CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 145

_id 78ca
authors Friedland, P. (Ed.)
year 1985
title Special Section on Architectures for Knowledge-Based Systems
source CACM (28), 9, September
summary A fundamental shift in the preferred approach to building applied artificial intelligence (AI) systems has taken place since the late 1960s. Previous work focused on the construction of general-purpose intelligent systems; the emphasis was on powerful inference methods that could function efficiently even when the available domain-specific knowledge was relatively meager. Today the emphasis is on the role of specific and detailed knowledge, rather than on reasoning methods.The first successful application of this method, which goes by the name of knowledge-based or expert-system research, was the DENDRAL program at Stanford, a long-term collaboration between chemists and computer scientists for automating the determination of molecular structure from empirical formulas and mass spectral data. The key idea is that knowledge is power, for experts, be they human or machine, are often those who know more facts and heuristics about a domain than lesser problem solvers. The task of building an expert system, therefore, is predominantly one of teaching" a system enough of these facts and heuristics to enable it to perform competently in a particular problem-solving context. Such a collection of facts and heuristics is commonly called a knowledge base. Knowledge-based systems are still dependent on inference methods that perform reasoning on the knowledge base, but experience has shown that simple inference methods like generate and test, backward-chaining, and forward-chaining are very effective in a wide variety of problem domains when they are coupled with powerful knowledge bases. If this methodology remains preeminent, then the task of constructing knowledge bases becomes the rate-limiting factor in expert-system development. Indeed, a major portion of the applied AI research in the last decade has been directed at developing techniques and tools for knowledge representation. We are now in the third generation of such efforts. The first generation was marked by the development of enhanced AI languages like Interlisp and PROLOG. The second generation saw the development of knowledge representation tools at AI research institutions; Stanford, for instance, produced EMYCIN, The Unit System, and MRS. The third generation is now producing fully supported commercial tools like KEE and S.1. Each generation has seen a substantial decrease in the amount of time needed to build significant expert systems. Ten years ago prototype systems commonly took on the order of two years to show proof of concept; today such systems are routinely built in a few months. Three basic methodologies-frames, rules, and logic-have emerged to support the complex task of storing human knowledge in an expert system. Each of the articles in this Special Section describes and illustrates one of these methodologies. "The Role of Frame-Based Representation in Reasoning," by Richard Fikes and Tom Kehler, describes an object-centered view of knowledge representation, whereby all knowldge is partitioned into discrete structures (frames) having individual properties (slots). Frames can be used to represent broad concepts, classes of objects, or individual instances or components of objects. They are joined together in an inheritance hierarchy that provides for the transmission of common properties among the frames without multiple specification of those properties. The authors use the KEE knowledge representation and manipulation tool to illustrate the characteristics of frame-based representation for a variety of domain examples. They also show how frame-based systems can be used to incorporate a range of inference methods common to both logic and rule-based systems.""Rule-Based Systems," by Frederick Hayes-Roth, chronicles the history and describes the implementation of production rules as a framework for knowledge representation. In essence, production rules use IF conditions THEN conclusions and IF conditions THEN actions structures to construct a knowledge base. The autor catalogs a wide range of applications for which this methodology has proved natural and (at least partially) successful for replicating intelligent behavior. The article also surveys some already-available computational tools for facilitating the construction of rule-based knowledge bases and discusses the inference methods (particularly backward- and forward-chaining) that are provided as part of these tools. The article concludes with a consideration of the future improvement and expansion of such tools.The third article, "Logic Programming, " by Michael Genesereth and Matthew Ginsberg, provides a tutorial introduction to the formal method of programming by description in the predicate calculus. Unlike traditional programming, which emphasizes how computations are to be performed, logic programming focuses on the what of objects and their behavior. The article illustrates the ease with which incremental additions can be made to a logic-oriented knowledge base, as well as the automatic facilities for inference (through theorem proving) and explanation that result from such formal descriptions. A practical example of diagnosis of digital device malfunctions is used to show how significantand complex problems can be represented in the formalism.A note to the reader who may infer that the AI community is being split into competing camps by these three methodologies: Although each provides advantages in certain specific domains (logic where the domain can be readily axiomatized and where complete causal models are available, rules where most of the knowledge can be conveniently expressed as experiential heuristics, and frames where complex structural descriptions are necessary to adequately describe the domain), the current view is one of synthesis rather than exclusivity. Both logic and rule-based systems commonly incorporate frame-like structures to facilitate the representation of large amounts of factual information, and frame-based systems like KEE allow both production rules and predicate calculus statements to be stored within and activated from frames to do inference. The next generation of knowledge representation tools may even help users to select appropriate methodologies for each particular class of knowledge, and then automatically integrate the various methodologies so selected into a consistent framework for knowledge. "
series journal paper
last changed 2003/04/23 15:14

