CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 206

_id 2eb1
authors Bridges, Alan H.
year 1986
title Alternative Approaches Towards the Teaching of Computer Aided Architectural Design
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 331-340
doi https://doi.org/10.52842/conf.ecaade.1986.331
summary The problems of architectural education in general and CAD education in particular are discussed. The paper suggests that the computing requirements of architectural practice are different to those of architectural education and that much of the software used in schools of architecture is not used in an educationally structured way. A number of proposals for the educational use of computers are made, together with recommendations for a common computing environment.
series eCAADe
email
last changed 2022/06/07 07:54

_id 0565
authors Oxman, Robert and Oxman, Rivka
year 1990
title The Computability of Architectural Knowledge
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 171-185
summary In an important contribution to the theoretical foundation of design computing, Mitchell noted "an increasingly urgent need to establish a demonstrably sound, comprehensive, rigorously formalized theoretical foundation upon which to base practical software development efforts" (Mitchell, 1986). In this paper we propose such a theoretical framework. A basic assumption of this work is that the advancement of design computing is dependent upon the emergence of a rigorous formulation of knowledge in design. We present a model of knowledge in architectural design which suggests a promising conceptual basis for dealing with knowledge in computer-aided design systems. We require models which can represent the formal knowledge and manipulative operations of the designer in all of their complexity-that is formal models rather than just geometric models. Shape Grammars (Stiny,1980) represent an example of such models, and constitute a relatively high level of design knowledge as compared to, for example, use of symmetry operations to generate simple formal configurations. Building upon an understanding of the classes of design knowledge as the conceptual basis for formal modeling systems may contribute a new realization of the potential of the medium for design. This will require a comprehensive approach to the definition of architectural and design knowledge. We consider here the implications of a well-defined body of architectural and design knowledge for design education and the potential mutual interaction-in a knowledge-rich environment-of design learning and CAAD learning. The computational factors connected with the representation of design knowledge and its integration in design systems are among the key problems of CAAD. Mitchell's model of knowledge in design incorporates formal knowledge in a comprehensive, multi-level, hierarchical structure in which types of knowledge are correlated with computational concepts. In the main focus of this paper we present a structured, multi-level model of design knowledge which we discuss with respect to current architectural theoretical considerations. Finally, we analyze the computational and educational relevance of such models.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 68ef
authors Tweed, Christopher
year 1986
title A Computing Environment for CAAD Education
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 136-145
doi https://doi.org/10.52842/conf.ecaade.1986.136
summary This paper describes a modelling system, MOLE (Modelling Objects with Logic Expressions), and its use as a computing environment for teaching architectural undergraduates. The paper also sketches the background to MOLE's development as a medium for research, and identifies benefits conferred on research and teaching through their common interest in MOLE. Teaching at EdCAAD is conducted in what is chiefly a research milieu. Hence our teaching methods exploit the products and experience of research. But the partnership is mutually rewarding, because teaching informs future research efforts through the experience gained from using MOLE. At present, our teaching concentrates on a ten-week elective course for fourth year architectural undergraduates. The main component of the course requires each student to program a simple application related to architectural design. Applications normally require a programming language with access to graphics routines, and in previous years we have used C or, more recently, Prolog with their graphics extensions. For the past two years MOLE has fulfilled this need. The paper begins by explaining the evolution of our approach to CAAD, leading to the development of the description system, MOLE. Section two outlines the main features of the version of MOLE which has been extended to provide a comprehensive computing environment for programming simple architectural applications. MOLE in use is the subject of section three which is illustrated with examples drawn from students' coursework projects and exercises. This is followed by a discussion of the lessons learned from teaching which highlight areas of MOLE's development that need more study. A concluding section summarises what has been learned, and poses vital questions that require answers before we can expect widespread acceptance of CAAD in practice.
series eCAADe
last changed 2022/06/07 07:58

_id 0e5e
authors Kociolek, A.
year 1986
title CAD in Polish Building
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 235-245
summary There is little CAAD in Polish architectural design offices, and only recently have practising architects discovered the computer. On the other hand, CAAD has been used for some time in research and development based at universities or in large design organizations. This chapter gives a broad picture of the computerization of building design in Poland, a complex process which concerns planning and financing, hardware, software, CAD practice, standardization, training, education, etc. Here architectural applications are treated on an equal basis, together with other applications representing design disciplines involved in design, such as structural and mechanical engineering. The underlying philosophy of this chapter is a belief that proper and well-balanced computerization of design in building which leaves creative work to human beings should result in better design and eventually in improvements in the built environment. Therefore integration of the design process in building seems more important for design practice than attempts to replace an architect by a computer, although the intellectual attraction of this problem is recognized.
series CAAD Futures
last changed 1999/04/03 17:58

