CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 92

_id 4275
authors Cowan, David
year 1985
title Artificial Intelligence at Edinburgh University
source computer Aided Design. November, 1985. vol. 17: pp. 465-468
summary The development of research into the area of artificial intelligence is described. It was first recognized by Edinburgh University as an independent discipline in 1966 and there is now an Artificial Intelligence Applications Institute. The main areas of artificial intelligence research are summarized. The five projects carried out with Alvey funding are examined in more detail. They cover such topics as natural language and text processing, 3D modelling and expert systems
keywords AI, expert systems, modeling, natural languages
series CADline
last changed 1999/02/12 15:07

_id 78ca
authors Friedland, P. (Ed.)
year 1985
title Special Section on Architectures for Knowledge-Based Systems
source CACM (28), 9, September
summary A fundamental shift in the preferred approach to building applied artificial intelligence (AI) systems has taken place since the late 1960s. Previous work focused on the construction of general-purpose intelligent systems; the emphasis was on powerful inference methods that could function efficiently even when the available domain-specific knowledge was relatively meager. Today the emphasis is on the role of specific and detailed knowledge, rather than on reasoning methods.The first successful application of this method, which goes by the name of knowledge-based or expert-system research, was the DENDRAL program at Stanford, a long-term collaboration between chemists and computer scientists for automating the determination of molecular structure from empirical formulas and mass spectral data. The key idea is that knowledge is power, for experts, be they human or machine, are often those who know more facts and heuristics about a domain than lesser problem solvers. The task of building an expert system, therefore, is predominantly one of teaching" a system enough of these facts and heuristics to enable it to perform competently in a particular problem-solving context. Such a collection of facts and heuristics is commonly called a knowledge base. Knowledge-based systems are still dependent on inference methods that perform reasoning on the knowledge base, but experience has shown that simple inference methods like generate and test, backward-chaining, and forward-chaining are very effective in a wide variety of problem domains when they are coupled with powerful knowledge bases. If this methodology remains preeminent, then the task of constructing knowledge bases becomes the rate-limiting factor in expert-system development. Indeed, a major portion of the applied AI research in the last decade has been directed at developing techniques and tools for knowledge representation. We are now in the third generation of such efforts. The first generation was marked by the development of enhanced AI languages like Interlisp and PROLOG. The second generation saw the development of knowledge representation tools at AI research institutions; Stanford, for instance, produced EMYCIN, The Unit System, and MRS. The third generation is now producing fully supported commercial tools like KEE and S.1. Each generation has seen a substantial decrease in the amount of time needed to build significant expert systems. Ten years ago prototype systems commonly took on the order of two years to show proof of concept; today such systems are routinely built in a few months. Three basic methodologies-frames, rules, and logic-have emerged to support the complex task of storing human knowledge in an expert system. Each of the articles in this Special Section describes and illustrates one of these methodologies. "The Role of Frame-Based Representation in Reasoning," by Richard Fikes and Tom Kehler, describes an object-centered view of knowledge representation, whereby all knowldge is partitioned into discrete structures (frames) having individual properties (slots). Frames can be used to represent broad concepts, classes of objects, or individual instances or components of objects. They are joined together in an inheritance hierarchy that provides for the transmission of common properties among the frames without multiple specification of those properties. The authors use the KEE knowledge representation and manipulation tool to illustrate the characteristics of frame-based representation for a variety of domain examples. They also show how frame-based systems can be used to incorporate a range of inference methods common to both logic and rule-based systems.""Rule-Based Systems," by Frederick Hayes-Roth, chronicles the history and describes the implementation of production rules as a framework for knowledge representation. In essence, production rules use IF conditions THEN conclusions and IF conditions THEN actions structures to construct a knowledge base. The autor catalogs a wide range of applications for which this methodology has proved natural and (at least partially) successful for replicating intelligent behavior. The article also surveys some already-available computational tools for facilitating the construction of rule-based knowledge bases and discusses the inference methods (particularly backward- and forward-chaining) that are provided as part of these tools. The article concludes with a consideration of the future improvement and expansion of such tools.The third article, "Logic Programming, " by Michael Genesereth and Matthew Ginsberg, provides a tutorial introduction to the formal method of programming by description in the predicate calculus. Unlike traditional programming, which emphasizes how computations are to be performed, logic programming focuses on the what of objects and their behavior. The article illustrates the ease with which incremental additions can be made to a logic-oriented knowledge base, as well as the automatic facilities for inference (through theorem proving) and explanation that result from such formal descriptions. A practical example of diagnosis of digital device malfunctions is used to show how significantand complex problems can be represented in the formalism.A note to the reader who may infer that the AI community is being split into competing camps by these three methodologies: Although each provides advantages in certain specific domains (logic where the domain can be readily axiomatized and where complete causal models are available, rules where most of the knowledge can be conveniently expressed as experiential heuristics, and frames where complex structural descriptions are necessary to adequately describe the domain), the current view is one of synthesis rather than exclusivity. Both logic and rule-based systems commonly incorporate frame-like structures to facilitate the representation of large amounts of factual information, and frame-based systems like KEE allow both production rules and predicate calculus statements to be stored within and activated from frames to do inference. The next generation of knowledge representation tools may even help users to select appropriate methodologies for each particular class of knowledge, and then automatically integrate the various methodologies so selected into a consistent framework for knowledge. "
series journal paper
last changed 2003/04/23 15:14

