Gianfranco and Novembri, Gabriele
year 1986
title Constraint-bounded design search
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 146-157
summary The design process requires continual checking of the consistency of design choices against given sets of goals that have been fulfilled. Such a check is generally performed by comparing abstract representations of design goals with these of the sought real building objects (RBO) resulting from complex intellectual activities closely related to the designer's culture and to the environment in which he operates. In this chapter we define a possible formalization of such representations concerning the goals and the RBO that are usually considered in the architectural design process by our culture in our environment. The representation of design goals is performed by expressing their objective aspects (requirements) and by defining their allowable values (performance specifications). The resulting system of requirements defines the set of allowable solutions and infers an abstract representation of the sought building objects (BO) that consists of the set of characteristics (attributes and relations) which are considered relevant to represent the particular kind of RBO with respect to the consistency check with design goals. The values related to such characteristics define the performances of the RBO while their set establishes its behaviour. Generally speaking, there is no single real object corresponding to an abstract representation but the whole class of the RBO that are equivalent with respect to the values assumed by the considered characteristics. The more we increase the number of these, as well as their specifications, the smaller the class becomes until it coincides with a single real object - given that the assessed specifications be fully consistent. On the other hand, the corresponding representation evolves to the total prefiguration of the RBO. It is not therefore possible to completely define a BO representation in advance since this is inferred by the considered goals and is itself a result of the design process. What can only be established in advance is that any set of characteristics assumed to represent any RBO consists of hierarchic, topological, geometrical and functional relations among the parts of the object at any level of aggregation (from components to space units, to building units, to the whole building) that we define representation structure (RS). Consequently the RS may be thought as the elementary structures that, by superposition and interaction, set up the abstract representation that best fit with design goals.
series CAAD Futures
last changed 1999/04/03 17:58