_id 0a6e
authors Walters, Roger
year 1986
title CAAD: Shorter-term Gains; Longerterm Costs?
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 185-196
summary Assessment of CAAD systems in use is complex: it needs careful qualifications and is often contradictory. It is suggested that little progress has been made in making sense of the impacts of computing on design and design organizations. Impacts are more diverse and complicated than has been assumed. Assessments tend to be either overtly optimistic or pessimistic, yet the need is to be realistic. Moreover, impacts have been the subject of speculation and marketing rather than systematic study. Carefully documented case studies of projects or longitudinal studies of organizational impacts remain the exception. This chapter draws upon recorded user experience reported elsewhere (Walters, 1983)' and presents an assessment of the performance in use of current production systems. It presents an end-user view and also identifies a number of outstanding design research topics It is suggested that different systems in different organizations in different settings will give rise to new impacts. A wide variety of outcomes is possible. It seems unlikely that any simple set of relationships can account for all the data that inquiry reveals. The task becomes one of identifying variables that lead to differential outcomes, as the same cause may lead to different effects (Attewell and Rule, 1984). This becomes a long-term task. Each optimistic impact may be countered by some other more pessimistic impact. Moreover, the changes brought about on design by computing are significant because both beneficial and non- beneficial impacts are present together. Impacts are held in a dynamic balance that is subject to constant evolution. This viewpoint accounts for otherwise conflicting conclusions. It is unlikely that the full range of impacts is yet known, and a wide range of impacts and outcomes already need to be taken into account. It seems that CAD alone cannot either guarantee improved design or that it inevitably leads to some diminished role for the designer. CAD can lead to either possible outcome, depending upon the particular combination of impacts present. Careful matching of systems to design organization and work environment is therefore needed. The design management role becomes crucial.
series CAAD Futures
last changed 1999/04/03 17:58

_id 644f
authors Bijl, Aart
year 1986
title Designing with Words and Pictures in a Logic Modelling Environment
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 128-145
summary At EdCAAD we are interested in design as something people do. Designed artefacts, the products of designing, are interesting only in so far as they tell us something about design. An extreme expression of this position is to say that the world of design is the thoughts in the heads of designers, plus the skills of designers in externalizing their thoughts; design artifacts, once perceived and accepted in the worlds of other people, are no longer part of the world of design. We can describe design, briefly, as a process of synthesis. Design has to achieve a fusion between parts to create new parts, so that the products are recognized, as having a right and proper place in the world of people. Parts should be understood as referring to anything - physical objects, abstract ideas, aspirations. These parts occur in some design environment from which parts are extracted, designed upon and results replaced; in the example of buildings, the environment is people and results have to be judged by reference to that environment. It is characteristic of design that both the process and the product are not subject to explicit and complete criteria. This view of design differs sharply from the more orthodox understanding of scientific and technological endeavours which rely predominantly on a process of analysis. In the latter case, the approach is to decompose a problem into parts until individual parts are recognized as being amenable to known operations and results are reassembled into a solution. This process has a peripheral role in design when evaluating selected aspects of tentative design proposals, but the absence of well-defined and widely recognized criteria for design excludes it from the main stream of analytical developments.
series CAAD Futures
last changed 2003/11/21 15:16

_id e43b
authors Blasi, D. and Scudo, G.
year 1986
title Experience of Output Visualisation in Thermal Performance Analysis and Design.
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 186-191
doi https://doi.org/10.52842/conf.ecaade.1986.186
summary GKS didactic application in output visualisation of thermal behaviour simulation in building analysis and design. Energy analysis is performed by BEETA (Built Environment Energy Test and Analysis) code. It is a numerical simulation code which allows to simulate the building multizone thermal behaviour with different passive devices (Direct Gain, Greenhouse, Solar Chimney, Trompe, Convective and Radiative Cooling etc.). The code is based on thermal network theory and methods; the set of thermal equation is normally solved every hour or less by the coefficient matrix inversion method. An interactive loop is provide for dealing with non- linear thermal conductance problems with continuous or step variation (i.e. air mixing through an opening between two spaces, Trompe wall convective loop, etc.) The code allows to take into account urban obstructions and shading devices.