_id 6916
authors Gasparski, W.
year 1986
title Design Methodology: How I Understand and Develop it
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 16-27
summary The term 'methodology' is sometimes given two diametrically opposed meanings, well characterized by Mark Blaug in the preface of a very informative book devoted to the methodology of economics. This is also the case with the methodology of design. One can find studies in which 'the methodology of design' is simply a method or methods of design, given a fancy name to make it or them appear more scientific. Authors of such studies should not confuse their readers by taking methodological studies to mean technicalities of design or demanding that their interpretation and assessment of so-called 'practical applicability' should follow this criterion. The methodology of design - as we understand it has parallels in the methodology of Blaug's economics, the philosophy of practical science, the applied sciences or the sciences of artificial objects or artefacts. Understood this way, the methodology of design is neither the method of practising design nor an instruction for its use but a theoretical reflection - in the meaning given to methodology by the philosophy of science - of design. In this connection a study of the methodology of design should be provided with the subtitle, 'How researchers of practical sciences and designers understand the concept of changes'.
series CAAD Futures
last changed 1999/04/03 17:58

_id c898
authors Gero, John S.
year 1986
title An Overview of Knowledge Engineering and its Relevance to CAAD
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 107-119
summary Computer-aided architectural design (CAAD) has come to mean a number of often disparate activities. These can be placed into one of two categories: using the computer as a drafting and, to a lesser extent, modelling system; and using it as a design medium. The distinction between the two categories is often blurred. Using the computer as a drafting and modelling tool relies on computing notions concerned with representing objects and structures numerically and with ideas of computer programs as procedural algorithms. Similar notions underly the use of computers as a design medium. We shall return to these later. Clearly, all computer programs contain knowledge, whether methodological knowledge about processes or knowledge about structural relationships in models or databases. However, this knowledge is so intertwined with the procedural representation within the program that it can no longer be seen or found. Architecture is concerned with much more than numerical descriptions of buildings. It is concerned with concepts, ideas, judgement and experience. All these appear to be outside the realm of traditional computing. Yet architects discoursing use models of buildings largely unrelated to either numerical descriptions or procedural representations. They make use of knowledge - about objects, events and processes - and make nonprocedural (declarative) statements that can only be described symbolically. The limits of traditional computing are the limits of traditional computer-aided design systems, namely, that it is unable directly to represent and manipulate declarative, nonalgorithmic, knowledge or to perform symbolic reasoning. Developments in artificial intelligence have opened up ways of increasing the applicability of computers by acquiring and representing knowledge in computable forms. These approaches supplement rather than supplant existing uses of computers. They begin to allow the explicit representations of human knowledge. The remainder of this chapter provides a brief introduction to this field and describes, through applications, its relevance to computer- aided architectural design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 76ce
authors Grimson, W.
year 1985
title Computational Experiments with a Feature Based Stereo Algorithm
source IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-7, No. 1
summary Computational models of the human stereo system' can provide insight into general information processing constraints that apply to any stereo system, either artificial or biological. In 1977, Marr and Poggio proposed one such computational model, that was characterized as matching certain feature points in difference-of-Gaussian filtered images, and using the information obtained by matching coarser resolution representations to restrict the search'space for matching finer resolution representations. An implementation of the algorithm and'its testing on a range of images was reported in 1980. Since then a number of psychophysical experiments have suggested possible refinements to the model and modifications to the algorithm. As well, recent computational experiments applying the algorithm to a variety of natural images, especially aerial photographs, have led to a number of modifications. In this article, we present a version of the Marr-Poggio-Gfimson algorithm that embodies these modifications and illustrate its performance on a series of natural images.
series journal paper
last changed 2003/04/23 15:14