_id ascaad2006_paper20
id ascaad2006_paper20
authors Chougui, Ali
year 2006
title The Digital Design Process: reflections on architectural design positions on complexity and CAAD
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary These instructions are intended to guide contributors to the Second Architecture is presently engaged in an impatient search for solutions to critical questions about the nature and the identity of the discipline, and digital technology is a key agent for prevailing innovations in architectural design. The problem of complexity underlies all design problems. With the advent of CAD however, Architect’s ability to truly represent complexity has increased considerably. Another source that provides information about dealing with complexity is architectural theory. As Rowe (1987) states, architectural theory constitutes “a corpus of principles that are agreed upon and therefore worthy of emulation”. Architectural theory often is a mixed reflection on the nature of architectural design, design processes, made in descriptive and prescriptive terms (see Kruft 1985). Complexity is obviously not a new issue in architectural theory. Since it is an inherent characteristic of design problems, it has been dealt with in many different ways throughout history. Contemporary architects incorporate the computer in their design process. They produce architecture that is generated by the use of particle systems, simulation software, animation software, but also the more standard modelling tools. The architects reflect on the impact of the computer in their theories, and display changes in style by using information modelling techniques that have become versatile enough to encompass the complexity of information in the architectural design process. In this way, architectural style and theory can provide directions to further develop CAD. Most notable is the acceptance of complexity as a given fact, not as a phenomenon to oppose in systems of organization, but as a structuring principle to begin with. No matter what information modelling paradigm is used, complex and huge amounts of information need to be processed by designers. A key aspect in the combination of CAD, complexity, and architectural design is the role of the design representation. The way the design is presented and perceived during the design process is instrumental to understanding the design task. More architects are trying to reformulate this working of the representation. The intention of this paper is to present and discuss the current state of the art in architectural design positions on complexity and CAAD, and to reflect in particular on the role of digital design representations in this discussion. We also try to investigate how complexity can be dealt with, by looking at architects, in particular their styles and theories. The way architects use digital media and graphic representations can be informative how units of information can be formed and used in the design process. A case study is a concrete architect’s design processes such as Peter Eisenman Rem Koolhaas, van Berkel, Lynn, and Franke gehry, who embrace complexity and make it a focus point in their design, Rather than viewing it as problematic issue, by using computer as an indispensable instrument in their approaches.
series ASCAAD
email
last changed 2007/04/08 19:47

_id ddssar0206
id ddssar0206
authors Bax, M.F.Th. and Trum, H.M.G.J.
year 2002
title Faculties of Architecture
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary In order to be inscribed in the European Architect’s register the study program leading to the diploma ‘Architect’ has to meet the criteria of the EC Architect’s Directive (1985). The criteria are enumerated in 11 principles of Article 3 of the Directive. The Advisory Committee, established by the European Council got the task to examine such diplomas in the case some doubts are raised by other Member States. To carry out this task a matrix was designed, as an independent interpreting framework that mediates between the principles of Article 3 and the actual study program of a faculty. Such a tool was needed because of inconsistencies in the list of principles, differences between linguistic versions ofthe Directive, and quantification problems with time, devoted to the principles in the study programs. The core of the matrix, its headings, is a categorisation of the principles on a higher level of abstractionin the form of a taxonomy of domains and corresponding concepts. Filling in the matrix means that each study element of the study programs is analysed according to their content in terms of domains; thesummation of study time devoted to the various domains results in a so-called ‘profile of a faculty’. Judgement of that profile takes place by committee of peers. The domains of the taxonomy are intrinsically the same as the concepts and categories, needed for the description of an architectural design object: the faculties of architecture. This correspondence relates the taxonomy to the field of design theory and philosophy. The taxonomy is an application of Domain theory. This theory,developed by the authors since 1977, takes as a view that the architectural object only can be described fully as an integration of all types of domains. The theory supports the idea of a participatory andinterdisciplinary approach to design, which proved to be awarding both from a scientific and a social point of view. All types of domains have in common that they are measured in three dimensions: form, function and process, connecting the material aspects of the object with its social and proceduralaspects. In the taxonomy the function dimension is emphasised. It will be argued in the paper that the taxonomy is a categorisation following the pragmatistic philosophy of Charles Sanders Peirce. It will bedemonstrated as well that the taxonomy is easy to handle by giving examples of its application in various countries in the last 5 years. The taxonomy proved to be an adequate tool for judgement ofstudy programs and their subsequent improvement, as constituted by the faculties of a Faculty of Architecture. The matrix is described as the result of theoretical reflection and practical application of a matrix, already in use since 1995. The major improvement of the matrix is its direct connection with Peirce’s universal categories and the self-explanatory character of its structure. The connection with Peirce’s categories gave the matrix a more universal character, which enables application in other fieldswhere the term ‘architecture’ is used as a metaphor for artefacts.
series DDSS
last changed 2003/11/21 15:16