series eCAADe
last changed 2022/06/07 07:52

_id 8e02
authors Brown, A.G.P. and Coenen, F.P.
year 2000
title Spatial reasoning: improving computational efficiency
source Automation in Construction 9 (4) (2000) pp. 361-367
summary When spatial data is analysed the result is often very computer intensive: even by the standards of contemporary technologies, the machine power needed is great and the processing times significant. This is particularly so in 3-D and 4-D scenarios. What we describe here is a technique, which tackles this and associated problems. The technique is founded in the idea of quad-tesseral addressing; a technique, which was originally applied to the analysis of atomic structures. It is based on ideas concerning Hierarchical clustering developed in the 1960s and 1970s to improve data access time [G.M. Morton, A computer oriented geodetic database and a new technique on file sequencing, IBM Canada, 1996.], and on atomic isohedral (same shape) tiling strategies developed in the 1970s and 1980s concerned with group theory [B. Grunbaum, G.C. Shephard, Tilings and Patterns, Freeman, New York, 1987.]. The technique was first suggested as a suitable representation for GIS in the early 1980s when the two strands were brought together and a tesseral arithmetic applied [F.C. Holdroyd, The Geometry of Tiling Hierarchies, Ars Combanitoria 16B (1983) 211–244.; S.B.M. Bell, B.M. Diaz, F.C. Holroyd, M.J.J. Jackson, Spatially referenced methods of processing raster and vector data, Image and Vision Computing 1 (4) (1983) 211–220.; Diaz, S.B.M. Bell, Spatial Data Processing Using Tesseral Methods, Natural Environment Research Council, Swindon, 1986.]. Here, we describe how that technique can equally be applied to the analysis of environmental interaction with built forms. The way in which the technique deals with the problems described is first to linearise the three-dimensional (3-D) space being investigated. Then, the reasoning applied to that space is applied within the same environment as the definition of the problem data. We show, with an illustrative example, how the technique can be applied. The problem then remains of how to visualise the results of the analysis so undertaken. We show how this has been accomplished so that the 3-D space and the results are represented in a way which facilitates rapid interpretation of the analysis, which has been carried out.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id c211
authors Brown, A.G.P.
year 1986
title A Year's Experience with CATIA and CADAM
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 7-16
doi https://doi.org/10.52842/conf.ecaade.1986.007
summary In June 1985 Liverpool University obtained the CAD packages CATIA and CADAM to run on its IBM 4341 mainframe. The following is a brief description of the investigations which have taken place in the first year of their implementation to gauge the usefulness of these packages, principalLy as CAAD teaching aids. Neither CATIA nor CADAM were initially developed as architectural design aids so a matter of initial concern was their appropriateness for teaching (and possibly research) in an architectural environment.
series eCAADe
email
last changed 2022/06/07 07:54

_id 0918
authors Christiansson, Per
year 1986
title Swedish and Nordic Activities within CAAD
source computer Aided Architectural Design - Developments in Education and Practice. 1986. 9 p. includes bibliography
summary During the last few years there has been an increasing interest in the Nordic countries concerning effective use of computer resources in the building process. Swedish and Nordic research and development within CAAD and adjoining areas is briefly accounted for to give a flavor of ongoing and planned activities. A Nordic Action Program for promoting Nordic joint research and development efforts is also presented. The Nordic educational activities within CAAD are also briefly commented on
keywords CAD, building process, construction
series CADline
last changed 1999/02/12 15:07

_id c967
authors Fantacone, Enrico
year 1994
title Exporting CAD Teaching into Developing Countries
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 222
doi https://doi.org/10.52842/conf.ecaade.1994.x.t3s
summary In 1986 the Faculty of Architecture was established in Maputo. It is financed by the Italian Ministry of Foreign Affairs and managed by a Scientific Council of the Faculty of Architecture of "Università La Sapienza" of Rome. The need to create human technical resources beeing able to work profesionally as soon as they finish their studies, made the teaching basis for lab exercises and design. The new architects (the first six students graduated in 1991), need to design and make very important decisions without any control by more experienced local technical institutions. The creation of a CAAD laboratory, and the teaching of information technologies and metodologies in architectural designing aimes to achieve a double goal: (-) to make the new architects able to manage on their own, because of the lack of qualified human resources, large quantity of data, and difficult design problems; (-) to make University, the most important scientific center in the country, an information exchange center between developped countries, and Moçambique.
series eCAADe
last changed 2022/06/07 07:50