_id 4f6f
authors Kalay, Yehuda E.
year 1985
title Knowledge-Based Computer-Aided Design to Assist Designers of Physical Artifacts
source 1985. [15] p. : ill. includes bibliography
summary The objectives of this project are to increase the productivity of physical designers, and to improve the quality of designed artifacts and environments. The means for achieving these objectives include the development, implementation and verification of a broad-based methodology to be used for building context-sensitive computer-aided design systems to facilitate the design and fabrication of physical artifacts. Such systems will extend computer aides for design over the earliest phases of the design process and thus facilitate design-capture in addition to the common design-communication utilities they currently provide. They will thus constitute intelligent design assistants that will relieve the designer from the necessity to deal with some design details, as well as the need to explicitly manage the consistency of the design database. The project employs principles developed by Artificial Intelligence methods that are used in non-deterministic problem solving processes that represent data and knowledge in distributed networks. Principles such as object-centered data factorization and message-based change propagation techniques are implemented in an existing architectural computer-aided design system and field-tested in a practicing Architectural/Engineering office
keywords CAD, knowledge base, design methods, design process, architecture
series CADline
email
last changed 2003/06/02 13:58

_id e115
authors Pipes, Alan (Ed.)
year 1986
title Computer-Aided Architectural Design Futures [Conference Proceedings]
source International Conference on Computer-Aided Architectural Design / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, 245 p.
summary Computer-Aided Architectural Design Futures was conceived late one evening in the bar of the Metropole Hotel in Brighton, UK. Those present - veterans of a hundred and one CAD conferences - were bemoaning the degree to which big business was taking over the conference scene: exhibiting was replacing conferring, selling was replacing thinking, products were replacing ideas. Wouldn't it be nice, we agreed, to get back to an 'academic' conference which would take stock of current developments in CAAD and attempt to anticipate the direction of future developments and their impact on architectural practice, on the building industry and on the quality of the built environment? Four major themes are explored in CAAD Futures: (1) Systematic design; (2) Drawing and visualization; (3) Artificial intelligence and knowledge engineering; (4) Implications for practice. // Stimulus papers on these four themes were circulated prior to the Conference, and the conference papers themselves elaborated the issues raised in the stimulus papers in such a way as to encourage discussion. The resulting book, we believe, will be a major reference text for students, researchers and practitioners.
series CAAD Futures
last changed 1999/04/03 17:58

