CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 206

_id 242d
authors Atkin, Brian L. and Gill, E. Moira
year 1986
title CAD and Management of Construction Projects
source Journal of Construction Engineering and Management, Vol. 112, December, pp. 557-565
summary The increasing interest in computer-aided design (CAD) has prompted research that is aimed at identifying the opportunities for construction managers and building contractors. It has been found that the use of CAD systems in the U.K. is mainly confined to the production of detailed drawings. Indeed, most of the systems used are 2-D drafting tools and incapable of supporting the integration of even modest amounts of nongraphical (construction) data. On the other hand, many 3-D modeling systems have the potential to integrate construction data, although they appear to be almostignored. The use of 3-D modeling systems is considered to be the most suitable vehicle for successfully integrating these data. However, this is likely to necessitate the introduction of separate databases, preferably of the relational type. The use of 3-D modeling systems in assessing the construction implications of outline designs also presents interesting possibilities and is discussed.
series journal paper
last changed 2003/04/23 15:14

_id 876b
authors Christiansson, Per
year 1986
title Structuring a Learning Building Design System
source Advancing Building Technology, CIB International Congress (10th : 1986 : Washington D. C.). 9 p. : ill. includes bibliography
summary It is now vital to aim at formulating computer system modules that possess a high ability to adapt their behavior to fundamental human values and a complex and unstandardized (not uniform) building process but at the same time put constraints on them so that we don't end up with a confusion of computerized routines hard to access, control and understand. In the paper formulations are made of basic artifact skeletons outgoing from the properties to give integrated CAD systems and to those rules by which the growth of the systems are governed. System learning domains including conceptual modelling tools are presented aiming at supporting professional skill, creativity and integration between process actors. The basis for system implementation is frames, descriptive language (PROLOG) and relational databases with regard taken to future possibilities to parallel processing
keywords modeling, learning, integration, database, AI, design, systems, frames
series CADline
last changed 1999/02/12 15:07

_id sigradi2008_175
id sigradi2008_175
authors Knight, Terry; Larry Sass, Kenfield Griffith, Ayodh Vasant Kamath
year 2008
title Visual-Physical Grammars
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper introduces new visual-physical design grammars for the design and manufacture of building assembly systems that provide visually rich, culturally resonant design variations for housing. The building systems are intended to be tailored for particular cultures and communities by incorporating vernacular, decorative design into the assembly design. Two complementary areas of computational design research are brought together in this work: shape grammars and digital fabrication. The visual or graphic aspects of the research are explored through shape grammars. The physical design and manufacturing aspects are explored through advanced digital design and fabrication technologies and, in particular, build on recent work on mono-material assemblies with interlocking components that can be fabricated with CNC machines and assembled easily by hand on-site (Sass, 2007). This paper describes the initial, proof-of-concept stage of this work: the development of an automated, visual-physical grammar for an assembly system based on a vernacular language of Greek meander designs. A shape grammar for the two-dimensional Greek meander language (Knight, 1986) was translated into a three-dimensional assembly system. The components of the system are uniquely designed, concrete “meander bricks” (Figure 1). The components have integrated alignment features so that they can be easily fitted and locked together manually without binding materials. Components interlock horizontally to form courses, and courses interlock vertically in different ways to produce a visual variety of meander walls. The assembly components were prototyped at desktop scale with a layered manufacturing machine to test their appearance after assembly and their potential for design variations (Figure 2). Components were then evaluated as full-scale concrete objects for satisfaction of physical constraints related to concrete forming and component strength. The automated grammar (computer program) for this system generates assembly design variations with complete CAD/CAM data for fabrication of components formed from layered, CNC cut molds. Using the grammar, a full-scale mockup of a corner wall section was constructed to assess the structural, material, and aesthetic feasibility of the system, as well as ease of assembly. The results of this study demonstrate clearly the potentials for embedding visual properties in structural systems. They provide the foundations for further work on assembly systems for complete houses and other small-scale structures, and grammars to generate them. In the long-term, this research will lead to new solutions for economical, easily manufactured housing which is especially critical in developing countries and for post-disaster environments. These new housing solutions will not only provide shelter but will also support important cultural values through the integration of familiar visual design features. The use of inexpensive, portable digital design and fabrication technologies will allow local communities to be active, cooperative participants in the design and construction of their homes. Beyond the specific context of housing, visual-physical grammars have the potential to positively impact design and manufacture of designed artifacts at many scales, and in many domains, particularly for artifacts where visual aesthetics need to be considered jointly with physical or material requirements and design customization or variation is important.
keywords Shape grammar, digital fabrication, building assembly, mass customization, housing
series SIGRADI
email
last changed 2016/03/10 09:54

_id 2fc1
authors Zdepski, M. Stephen and Goldman, Glen
year 1986
title The Computability of Design
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 103-111
doi https://doi.org/10.52842/conf.acadia.1986.103
summary A number of architectural design studios (second, third and fifth year) at the School of Architecture at the New Jersey Institute of Technology have undertaken traditional design problems through the use of IBM-AT microcomputer based CAD/Graphics systems. Utilizing three-dimensional modeling software, color graphics "paint" software, and animation software, the studios integrated the use of computers into the very heart of the core program as the primary means of design, simulation, and evaluation. At the same time, other non-computer based studios engaged in similar (and often identical) design problems. Therefore, the opportunity became available to compare and evaluate both the impact the computer made to the traditional architectural studio and also to the building design itself.
series ACADIA
email
last changed 2022/06/07 07:57