_id ddss9408
id ddss9408
authors Bax, Thijs and Trum, Henk
year 1994
title A Taxonomy of Architecture: Core of a Theory of Design
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary The authors developed a taxonomy of concepts in architectural design. It was accepted by the Advisory Committee for education in the field of architecture, a committee advising the European Commission and Member States, as a reference for their task to harmonize architectural education in Europe. The taxonomy is based on Domain theory, a theory developed by the authors, based on General Systems Theory and the notion of structure according to French Structuralism, takes a participatory viewpoint for the integration of knowledge and interests by parties in the architectural design process. The paper discusses recent developments of the taxonomy, firstly as a result of a confrontation with similar endeavours to structure the field of architectural design, secondly as a result of applications of education and architectural design practice, and thirdly as a result of theapplication of some views derived from the philosophical work from Charles Benjamin Peirce. Developments concern the structural form of the taxonomy comprising basic concepts and levelbound scale concepts, and the specification of the content of the fields which these concepts represent. The confrontation with similar endeavours concerns mainly the work of an ARCUK workingparty, chaired by Tom Marcus, based on the European Directive from 1985. The application concerns experiences with a taxonomy-based enquiry in order to represent the profile of educational programmes of schools and faculties of architecture in Europe in qualitative and quantitative terms. This enquiry was carried out in order to achieve a basis for comparison and judgement, and a basis for future guidelines including quantitative aspects. Views of Peirce, more specifically his views on triarchy as a way of ordering and structuring processes of thinking,provide keys for a re-definition of concepts as building stones of the taxonomy in terms of the form-function-process-triad, which strengthens the coherence of the taxonomy, allowing for a more regular representation in the form of a hierarchical ordered matrix.
series DDSS
last changed 2003/08/07 16:36

_id a0d4
id a0d4
authors Rosa Enrich, Andrea Carnicero, Gustavo Fornari & Pedro Orazzi
year 2004
title ANALYSIS AND EVALUATION OF MATHEMATICAL LEARNING STRUCTURES
source Proceedings of the Fourth International Conference of Mathematics & Design, Spetial Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 13-21.
summary Abstract: A series of practical tasks have been done under the general name of “Surfaces in invisible cities”. Each task was based on a story taken from the book The Invisible Cities by Italo Calvino. The research carried out allows to design a pedagogical project which makes evident , generates and connects several intentions, motivations and learning structures. It proposes the use of multi- level languages and readings. Therefore, each task takes more time than that of the proposed mathematical class. Its implementation generates a broader view than that seen at the time of design.

From the detailed analysis of the results obtained, the following diverse pedagogical aspects of this work project arise: a. The use of several multiple intelligence: Howard Gardner (1985) found that a man has several distinct intelligence types among which Logical-Mathematical; Spatial; Linguistic -oriented; Musical; Intra-personal; Kinesthetic-Corporal; Interpersonal stand out. Only those types used in the task will be analyzed, making a brief description of each type. b. The architectonic-city planning aspects: architectonic-city planning interpretation of the space imagined after reading the text, with the purpose of identifying figures, shapes, volumes and colors which are expressed via an analogous space. They consist of visual, architectonic and territorial speculations without a rigorous spatial theory and it is pretended that they possess a technical precision at mathematical concept level. c. The mathematical contents: a study of the conical and square shapes present in the designs done and used in a creative manner in students’ compositions following the reading of the story chosen is carried out. An analysis of shapes is performed and mathematical problems are posed within the design context.