_id a36a
authors Rasdorf, William J.
year 1985
title Perspectives on Knowledge in Engineering Design
source Proceedings of the International Computers in Engineering Conference. Boston, MA: American Society of Mechanical Engineers, August, 1985. Vol. 2: pp. 249-253. CADLINE has abstract only
summary Of all the contributions of artificial intelligence (AI), expert systems show some of the most significant promise for engineering applications. Expert systems provide a framework for acquiring, representing, and using knowledge about a particular application's domain. The role of knowledge in engineering design merits closer attention so that AI- oriented computer-aided engineering (CAE) systems can be developed and maintained systematically. Because 'knowledge' in engineering applications is loosely defined, it is necessary to identify knowledge types and the correlations between them before widespread engineering design applications can be achieved. The types of domain knowledge; facts, procedures, judgments, and control; differ from the classes of that knowledge; creative, innovative, and routine. Feasible tasks for expert systems can be determined based on these types and classes of knowledge. Interpretive tasks require reasoning about a task in light of the knowledge available, while generative tasks create potential solutions to be tested against constraints. Only after classifying the domain by type and level can the engineer select an appropriate knowledge-engineering tool for the domain being considered. The critical features to be weighed after problem classification are knowledge representation techniques, control strategies, interface requirements, compatibility with traditional systems, and economic considerations. After considering all of these factors in the selection of the expert system tool, the engineer can then proceed with the acquisition of knowledge and the construction and the use of the expert system
keywords knowledge, AI, civil engineering, expert systems, CAE, representation
series CADline
last changed 2003/06/02 13:58

_id 8f9d
authors Wolchko, Matthew J.
year 1985
title Strategies Toward Architectural Knowledge Engineering
doi https://doi.org/10.52842/conf.acadia.1985.069
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 69-82
summary Conventional CAD-drafting systems become more powerful modeling tools with the addition of a linked attribute spreadsheet module. This affords the designer the ability to make design decisions not only in the graphic environment, but also as a consequence of quantitative design constraints made apparent in the spreadsheet. While the spreadsheet interface is easily understood by the user, it suffers from two limitations: it lacks a variety of functional capabilities that would enable it to solve more complex design tasks; also, it can only report on existing conditions in the graphic environment. A proposal is made for the enhancement of the spreadsheet's programming power, creating an interface for the selection of program modules that can solve various architectural design tasks. Due to the complexity and graphic nature of architectural design, it is suggested that both procedural and propositional programming methods be used in concert within such a system. In the following, a suitable design task (artificial illumination-reflected ceiling layout) is selected, and then decomposed into two parts: the quantitative analysis (via the application of a procedural programming algorithm), and a logical model generation using shape grammar rules in a propositional framework.
series ACADIA
last changed 2022/06/07 07:57

_id ce52
authors Abram, Greg, Weslover, Lee and Whitted, Turner
year 1985
title Efficient Alias-Free Rendering using Bit-masks and Look-up Tables
source SIGGRAPH '85 Conference Proceedings. July, 1985. vol. 19 ; no. 3: pp. 53-59 : ill. (some col.). includes bibliography
summary The authors demonstrate methods of rendering alias-free synthetic images using a precomputed convolution integral. The method is based on the observation that a visible polygon fragment's contribution to an image is solely a function of its position and shape, and that within a reasonable level of accuracy, a limited number of shapes represent the majority of cases encountered in images commonly rendered. The basic technique has been applied to several different rendering algorithms. A version of the newly non-uniform sampling technique implemented in the same program but with different tables values was introduced
keywords algorithms, computer graphics, anti-aliasing
series CADline
last changed 2003/06/02 13:58