_id c52d
authors Gero, John S.
year 1986
title An Overview of Knowledge Engineering and its Relevance to CAAD
source Guildford: Butterworth, 1986. pp. 107-119
summary This paper introduces the concepts of knowledge engineering, a subset of artificial intelligence. It describes means of representing and manipulating non-numeric design knowledge using symbolic inference mechanisms. It then describes a subset of knowledge engineering--expert systems. Knowledge- based systems in computer-aided architectural design are presented as a new direction for CAAD which expands the role of the computer in design. Expert systems within a CAAD environment are discussed
keywords AI, knowledge base, design, architecture, CAD, representation, expert systems
series CADline
email
last changed 2003/06/02 13:58

_id 896b
authors Haider, Jawaid
year 1986
title A Conceptual Framework for Communication -Instruction in Architectural Design
source Pennsylvania State University
summary Existing design models, it is generally acknowledged, are inadequate to deal with the complexity of contemporary situations; and an assessment of self-conscious design manifests a slow development in the power and scope of conceptualizing. The quality of knowledge and conceptual tools available to the designer largely determine his ability to conceive and accomplish; conversely, the limitations of method are reflected in design solutions. Some emerging social problem-solving paradigms, which seek to construct a cognitive psychology of problem solving, have a direct relevance to architectural design. Notwithstanding the traditional criticism and scepticism, problem solving is predicated by task environment and problem space as these have a significant impact on design synthesis. Despite a rigorous search for theoretical perspectives and methods, the concern for the quality of the physical environment persists unabated. Historically, architecture has depended on other disciplines for its theoretical insight; but the application of borrowed theories without a viable framework for translation has often resulted in misinterpretation. Aggravating the problem is the art-science controversy which has consequences for architectural practice and education. What is required is a unified approach encompassing the scientific and artistic modes of inquiry. But a unified perspective, involving vast and disparate areas of human knowledge, demands a conceptual framework for integrative learning. The proposed model of this study provides such a framework and calls for a re-examination of the conventional boundaries of design disciplines. It advocates an interdisciplinary approach and recognizes the design process as inherently a learning process; this shifts the emphasis from product to process and allows students to plan and assess their own design/learning experience. While the study focuses on substantive issues, it identifies a strategy for integrative learning applicable within the existing context of design education. Despite its untested nature, the proposed model can become a vehicle for stimulating coordination of all facets of human knowledge and experience toward creative design synthesis. It inculcates a sense of critical assessment of generative ideas by presenting a conceptually clearer picture of the design process to elicit a response to and a better understanding of the task environment of architecture.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id a920
authors Kulcke, Richard
year 1989
title CAAD in the Architectural Education of the Fachhochschulen in the Federal Republic of Germany
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 4.3.1
doi https://doi.org/10.52842/conf.ecaade.1989.x.w7a
summary For over 10 years the author has been a teacher in the field of "computer application in architecture" at the Fachhochschule. Since 1985 he regularly has been taking part in the conferences of A.I.I.D.A. (Arbeitskreis INFORMATIK IN DER ARCHlTEKTENAUSBILDUNG). All the faculties of architecture at the Fachhochschulen (about 10) can send their representatives of CAAD to the conferences. A.I.I.D.A. has been having 2 conferences a year since 1985. At the last conference in Wiesbaden a paper with statements of A.I.I.D.A. for the further education in CAAD was finished. The author presents and explains this paper. On the other hand he shows the actual education program of CAAD of his faculty. The education in CAAD started in 1972 with basic information without practical elements. Now the practical work with the workstation is talking most of the time . The computer application is available for subjects like Building Economics, Building and Structure Design and others. With his assistant the author developed programs of the field of Building Economics. In 1986 he started introduce CAD with AutoCAD in the education program. Now also other colleagues start to integrate CAAD into their subjects.