Traditional sketching methods have been used in task solving and the possibilities offered by the virtual tools are analyzed.

Emphasis has been put on the vertical and horizontal interchanges in the Chair, generating changes in knowledge transmission perspectives, thus allowing the sharing of contents, abilities and resources. The architectonic work imagined and created by the students will focus on these different working lines creating a harmonious and significant whole. The work is the result of multiple connections and creative proposals.

keywords city, geometry, multiple intelligence
series other
type normal paper
email
last changed 2005/04/07 12:46

_id 644f
authors Bijl, Aart
year 1986
title Designing with Words and Pictures in a Logic Modelling Environment
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 128-145
summary At EdCAAD we are interested in design as something people do. Designed artefacts, the products of designing, are interesting only in so far as they tell us something about design. An extreme expression of this position is to say that the world of design is the thoughts in the heads of designers, plus the skills of designers in externalizing their thoughts; design artifacts, once perceived and accepted in the worlds of other people, are no longer part of the world of design. We can describe design, briefly, as a process of synthesis. Design has to achieve a fusion between parts to create new parts, so that the products are recognized, as having a right and proper place in the world of people. Parts should be understood as referring to anything - physical objects, abstract ideas, aspirations. These parts occur in some design environment from which parts are extracted, designed upon and results replaced; in the example of buildings, the environment is people and results have to be judged by reference to that environment. It is characteristic of design that both the process and the product are not subject to explicit and complete criteria. This view of design differs sharply from the more orthodox understanding of scientific and technological endeavours which rely predominantly on a process of analysis. In the latter case, the approach is to decompose a problem into parts until individual parts are recognized as being amenable to known operations and results are reassembled into a solution. This process has a peripheral role in design when evaluating selected aspects of tentative design proposals, but the absence of well-defined and widely recognized criteria for design excludes it from the main stream of analytical developments.
series CAAD Futures
last changed 2003/11/21 15:16

_id 8298
authors Quadrel, Richard W. and Chassin, David P.
year 1985
title Energy Graphics: A Progress Report on the Development of Architectural Courseware
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 129-141
doi https://doi.org/10.52842/conf.acadia.1985.129
summary Energy Graphics is a technique for determining the energy performance of buildings at the conceptual stage of the architectural design process. Unlike many energy analysis programs, which only produce results after ail of the building information has been supplied, Energy Graphics works with the designer in understanding how early decisions about building form and configuration affect energy use.

The Energy Graphics technique is currently being "computerized" on a Sun 2/120 graphics workstation, under a grant by the Inter-University Consortium for Educational Computing. The resulting software will be used in the architectural design curriculum so that students will be able to receive an immediate energy evaluation of their design explorations.

For use in the studios, the software must include a powerful graphics interface that allows students to "sketch" their design concepts interactively. The computer will then interpret these sketches as building information, organize them into an integrated database, perform the energy calculations, and inform the student of the results in a graphic format. One of the project's major goals is to provide this graphics interface in the same way that architects think about drawing, and not simply to imitate current computer "drafting" systems.

The goals of the project can only be met by developing the software on a powerful workstation system, which provides fast processing time, large memory, multitasking capabilities and high-resolution graphics. This progress report describes our efforts to date on the development of this important software.

series ACADIA
last changed 2022/06/07 08:00

_id 206caadria2004
id 206caadria2004
authors Ricardo Sosa and John S. Gero
year 2004
title Diffusion of Design Ideas: Gatekeeping Effects
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 287-302
doi https://doi.org/10.52842/conf.caadria.2004.287
summary Designers and design managers are interested in gaining a deeper understanding of the complexities of creativity and innovation (Langdon and Rothwell 1985). These two phenomena can be seen as complementary dimensions of a differentiation cycle where design plays a key value-adding role that gradually reduces through commoditisation. However, there is a lack of relevant evidence to explain the link between creativity and innovation. Creativity is increasingly considered as occurring in the interaction between the individual generator of an idea and a group of evaluators (Sawyer et al 2003). However, most studies have regarded the generation of a solution -and not its social impact- as the outcome of the creative process (Runco and Pritzker 1999). Accordingly, computational modelling of creativity has been mainly conducted in a social void (Boden 1999).
series CAADRIA
email
last changed 2022/06/07 07:56