_id 678e
authors Aish, Robert
year 1986
title Three-dimensional Input and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 68-84
summary The aim of this chapter is to investigate techniques by which man-computer interaction could be improved, specifically in the context of architectural applications of CAD. In this application the object being designed is often an assembly of defined components. Even if the building is not actually fabricated from such components, it is usually conceptualized in these terms. In a conventional graphics- based CAD system these components are usually represented by graphical icons which are displayed on the graphics screen and arranged by the user. The system described here consists of three- dimensional modelling elements which the user physically assembles to form his design. Unlike conventional architectural models which are static (i.e. cannot be changed by the users) and passive (i.e. cannot be read by a CAD system), this model is both 'user generated' and 'machine readable'. The user can create, edit and view the model by simple, natural modelling activities and without the need to learn complex operating commands often associated with CAD systems. In particular, the user can view the model, altering his viewpoint and focus of attention in a completely natural way. Conventional computer graphics within an associated CAD system are used to represent the detailed geometry which the different three-dimensional icons may represent. In addition, computer graphics are also used to present the output of the performance attributes of the objects being modelled. In the architectural application described in this chapter an energy- balance evaluation is displayed for a building designed using the modelling device. While this system is not intended to offer a completely free-form input facility it can be considered to be a specialist man-machine interface of particular relevance to architects or engineers.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id cc15
authors Ansaldi, Silvia, De Floriani, Leila and Falcidieno, Bianca
year 1985
title Geometric Modeling of Solid Objects by Using a Face Adjacency Graph Representation
source SIGGRAPH '85 Conference Proceedings. July, 1985. vol. 19 ; no. 3: pp. 131-139 : ill. includes bibliography
summary A relational graph structure based on a boundary representation of solid objects is described. In this structure, called Face Adjacency Graph, nodes represent object faces, whereas edges and vertices are encoded into arcs and hyperarcs. Based on the face adjacency graph, the authors define a set of primitive face-oriented Euler operators, and a set of macro operators for face manipulation, which allow a compact definition and an efficient updating of solid objects. The authors briefly describe a hierarchical graph structure based on the face adjacency graph, which provides a representation of an object at different levels of detail. Thus it is consistent with the stepwise refinement process through which the object description is produced
keywords geometric modeling, graphs, objects, representation, data structures,B-rep, solid modeling, Euler operators
series CADline
last changed 2003/06/02 10:24

_id 2ae0
authors Bairstow, Jeffrey N.
year 1985
title Chip Design Made Easy
source high Technology. June, 1985. pp. 18-25 : ill. includes bibliography: p. 74
summary The combination of powerful engineering workstations and novel software tools is making custom chip design economical even for engineers without the specific training. The availability of new automated design technology is promoted by the changing market dynamics. The design of an integrated circuit, with hardware choices, is described
keywords business, AI, electrical engineering, hardware
series CADline
last changed 2003/06/02 13:58

_id c50a
authors Bartschi, Martin
year 1985
title An Overview of Information Retrieval Subjects
source IEEE Computer. May, 1985. vol. 18: pp. 67-84 : ill. includes bibliography
summary The aim of an information retrieval system is to find information items relevant to an information need. As relevance is a kind of similarity relation between the concepts represented by the information item and those represented by the formulation of the information need, it is not astonishing to discover that the class of possible query forms -formulations of the information needs - is the same as the class of possible representations of information items. This article overviews current research problems in information structure and query evaluation
keywords database, information, queries, systems
series CADline
last changed 1999/02/12 15:07

_id 2d64
authors Batori, D.S. and Kim, W.
year 1985
title Modeling Concepts for VLSI CAD Objects
source ACM Transactions on Database Systems 10 No. 3 - pp. 322-346
summary VLSI CAD applications deal with design objects that have an interface description and an implementation description. Versions of design objects have a common interface but differ in their implementations. A molecular object is a modeling construct which enables a database entity to be represented by two sets of heterogeneous records, one set describes the object's interface and the other describes its implementation. Thus a reasonable starting point for modeling design objects is to begin with the concept of molecular objects. In this paper, we identify modeling concepts that are fundamental to capturing the semantics of VLSI CAD design objects and versions in terms of molecular objects. A provisional set of user operations on design objects, consistent with these modeling concepts, is also defined. The modeling framework that we present has been found useful for investigating physical storage techniques and change notification problems in version control. REFERENCES
series journal paper
last changed 2003/11/21 15:16