_id cf2015_005
id cf2015_005
authors Celani, Gabriela; Sperling, David M. and Franco, Juarez M. S. (eds.)
year 2015
title Preface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 5-13.
summary Since 1985 the Computer-Aided Architectural Design Futures Foundation has fostered high level discussions about the search for excellence in the built environment through the use of new technologies with an exploratory and critical perspective. In 2015, the 16th CAAD Futures Conference was held, for the first time, in South America, in the lively megalopolis of Sao Paulo, Brazil. In order to establish a connection to local issues, the theme of the conference was "The next city". The city of Sao Paulo was torn down and almost completely rebuilt twice, from the mid 1800s to the mid 1900s, evolving from a city built in rammed-earth to a city built in bricks and then from a city built in bricks to a city built in concrete. In the 21st century, with the widespread use of digital technologies both in the design and production of buildings, cities are changing even faster, in terms of layout, materials, shapes, textures, production methods and, above all, in terms of the information that is now embedded in built systems.Among the 200 abstracts received in the first phase, 64 were selected for presentation in the conference and publication in the Electronic Proceedings, either as long or short papers, after 3 tough evaluation stages. Each paper was reviewed by at least three different experts from an international committee of more than 80 highly experienced researchers. The authors come from 23 different countries. Among all papers, 10 come from Latin-American institutions, which have been usually under-represented in CAAD Futures. The 33 highest rated long papers are also being published in a printed book by Springer. For this reason, only their abstracts were included in this Electronic Proceedings, at the end of each chapter.The papers in this book have been organized under the following topics: (1) modeling, analyzing and simulating the city, (2) sustainability and performance of the built environment, (3) automated and parametric design, (4) building information modeling (BIM), (5) fabrication and materiality, and (6) shape studies. The first topic includes papers describing different uses of computation applied to the study of the urban environment. The second one represents one of the most important current issues in the study and design of the built environment. The third topic, automated and parametric design, is an established field of research that is finally becoming more available to practitioners. Fabrication has been a hot topic in CAAD conferences, and is becoming ever more popular. This new way of making design and buildings will soon start affecting the way cities look like. Finally, shape studies are an established and respected field in design computing that is traditionally discussed in CAAD conferences.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ascaad2006_paper20
id ascaad2006_paper20
authors Chougui, Ali
year 2006
title The Digital Design Process: reflections on architectural design positions on complexity and CAAD
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary These instructions are intended to guide contributors to the Second Architecture is presently engaged in an impatient search for solutions to critical questions about the nature and the identity of the discipline, and digital technology is a key agent for prevailing innovations in architectural design. The problem of complexity underlies all design problems. With the advent of CAD however, Architect’s ability to truly represent complexity has increased considerably. Another source that provides information about dealing with complexity is architectural theory. As Rowe (1987) states, architectural theory constitutes “a corpus of principles that are agreed upon and therefore worthy of emulation”. Architectural theory often is a mixed reflection on the nature of architectural design, design processes, made in descriptive and prescriptive terms (see Kruft 1985). Complexity is obviously not a new issue in architectural theory. Since it is an inherent characteristic of design problems, it has been dealt with in many different ways throughout history. Contemporary architects incorporate the computer in their design process. They produce architecture that is generated by the use of particle systems, simulation software, animation software, but also the more standard modelling tools. The architects reflect on the impact of the computer in their theories, and display changes in style by using information modelling techniques that have become versatile enough to encompass the complexity of information in the architectural design process. In this way, architectural style and theory can provide directions to further develop CAD. Most notable is the acceptance of complexity as a given fact, not as a phenomenon to oppose in systems of organization, but as a structuring principle to begin with. No matter what information modelling paradigm is used, complex and huge amounts of information need to be processed by designers. A key aspect in the combination of CAD, complexity, and architectural design is the role of the design representation. The way the design is presented and perceived during the design process is instrumental to understanding the design task. More architects are trying to reformulate this working of the representation. The intention of this paper is to present and discuss the current state of the art in architectural design positions on complexity and CAAD, and to reflect in particular on the role of digital design representations in this discussion. We also try to investigate how complexity can be dealt with, by looking at architects, in particular their styles and theories. The way architects use digital media and graphic representations can be informative how units of information can be formed and used in the design process. A case study is a concrete architect’s design processes such as Peter Eisenman Rem Koolhaas, van Berkel, Lynn, and Franke gehry, who embrace complexity and make it a focus point in their design, Rather than viewing it as problematic issue, by using computer as an indispensable instrument in their approaches.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 4275
authors Cowan, David
year 1985
title Artificial Intelligence at Edinburgh University
source computer Aided Design. November, 1985. vol. 17: pp. 465-468
summary The development of research into the area of artificial intelligence is described. It was first recognized by Edinburgh University as an independent discipline in 1966 and there is now an Artificial Intelligence Applications Institute. The main areas of artificial intelligence research are summarized. The five projects carried out with Alvey funding are examined in more detail. They cover such topics as natural language and text processing, 3D modelling and expert systems
keywords AI, expert systems, modeling, natural languages
series CADline
last changed 1999/02/12 15:07

_id cf2007_000
id cf2007_000
authors Dong, Andy; Andrew vande Moere and John S. Gero (eds.)
year 2007
title Computer Aided Architectural Design Futures 2007
source Proceedings of the 12th International Conference [ISBN 978-1-4020-6527-9] Sydney 11-13 July 2007, 602 p.
summary CAAD Futures is a biennial Conference that aims to promote the advancement of Computer Aided Architectural Design in the service of those concerned with the quality of the built environment. The conferences are organised under the auspices of the CAAD Futures Foundation. The series of conferences started in 1985 in Delft, and has since travelled to Eindhoven, Boston, Zurich, Pittsburgh, Singapore, Munich, Atlanta, Tainan and Vienna. The book contains papers selected from the 11th CAAD Futures conference which took place at the University of Sydney. The papers in this book cover a wide range of subjects and provide an excellent overview of the state-of-the-art in research on Computer Aided Architectural Design.
series CAAD Futures
email
last changed 2007/07/06 12:47

_id acadia06_068
id acadia06_068
authors Elys, John
year 2006
title Digital Ornament
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 68-78
doi https://doi.org/10.52842/conf.acadia.2006.068
summary Gaming software has a history of fostering development of economical and creative methods to deal with hardware limitations. Traditionally the visual representation of gaming software has been a poor offspring of high-end visualization. In a twist of irony, this paper proposes that game production software leads the way into a new era of physical digital ornament. The toolbox of the rendering engine evolved rapidly between 1974-1985 and it is still today, 20 years later the main component of all visualization programs. The development of the bump map is of particular interest; its evolution into a physical displacement map provides untold opportunities of the appropriation of the 2D image to a physical 3D object.To expose the creative potential of the displacement map, a wide scope of existing displacement usage has been identified: Top2maya is a scientific appropriation, Caruso St John Architects an architectural precedent and Tord Boonje’s use of 2D digital pattern provides us with an artistic production precedent. Current gaming technologies give us an indication of how the resolution of displacement is set to enter an unprecedented level of geometric detail. As modernity was inspired by the machine age, we should be led by current technological advancement and appropriate its usage. It is about a move away from the simplification of structure and form to one that deals with the real possibilities of expanding the dialogue of surface topology. Digital Ornament is a kinetic process rather than static, its intentions lie in returning the choice of bespoke materials back to the Architect, Designer and Artist.
series ACADIA
email
last changed 2022/06/07 07:55