series eCAADe
last changed 2022/06/07 07:50

_id aba3
authors Laing, Lamond
year 1986
title Computers in Architectural Education
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 71-77
doi https://doi.org/10.52842/conf.ecaade.1986.071
summary Throughout Europe there is a rapidly growing volume of initiatives towards integrating computer aids within all aspects of education. In architectural education, the support offered by these initiatives presents a double-edged sword. On the one hand it is gratifying to see the work of almost two decades of CAAD research bearing fruit and the concepts gaining recognition by the profession. On the other hand the resulting pressures on the few individuals with the necessary knowledge to implement the teaching will stretch many to breaking point. Where resources are so limited it is crucial to clarify the needs and objectives and, thereby, more effectively direct resources. These needs will change over time and, in the world of computers, the means are also changing rapidly as hardware and software improves. This paper therefore outlines a scenario which I believe is relevant at this point in time but the background is constantly changing and I offer no apologies for any shift in emphasis since my last presentation of this topic in 1983.

series eCAADe
last changed 2022/06/07 07:52

_id c7e9
authors Maver, T.W.
year 2002
title Predicting the Past, Remembering the Future
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 2-3
summary Charlas Magistrales 2There never has been such an exciting moment in time in the extraordinary 30 year history of our subject area, as NOW,when the philosophical theoretical and practical issues of virtuality are taking centre stage.The PastThere have, of course, been other defining moments during these exciting 30 years:• the first algorithms for generating building layouts (circa 1965).• the first use of Computer graphics for building appraisal (circa 1966).• the first integrated package for building performance appraisal (circa 1972).• the first computer generated perspective drawings (circa 1973).• the first robust drafting systems (circa 1975).• the first dynamic energy models (circa 1982).• the first photorealistic colour imaging (circa 1986).• the first animations (circa 1988)• the first multimedia systems (circa 1995), and• the first convincing demonstrations of virtual reality (circa 1996).Whereas the CAAD community has been hugely inventive in the development of ICT applications to building design, it hasbeen woefully remiss in its attempts to evaluate the contribution of those developments to the quality of the built environmentor to the efficiency of the design process. In the absence of any real evidence, one can only conjecture regarding the realbenefits which fall, it is suggested, under the following headings:• Verisimilitude: The extraordinary quality of still and animated images of the formal qualities of the interiors and exteriorsof individual buildings and of whole neighborhoods must surely give great comfort to practitioners and their clients thatwhat is intended, formally, is what will be delivered, i.e. WYSIWYG - what you see is what you get.• Sustainability: The power of «first-principle» models of the dynamic energetic behaviour of buildings in response tochanging diurnal and seasonal conditions has the potential to save millions of dollars and dramatically to reduce thedamaging environmental pollution created by badly designed and managed buildings.• Productivity: CAD is now a multi-billion dollar business which offers design decision support systems which operate,effectively, across continents, time-zones, professions and companies.• Communication: Multi-media technology - cheap to deliver but high in value - is changing the way in which we canexplain and understand the past and, envisage and anticipate the future; virtual past and virtual future!MacromyopiaThe late John Lansdown offered the view, in his wonderfully prophetic way, that ...”the future will be just like the past, onlymore so...”So what can we expect the extraordinary trajectory of our subject area to be?To have any chance of being accurate we have to have an understanding of the phenomenon of macromyopia: thephenomenon exhibitted by society of greatly exaggerating the immediate short-term impact of new technologies (particularlythe information technologies) but, more importantly, seriously underestimating their sustained long-term impacts - socially,economically and intellectually . Examples of flawed predictions regarding the the future application of information technologiesinclude:• The British Government in 1880 declined to support the idea of a national telephonic system, backed by the argumentthat there were sufficient small boys in the countryside to run with messages.• Alexander Bell was modest enough to say that: «I am not boasting or exaggerating but I believe, one day, there will bea telephone in every American city».• Tom Watson, in 1943 said: «I think there is a world market for about 5 computers».• In 1977, Ken Olssop of Digital said: «There is no reason for any individuals to have a computer in their home».The FutureJust as the ascent of woman/man-kind can be attributed to her/his capacity to discover amplifiers of the modest humancapability, so we shall discover how best to exploit our most important amplifier - that of the intellect. The more we know themore we can figure; the more we can figure the more we understand; the more we understand the more we can appraise;the more we can appraise the more we can decide; the more we can decide the more we can act; the more we can act themore we can shape; and the more we can shape, the better the chance that we can leave for future generations a trulysustainable built environment which is fit-for-purpose, cost-beneficial, environmentally friendly and culturally significactCentral to this aspiration will be our understanding of the relationship between real and virtual worlds and how to moveeffortlessly between them. We need to be able to design, from within the virtual world, environments which may be real ormay remain virtual or, perhaps, be part real and part virtual.What is certain is that the next 30 years will be every bit as exciting and challenging as the first 30 years.
series SIGRADI
email
last changed 2016/03/10 09:55