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id a36a
authors Rasdorf, William J.
year 1985
title Perspectives on Knowledge in Engineering Design
source Proceedings of the International Computers in Engineering Conference. Boston, MA: American Society of Mechanical Engineers, August, 1985. Vol. 2: pp. 249-253. CADLINE has abstract only
summary Of all the contributions of artificial intelligence (AI), expert systems show some of the most significant promise for engineering applications. Expert systems provide a framework for acquiring, representing, and using knowledge about a particular application's domain. The role of knowledge in engineering design merits closer attention so that AI- oriented computer-aided engineering (CAE) systems can be developed and maintained systematically. Because 'knowledge' in engineering applications is loosely defined, it is necessary to identify knowledge types and the correlations between them before widespread engineering design applications can be achieved. The types of domain knowledge; facts, procedures, judgments, and control; differ from the classes of that knowledge; creative, innovative, and routine. Feasible tasks for expert systems can be determined based on these types and classes of knowledge. Interpretive tasks require reasoning about a task in light of the knowledge available, while generative tasks create potential solutions to be tested against constraints. Only after classifying the domain by type and level can the engineer select an appropriate knowledge-engineering tool for the domain being considered. The critical features to be weighed after problem classification are knowledge representation techniques, control strategies, interface requirements, compatibility with traditional systems, and economic considerations. After considering all of these factors in the selection of the expert system tool, the engineer can then proceed with the acquisition of knowledge and the construction and the use of the expert system
keywords knowledge, AI, civil engineering, expert systems, CAE, representation
series CADline
last changed 2003/06/02 13:58

_id 0a6e
authors Walters, Roger
year 1986
title CAAD: Shorter-term Gains; Longerterm Costs?
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 185-196
summary Assessment of CAAD systems in use is complex: it needs careful qualifications and is often contradictory. It is suggested that little progress has been made in making sense of the impacts of computing on design and design organizations. Impacts are more diverse and complicated than has been assumed. Assessments tend to be either overtly optimistic or pessimistic, yet the need is to be realistic. Moreover, impacts have been the subject of speculation and marketing rather than systematic study. Carefully documented case studies of projects or longitudinal studies of organizational impacts remain the exception. This chapter draws upon recorded user experience reported elsewhere (Walters, 1983)' and presents an assessment of the performance in use of current production systems. It presents an end-user view and also identifies a number of outstanding design research topics It is suggested that different systems in different organizations in different settings will give rise to new impacts. A wide variety of outcomes is possible. It seems unlikely that any simple set of relationships can account for all the data that inquiry reveals. The task becomes one of identifying variables that lead to differential outcomes, as the same cause may lead to different effects (Attewell and Rule, 1984). This becomes a long-term task. Each optimistic impact may be countered by some other more pessimistic impact. Moreover, the changes brought about on design by computing are significant because both beneficial and non- beneficial impacts are present together. Impacts are held in a dynamic balance that is subject to constant evolution. This viewpoint accounts for otherwise conflicting conclusions. It is unlikely that the full range of impacts is yet known, and a wide range of impacts and outcomes already need to be taken into account. It seems that CAD alone cannot either guarantee improved design or that it inevitably leads to some diminished role for the designer. CAD can lead to either possible outcome, depending upon the particular combination of impacts present. Careful matching of systems to design organization and work environment is therefore needed. The design management role becomes crucial.
series CAAD Futures
last changed 1999/04/03 17:58