_id ddssar0206
id ddssar0206
authors Bax, M.F.Th. and Trum, H.M.G.J.
year 2002
title Faculties of Architecture
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary In order to be inscribed in the European Architect’s register the study program leading to the diploma ‘Architect’ has to meet the criteria of the EC Architect’s Directive (1985). The criteria are enumerated in 11 principles of Article 3 of the Directive. The Advisory Committee, established by the European Council got the task to examine such diplomas in the case some doubts are raised by other Member States. To carry out this task a matrix was designed, as an independent interpreting framework that mediates between the principles of Article 3 and the actual study program of a faculty. Such a tool was needed because of inconsistencies in the list of principles, differences between linguistic versions ofthe Directive, and quantification problems with time, devoted to the principles in the study programs. The core of the matrix, its headings, is a categorisation of the principles on a higher level of abstractionin the form of a taxonomy of domains and corresponding concepts. Filling in the matrix means that each study element of the study programs is analysed according to their content in terms of domains; thesummation of study time devoted to the various domains results in a so-called ‘profile of a faculty’. Judgement of that profile takes place by committee of peers. The domains of the taxonomy are intrinsically the same as the concepts and categories, needed for the description of an architectural design object: the faculties of architecture. This correspondence relates the taxonomy to the field of design theory and philosophy. The taxonomy is an application of Domain theory. This theory,developed by the authors since 1977, takes as a view that the architectural object only can be described fully as an integration of all types of domains. The theory supports the idea of a participatory andinterdisciplinary approach to design, which proved to be awarding both from a scientific and a social point of view. All types of domains have in common that they are measured in three dimensions: form, function and process, connecting the material aspects of the object with its social and proceduralaspects. In the taxonomy the function dimension is emphasised. It will be argued in the paper that the taxonomy is a categorisation following the pragmatistic philosophy of Charles Sanders Peirce. It will bedemonstrated as well that the taxonomy is easy to handle by giving examples of its application in various countries in the last 5 years. The taxonomy proved to be an adequate tool for judgement ofstudy programs and their subsequent improvement, as constituted by the faculties of a Faculty of Architecture. The matrix is described as the result of theoretical reflection and practical application of a matrix, already in use since 1995. The major improvement of the matrix is its direct connection with Peirce’s universal categories and the self-explanatory character of its structure. The connection with Peirce’s categories gave the matrix a more universal character, which enables application in other fieldswhere the term ‘architecture’ is used as a metaphor for artefacts.
series DDSS
last changed 2003/11/21 15:16

_id ddss9408
id ddss9408
authors Bax, Thijs and Trum, Henk
year 1994
title A Taxonomy of Architecture: Core of a Theory of Design
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary The authors developed a taxonomy of concepts in architectural design. It was accepted by the Advisory Committee for education in the field of architecture, a committee advising the European Commission and Member States, as a reference for their task to harmonize architectural education in Europe. The taxonomy is based on Domain theory, a theory developed by the authors, based on General Systems Theory and the notion of structure according to French Structuralism, takes a participatory viewpoint for the integration of knowledge and interests by parties in the architectural design process. The paper discusses recent developments of the taxonomy, firstly as a result of a confrontation with similar endeavours to structure the field of architectural design, secondly as a result of applications of education and architectural design practice, and thirdly as a result of theapplication of some views derived from the philosophical work from Charles Benjamin Peirce. Developments concern the structural form of the taxonomy comprising basic concepts and levelbound scale concepts, and the specification of the content of the fields which these concepts represent. The confrontation with similar endeavours concerns mainly the work of an ARCUK workingparty, chaired by Tom Marcus, based on the European Directive from 1985. The application concerns experiences with a taxonomy-based enquiry in order to represent the profile of educational programmes of schools and faculties of architecture in Europe in qualitative and quantitative terms. This enquiry was carried out in order to achieve a basis for comparison and judgement, and a basis for future guidelines including quantitative aspects. Views of Peirce, more specifically his views on triarchy as a way of ordering and structuring processes of thinking,provide keys for a re-definition of concepts as building stones of the taxonomy in terms of the form-function-process-triad, which strengthens the coherence of the taxonomy, allowing for a more regular representation in the form of a hierarchical ordered matrix.
series DDSS
last changed 2003/08/07 16:36