_id 6916
authors Gasparski, W.
year 1986
title Design Methodology: How I Understand and Develop it
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 16-27
summary The term 'methodology' is sometimes given two diametrically opposed meanings, well characterized by Mark Blaug in the preface of a very informative book devoted to the methodology of economics. This is also the case with the methodology of design. One can find studies in which 'the methodology of design' is simply a method or methods of design, given a fancy name to make it or them appear more scientific. Authors of such studies should not confuse their readers by taking methodological studies to mean technicalities of design or demanding that their interpretation and assessment of so-called 'practical applicability' should follow this criterion. The methodology of design - as we understand it has parallels in the methodology of Blaug's economics, the philosophy of practical science, the applied sciences or the sciences of artificial objects or artefacts. Understood this way, the methodology of design is neither the method of practising design nor an instruction for its use but a theoretical reflection - in the meaning given to methodology by the philosophy of science - of design. In this connection a study of the methodology of design should be provided with the subtitle, 'How researchers of practical sciences and designers understand the concept of changes'.
series CAAD Futures
last changed 1999/04/03 17:58

_id c898
authors Gero, John S.
year 1986
title An Overview of Knowledge Engineering and its Relevance to CAAD
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 107-119
summary Computer-aided architectural design (CAAD) has come to mean a number of often disparate activities. These can be placed into one of two categories: using the computer as a drafting and, to a lesser extent, modelling system; and using it as a design medium. The distinction between the two categories is often blurred. Using the computer as a drafting and modelling tool relies on computing notions concerned with representing objects and structures numerically and with ideas of computer programs as procedural algorithms. Similar notions underly the use of computers as a design medium. We shall return to these later. Clearly, all computer programs contain knowledge, whether methodological knowledge about processes or knowledge about structural relationships in models or databases. However, this knowledge is so intertwined with the procedural representation within the program that it can no longer be seen or found. Architecture is concerned with much more than numerical descriptions of buildings. It is concerned with concepts, ideas, judgement and experience. All these appear to be outside the realm of traditional computing. Yet architects discoursing use models of buildings largely unrelated to either numerical descriptions or procedural representations. They make use of knowledge - about objects, events and processes - and make nonprocedural (declarative) statements that can only be described symbolically. The limits of traditional computing are the limits of traditional computer-aided design systems, namely, that it is unable directly to represent and manipulate declarative, nonalgorithmic, knowledge or to perform symbolic reasoning. Developments in artificial intelligence have opened up ways of increasing the applicability of computers by acquiring and representing knowledge in computable forms. These approaches supplement rather than supplant existing uses of computers. They begin to allow the explicit representations of human knowledge. The remainder of this chapter provides a brief introduction to this field and describes, through applications, its relevance to computer- aided architectural design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 68aa
authors Greenberg, Donald P.
year 1986
title Computer Graphics and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 63-67
summary The field of computer graphics has made enormous progress during the past decade. It is rapidly approaching the time when we will be able to create images of such realism that it will be possible to 'walk through' nonexistent spaces and to evaluate their aesthetic quality based on the simulations. In this chapter we wish to document the historical development of computer graphics image creation and describe some techniques which are currently being developed. We will try to explain some pilot projects that we are just beginning to undertake at the Program of Computer Graphics and the Center for Theory and Simulation in Science and Engineering at Cornell University.
series CAAD Futures
last changed 1999/04/03 17:58