_id ba6b
authors Neuckermans, Herman
year 1986
title The Intelligent Pencil: A framework for CAAD in Education
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 113-128
doi https://doi.org/10.52842/conf.acadia.1986.113
summary Computer Aided Architectural Design in Education (CAADE) can only be meaningful if it brings meaningful answers to meaningful questions about architecture and architectural education. In the discourse about CAAD and CAADE these questions are completely absent; this can be concluded from: (1.) an absolute lack of architectural-theoretical and historical reflection, without which no architecture can exist; (2.) a frequent confusion between designing and drawing : the latter being a non neutral tool for the former; (3.) the absence of a clear understanding of the way in which architecture comes about: what are the concepts and entities an architect is working with and how does he manipulate them? (4.) no clear insights about the way architectural "design by hand" should be taught and a fortiori about the way a computer could help.
series ACADIA
email
last changed 2022/06/07 07:58

_id e115
authors Pipes, Alan (Ed.)
year 1986
title Computer-Aided Architectural Design Futures [Conference Proceedings]
source International Conference on Computer-Aided Architectural Design / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, 245 p.
summary Computer-Aided Architectural Design Futures was conceived late one evening in the bar of the Metropole Hotel in Brighton, UK. Those present - veterans of a hundred and one CAD conferences - were bemoaning the degree to which big business was taking over the conference scene: exhibiting was replacing conferring, selling was replacing thinking, products were replacing ideas. Wouldn't it be nice, we agreed, to get back to an 'academic' conference which would take stock of current developments in CAAD and attempt to anticipate the direction of future developments and their impact on architectural practice, on the building industry and on the quality of the built environment? Four major themes are explored in CAAD Futures: (1) Systematic design; (2) Drawing and visualization; (3) Artificial intelligence and knowledge engineering; (4) Implications for practice. // Stimulus papers on these four themes were circulated prior to the Conference, and the conference papers themselves elaborated the issues raised in the stimulus papers in such a way as to encourage discussion. The resulting book, we believe, will be a major reference text for students, researchers and practitioners.
series CAAD Futures
last changed 1999/04/03 17:58

_id 20a8
authors Ruffle, Simon
year 1986
title How Can CAD Provide for the Changing Role of the Architect?
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 197-199
summary At the RIBA Conference of 1981 entitled 'New Opportunities', and more recently at the 1984 ACA Annual Conference on 'Architects in Competition' there has been talk of marketing, new areas of practice, recapturing areas of practice lost to other professions, more accountability to client and public 'the decline of the mystique of the professional'. It is these issues, rather than technical advances in software and hardware, that will be the prime movers in getting computers into widespread practice in the future. In this chapter we will examine how changing attitudes in the profession might affect three practical issues in computing with which the author has been preoccupied in the past year. We will conclude by considering how, in future, early design stage computing may need to be linked to architectural theory, and, as this is a conference where we are encouraged to be outspoken, we will raise the issue of a computer-based theory of architecture.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 7a08
authors Smith Shaw, Doris
year 1986
title Case Studies in Architectural CADD Education
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 157-172
doi https://doi.org/10.52842/conf.acadia.1986.157
summary Stages in the formation of concepts necessary for mastery can be observed in cognitive development in many different areas of study. These stages seem to follow a particular hierarchy common to most learners. Distinct levels can be recognized by patterns of procedural errors. The remediation of errors can then take the form of building a conceptual framework rather than training in procedural patterns. This has been found to be highly efficient for learners at all stages since it can be aimed at the underlying problem area and not at isolated errors which may change frequently. It was felt, that concept development of architects learning to use computer-aided drawing programs would show such levels. Preliminary studies made at the U.S. Army Construction Engineering Research Laboratory upon selected subjects using computer-aided lessons in AutoCAD as a basis for observations reveal several categories of errors in using computer-aided design. These case studies show that the design process can be enhanced by automated drawing and design tools if the conceptual relationships are established as a part of the learning environment. Even more important, the observations show that architects have particular characteristics which differ from engineers and other CAD users. These differences require that education and software be tailored to their needs.
series ACADIA
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_109772 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002