_id ddss9409
id ddss9409
authors Beekman, Solange and Rikhof, Herman G.A.
year 1994
title Strategic Urban Planning in the Netherlands
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Since the mid-1980s, several Dutch towns have initiated many urban planning and design activities for their existing area. This represented a shift in that previous urban planning projects typicallyconcerned expansion in the outskirts of the city, or urban renewal. The complex and expensive renovation of the existing housing stock rarely allowed a deep interest in urban design. Since 1985, attention shifted from the housing stock to the city as a whole. Furthermore, public andprivate actors increasingly become involved in the planning process. It became clear that a more comprehensive plan for the whole existing town or region was needed. Conventional planning instruments were considered ill-suited for this new challenge. The paper discusses promising attempts of various urban planning instruments to get a stronger but also more flexible hold on thetransformation of the urban planning area in the Netherlands. These new planning instruments have three common characteristics: (i) they give special attention to the different levels of urban management needed for different urban areas, (ii) these strategic plans provide an integral view on the urban developments, and (iii) these plans introduce a new strategy to deal with both private initiatives to transform urban sites and monitor wishes, proposals, etc. from inhabitants in the neighbourhoods. A comparative analyses of several cities indicates, however, that, in addition to these common characteristics, major differences between their strategic plans exist depending upon their historic patrimonium, economic status and planning tradition.
series DDSS
email
last changed 2003/08/07 16:36

_id a217
authors Bhatt, Rajesh V., Fisher, Edward L. and Rasdorf, William J.
year 1985
title Information Retrieval Architectures For Expert System/DBMS Communication
source Industrial Engineering Fall Conference Proceedings. December, 1985. pp. 315-320. CADLINE has abstract only
summary The development of expert systems (ES) for manufacturing problems indicates a need to interact with potentially large amounts of data, much of which resides elsewhere in the ES user's organization. A large amount of information required for planning, design, and control operations can be made available through an existing database management system (DBMS). The need for an ES to access that data is critical. This paper presents two approaches to the development of ES- DBMS interfaces, both query-language based. One approach uses a procedural attachment to the ES language to obtain the required data via the DBMS query language, while the other one uses a separate interface program between the ES and the query language of the DBMS. The procedural attachment is able to acquire data from a DBMS at a faster rate than the interface program; however, the procedural attachment lacks knowledge of the DBMS schema. On the other hand, the interface program sacrifices speed but promotes flexibility, as it has the capability of selecting which DBMS to extract the required data from and allowing augmentation of schema knowledge outside of the ES. A disadvantage of the interface approach is the amount of time involved in data retrieval. The process of writing information to disk files is I/O intensive. This can be quite slow, particularly in PROLOG, the language used to implement the ES. Thus the use of such an interface is only suitable in applications such as design, where extremely fast I/O is not required
keywords design, engineering, expert systems, information, database, DBMS
series CADline
last changed 2003/06/02 10:24

_id 644f
authors Bijl, Aart
year 1986
title Designing with Words and Pictures in a Logic Modelling Environment
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 128-145
summary At EdCAAD we are interested in design as something people do. Designed artefacts, the products of designing, are interesting only in so far as they tell us something about design. An extreme expression of this position is to say that the world of design is the thoughts in the heads of designers, plus the skills of designers in externalizing their thoughts; design artifacts, once perceived and accepted in the worlds of other people, are no longer part of the world of design. We can describe design, briefly, as a process of synthesis. Design has to achieve a fusion between parts to create new parts, so that the products are recognized, as having a right and proper place in the world of people. Parts should be understood as referring to anything - physical objects, abstract ideas, aspirations. These parts occur in some design environment from which parts are extracted, designed upon and results replaced; in the example of buildings, the environment is people and results have to be judged by reference to that environment. It is characteristic of design that both the process and the product are not subject to explicit and complete criteria. This view of design differs sharply from the more orthodox understanding of scientific and technological endeavours which rely predominantly on a process of analysis. In the latter case, the approach is to decompose a problem into parts until individual parts are recognized as being amenable to known operations and results are reassembled into a solution. This process has a peripheral role in design when evaluating selected aspects of tentative design proposals, but the absence of well-defined and widely recognized criteria for design excludes it from the main stream of analytical developments.
series CAAD Futures
last changed 2003/11/21 15:16

For more results click below:

this is page 0show page 1show page 2show page 3show page 4HOMELOGIN (you are user _anon_774427 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002