_id 027b
authors Griffiths, J.G.
year 1985
title Table-Driven Algorithms for Generating Space-Filling Curves
source Computer Aided Design. January/ February, 1985. vol. 17: pp. 37-41 : ill. includes bibliography
summary A simple general method for constructing space-filling curves is presented, based on the use of tables. It is shown how the use of Hilbert's curve can enhance the performance of Warnock's algorithm. A procedure is given which generates Hilbert curves or Sierpinski curves. A second procedure is given which generates Warnock's windows in Hilbert order
keywords computer graphics, rendering, algorithms, curves, representation, display
series CADline
last changed 2003/06/02 13:58

_id 2dd3
authors Hall, Theodore W.
year 1985
title Design-Aided Computing: Adapting Old Spaces to New Uses
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 25-34
doi https://doi.org/10.52842/conf.acadia.1985.025
summary The introduction of computer-aided design to an architecture school requires many departures from tradition—not only in the curriculum, but also in the facilities. Although there is an abundance of technical information available for the design of new computer rooms, building one from scratch is a luxury that few architecture schools can afford. To catch up with the computer revolution - and, it is to be hoped, come to lead it—colleges must engage in the adaptive re-use of spaces that are often not particularly well-suited to the special needs of computing. This paper describes some of the issues that should be considered when an architecture school takes its first plunge into computing. It is not a technical reference, but rather an overview General guidelines are discussed, followed by a detailed case history of our own mixed experience The emphasis is on the need for developing specific plans regarding computer applications before making any big commitments.
series ACADIA
email
last changed 2022/06/07 07:50

_id ed59
authors Hart, Anna
year 1985
title Knowledge Elicitation : Issues and Methods
source Computer Aided Design. November, 1985. vol. 17: pp. 455-462 : ill. includes bibliography
summary The paper, after briefly outlining the stages in the development of an expert system, describes and reviews methods for knowledge elicitation. These methods include: interview techniques; protocol analysis; induction; and the repertory grid technique
keywords knowledge acquisition, expert systems, protocol analysis, psychology
series CADline
last changed 1999/02/12 15:08

_id a833
authors Jong, M. de
year 1986
title A Spatial Relational Reference Model (3RM)
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 85-91
summary In this chapter we hope to provide the reader with an impression of the objective, framework and possibilities of 3RM in the construction industry. In Dutch, 3RM stands for 'Ruimtelijk Relationeel Referentie Model' (Spatial Relational Reference Model). The model could begin to be used as an information-bearer in the building industry within which the specific trade information for each of the building participants could be interrelated, including drafting symbolism, building costs, physical qualities and building regulations. In this way, the model can be used as a means to a more efficient running of the building process and enabling the integration of information, at project level, provided by various building participants. The project should be defined in the same way as is a typical architectural project, whereby the actual development as well as the project management is carried out by architects. For the time being, development is limited to integral use at the design stage, but it also offers sufficient expansion possibilities to be able to function as a new communications model throughout the complete building process. We shall first provide information as to the origin, the objective and the execution of the project. Thereafter, we shall attempt to state the theoretical information problem within the building industry and the solution to this offered through 3RM. Finally, we shall report upon the results of the first phase of the 3RM project.
series CAAD Futures
last changed 1999/04/03 17:58

_id 8504
authors Junge, Richard. (Ed.)
year 1997
title CAAD futures 1997 [Conference Proceedings]
source 7th International Conference on Computer-Aided Architectural Design/ ISBN 0-7923-4726-9 / München / Germany, 4-6 August 1997, 931 p.
summary Since the establishment of the CAAD futures Foundation in 1985 CAAD experts from all over the world meet every two years to present and at the same time document the state of art of research in Computer Aided Architectural Design. The history of CAAD futures started in the Netherlands at the Technical Universities of Eindhoven and Delft, where the CAAD futures Foundation came into being. Then CAAD futures crossed the oceans for the first time, the third CAAD futures in '89 was held at Harvard University. Next stations in the evolution where in '91 Swiss Federal Institute of Technology, the ETH Zürich. In '93 the conference was organized by Carnegie Mellon University, Pittsburgh and in '95 by National University Singapore. CAAD futures '95 marked the world wide nature by organizing it for the first time in Asia. The seventh CAAD futures is the first being organized by a German University. For the as small as newly and only provisional established CAAD group at the Faculty for Architecture at Technical University München it is honor and challenge at the same time to be the organizer of CAAD futures '97.
series CAAD Futures
email
last changed 1999/04/06 09:19

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_817720 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002