_id 02c6
authors Wheeler, B.J.Q
year 1986
title A Unified Model for Building
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 200-231
summary It is commonly recognized that the time-honoured procedure for preparing an architectural design for building on site is inefficient. Each member of a team of consultant professionals makes an independently documented contribution. For a typical project involving an architect and structural, electrical, mechanical and public services engineers there will be at least five separate sets of general- arrangement drawings, each forming a model of the building, primarily illustrating one discipline but often having to include elements of others in order to make the drawing readable. For example, an air-conditioning duct-work layout is more easily understood when superimposed on the room layout it serves which the engineer is not responsible for but has to understand. Both during their parallel evolution and later, when changes have to be made during the detailed design and production drawing stages, it is difficult and time consuming to keep all versions coordinated. Complete coordination is rarely achieved in time, and conflicts between one discipline and another have to be rectified when encountered on site with resulting contractual implications. Add the interior designer, the landscape architect and other specialized consultants at one end of the list and contractors' shop drawings relating to the work of all the consultants at the other, and the number of different versions of the same thing grows, escalating the concomitant task of coordination. The potential for disputes over what is the current status of the design is enormous, first, amongst the consultants and second, between the consultants and the contractor. When amendments are made by one party, delay and confusion tend to follow during the period it takes the other parties to update their versions to include them. The idea of solving this problem by using a common computer-based model which all members of the project team can directly contribute to is surely a universally assumed goal amongst all those involved in computer-aided building production. The architect produces a root drawing or model, the 'Architect's base plan', to which the other consultants have read-only access and on top of which they can add their own write-protected files. Every time they access the model to write in the outcome of their work on the project they see the current version of the 'Architect's base plan' and can thus respond immediately to recent changes and avoid wasting time on redundant work. The architect meanwhile adds uniquely architectural material in his own overlaid files and maintains the root model as everybody's work requires. The traditional working pattern is maintained while all the participants have the ability to see their colleagues, work but only make changes to those parts for which they are responsible.
series CAAD Futures
last changed 1999/04/03 17:58

_id 8f9d
authors Wolchko, Matthew J.
year 1985
title Strategies Toward Architectural Knowledge Engineering
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 69-82
doi https://doi.org/10.52842/conf.acadia.1985.069
summary Conventional CAD-drafting systems become more powerful modeling tools with the addition of a linked attribute spreadsheet module. This affords the designer the ability to make design decisions not only in the graphic environment, but also as a consequence of quantitative design constraints made apparent in the spreadsheet. While the spreadsheet interface is easily understood by the user, it suffers from two limitations: it lacks a variety of functional capabilities that would enable it to solve more complex design tasks; also, it can only report on existing conditions in the graphic environment. A proposal is made for the enhancement of the spreadsheet's programming power, creating an interface for the selection of program modules that can solve various architectural design tasks. Due to the complexity and graphic nature of architectural design, it is suggested that both procedural and propositional programming methods be used in concert within such a system. In the following, a suitable design task (artificial illumination-reflected ceiling layout) is selected, and then decomposed into two parts: the quantitative analysis (via the application of a procedural programming algorithm), and a logical model generation using shape grammar rules in a propositional framework.
series ACADIA
last changed 2022/06/07 07:57

_id 23bc
authors Demko, Stephen, Hodges, Laurie and Naylor, Bruce F.
year 1985
title Construction of Fractal Objects with Iterated Function Systems
source SIGGRAPH '85 Conference Proceedings. July, 1985. vol. 19 ; no. 3: pp. 271-278 : ill. col. includes bibliography
summary In computer graphics, geometric modeling of complex objects is a difficult process. An important class of complex objects arise from natural phenomena: trees, plants, clouds, mountains, etc. Researchers are investigating a variety of techniques for extending modeling capabilities to include these as well as other classes. One mathematical concept that appears to have significant potential for this is fractals. Much interest currently exists in the general scientific community in using fractals as a model of complex natural phenomena. However, only a few methods for generating fractal sets are known. We have been involved in the development of a new approach to computing fractals. Any set of linear maps (affine transformations) and an associated set of probabilities determines an Iterated Function System (IFS). Each IFS has a unique 'attractor' which is typically a fractal set (object). Specification of only a few maps can produce very complicated objects. Design of fractal objects is made relatively simple and intuitive by the discovery of an important mathematical property relating the fractal sets to the IFS. The method also provides the possibility of solving the inverse problem, given the geometry of an object, determine an IFS that will (approximately) generate that geometry. This paper presents the application of the theory of IFS to geometric modeling
keywords computer graphics, geometric modeling, fractals, visualization
series CADline
last changed 2003/06/02 13:58

_id ae09
authors Lieberman, Henry
year 1985
title There's More to Menu Systems Than Meets the Screen
source SIGGRAPH '85 Conference Proceedings. July, 1985. vol. 19 ; no. 3: pp. 181-189 : ill. includes bibliography
summary Love playing with those fancy menu-based graphical user interfaces, but afraid to program one yourself for your own application? Do windows seem opaque to you? Are you scared of Mice? Like what-you-see-is-what-you-get but don't know how to get-what-you-want-to-see on the screen? Everyone agrees using systems like graphical document illustrators, circuit designers, and iconic file systems is fun, but programming user interfaces for these systems isn't as much fun as it should be. Systems like the Lisp Machines, Xerox D- Machines, and Apple Macintosh provide powerful graphics primitives, but the casual applications designer is often stymied by the difficulty of mastering the details of window specification, multiple processes, interpreting mouse input, etc. This paper presents a kit called EZWin, which provides many services common to implementing a wide variety of interfaces, described as generalized editors for sets of graphical objects. An individual application is programmed simply by creating objects to represent the interface itself, each kind of graphical object, and each command. A unique interaction style is established which is insensitive to whether commands are chosen before or after their arguments. The system anticipates the types of arguments needed by commands preventing selection mistakes which are a common source of frustrating errors. Displayed objects are made 'mouse-sensitive' only if selection of the object is appropriate in the current context. The implementation of a graphical interface for a computer network simulation is described to illustrate how EZWin works
keywords user interface, computer graphics
series CADline
last changed 1999/02/12 15:09

_id acfe
authors Archea, John
year 1985
title Architecture's Unique Position Among the Disciplines : Puzzle-Making vs. Problem Solving
source CRIT XV, The Architectural Student Journal. Summer, 1985. pp. 20-22
summary Most disciplines involved in the building process, i.e., programmers, space planners, and engineers work in what may be described as a problem solving mode. They state desired effects as explicit performance criteria before they initiate a decision process and test alternative solutions against those criteria until a fit is attained which falls within known probabilities of success. Architects, however are not problem solvers and they are not seeking explicit information when they design how buildings work. Architects are puzzle- makers, They are primarily concerned with unique design concepts. It is through the act of designing, or puzzle- making, that the architect learn what they want to accomplish and how. With regard to the making of buildings, places or experiences, the architect is a puzzle-maker surrounded by a group of problem solvers who address separate pieces of the puzzle
keywords puzzle making, design process, problem solving, architecture
series CADline
last changed 1999/02/12 15:07

_id c89d
authors Bancroft, Pamela J.
year 1987
title The Integration of Computing into Architectural Education Through Computer Literate Faculty
source Integrating Computers into the Architectural Curriculum [ACADIA Conference Proceedings] Raleigh (North Carolina / USA) 1987, pp. 109-120
doi https://doi.org/10.52842/conf.acadia.1987.109
summary This paper discusses the apparent correlation between faculty computer literacy and the success of integrating computing into architectural education. Relevant questions of a 1985 national survey which was conducted to study the historical development of faculty computer utilization are analyzed and interpreted. The survey results are then used as the basis for a series of recommendations given for increasing computer literacy among faculty in architectural schools, thus increasing the integration of computing.

series ACADIA
last changed 2022/06/07 07:54

_id c088
authors Biermann, Alan W., Rodman, Robert D. and Rubin, David C. (et al)
year 1985
title Natural Language with Discrete Speech as a Mode for Human- to-Machine Communication
source Communications of the ACM June, 1985. vol. 28: pp. 628-636 : ill. includes bibliography.
summary A voice interactive natural language system, which allows users to solve problems with spoken English commands, has been constructed. The system utilizes a commercially available discrete speech recognizer which requires that each word be followed by approximately a 300 millisecond pause. In a test of the system, subjects were able to learn its use after about two hours of training. The system correctly processed about 77 percent of the over 6000 input sentences spoken in problem-solving sessions. Subjects spoke at the rate of about three sentences per minute and were able to effectively use the system to complete the given tasks. Subjects found the system relatively easy to learn and use, and gave a generally positive report of their experience
keywords user interface, natural languages, speech recognition, AI
series CADline
last changed 2003/06/02 13:58

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2a27
authors Christiansson, Per
year 1985
title Integrated Systems Results of the W78 Survey
source CIB W78 Integrated CAD Symposium. September, 1985. 12 p
summary The International Council for Building research studies and documentation (CIB) working commission W78 Integrated Computer-Aided Design conducted a study to develop a catalog of integrated computer-aided design systems addressing development of integrated computer-aided building design systems. The study encompassed two phases: Survey of existing systems and on-going development projects and summary of result. This paper includes a reproduced questionnaire and results
keywords integration, systems, building, CAD
series CADline
last changed 1999/02/12 15:07

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_274840 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002