_id 0918
authors Christiansson, Per
year 1986
title Swedish and Nordic Activities within CAAD
source computer Aided Architectural Design - Developments in Education and Practice. 1986. 9 p. includes bibliography
summary During the last few years there has been an increasing interest in the Nordic countries concerning effective use of computer resources in the building process. Swedish and Nordic research and development within CAAD and adjoining areas is briefly accounted for to give a flavor of ongoing and planned activities. A Nordic Action Program for promoting Nordic joint research and development efforts is also presented. The Nordic educational activities within CAAD are also briefly commented on
keywords CAD, building process, construction
series CADline
last changed 1999/02/12 15:07

_id 8db7
authors Gero, John S., Radford, Antony D. and Rosenman, Michael A. (et al)
year 1986
title Knowledge-based Building Design
source CIB 86, Advanced Building Technology, Proceedings. 1986. vol. 1: pp. 93-102
summary CADLINE has abstract only. The use of the right knowledge depends not only on its availability but also on the designer recognizing that it is needed. The great majority of failures in building design and construction come from the non-application of existing, recorded knowledge; the designer either could not find the right information, or never recognized that the existing basis for making design decisions was inadequate in a new context. This paper describes some work towards the development of knowledge-based computer-aided design tools in which the knowledge is explicit, explained and open to modification. The philosophy behind the work is that design is almost always better if it is based on better knowledge, and that knowledge should be linked as closely as possible to the design activity. Rather than rely on a theoretical discussion, the authors make some brief statements about the nature of such knowledge-based systems and then give some working examples from the Architectural Computing Unit in the University of Sydney
keywords building, knowledge base, design, architecture, CAD
series CADline
email
last changed 2003/06/02 13:58

_id 6ab7
authors Korson, Tim and McGregor, John D.
year 1990
title Understanding Object- Oriented : A Unifying Paradigm
source Communications of the ACM September, 1990. vol. 33: pp. 40-60. includes bibliography.
summary The purpose of this paper is to introduce terminology, concepts and basic techniques surrounding the object-oriented paradigm. software / OOPS / programming. 63. Koskela, Lauri, Raija Hynynen and Martti Kallavuo, et al. 'Expert Systems in Construction - Initial Experiences.' CAD and Robotics in Architecture and Construction, Proceedings of the International Joint Conference = CAO et Robotique en Architecture et B.T.P. Actes des Journees Internationales. June, 1986. Paris: Hermes, pp. 167-176. includes bibliography and abstracts in French and English. This paper describes development of expert systems for construction applications in the Laboratory of Building Economics of the Technical Research Centre of Finland. Five small expert systems are described. Experiences gained in the development work are evaluated. The future significance of expert systems for the construction industry is discussed, and an approach towards expert systems to be adopted by organizations in the construction industry is suggested
keywords construction, applications, economics, expert systems, knowledge, evaluation, analysis
series CADline
last changed 2003/06/02 10:24

_id c7e9
authors Maver, T.W.
year 2002
title Predicting the Past, Remembering the Future
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 2-3
summary Charlas Magistrales 2There never has been such an exciting moment in time in the extraordinary 30 year history of our subject area, as NOW,when the philosophical theoretical and practical issues of virtuality are taking centre stage.The PastThere have, of course, been other defining moments during these exciting 30 years:• the first algorithms for generating building layouts (circa 1965).• the first use of Computer graphics for building appraisal (circa 1966).• the first integrated package for building performance appraisal (circa 1972).• the first computer generated perspective drawings (circa 1973).• the first robust drafting systems (circa 1975).• the first dynamic energy models (circa 1982).• the first photorealistic colour imaging (circa 1986).• the first animations (circa 1988)• the first multimedia systems (circa 1995), and• the first convincing demonstrations of virtual reality (circa 1996).Whereas the CAAD community has been hugely inventive in the development of ICT applications to building design, it hasbeen woefully remiss in its attempts to evaluate the contribution of those developments to the quality of the built environmentor to the efficiency of the design process. In the absence of any real evidence, one can only conjecture regarding the realbenefits which fall, it is suggested, under the following headings:• Verisimilitude: The extraordinary quality of still and animated images of the formal qualities of the interiors and exteriorsof individual buildings and of whole neighborhoods must surely give great comfort to practitioners and their clients thatwhat is intended, formally, is what will be delivered, i.e. WYSIWYG - what you see is what you get.• Sustainability: The power of «first-principle» models of the dynamic energetic behaviour of buildings in response tochanging diurnal and seasonal conditions has the potential to save millions of dollars and dramatically to reduce thedamaging environmental pollution created by badly designed and managed buildings.• Productivity: CAD is now a multi-billion dollar business which offers design decision support systems which operate,effectively, across continents, time-zones, professions and companies.• Communication: Multi-media technology - cheap to deliver but high in value - is changing the way in which we canexplain and understand the past and, envisage and anticipate the future; virtual past and virtual future!MacromyopiaThe late John Lansdown offered the view, in his wonderfully prophetic way, that ...”the future will be just like the past, onlymore so...”So what can we expect the extraordinary trajectory of our subject area to be?To have any chance of being accurate we have to have an understanding of the phenomenon of macromyopia: thephenomenon exhibitted by society of greatly exaggerating the immediate short-term impact of new technologies (particularlythe information technologies) but, more importantly, seriously underestimating their sustained long-term impacts - socially,economically and intellectually . Examples of flawed predictions regarding the the future application of information technologiesinclude:• The British Government in 1880 declined to support the idea of a national telephonic system, backed by the argumentthat there were sufficient small boys in the countryside to run with messages.• Alexander Bell was modest enough to say that: «I am not boasting or exaggerating but I believe, one day, there will bea telephone in every American city».• Tom Watson, in 1943 said: «I think there is a world market for about 5 computers».• In 1977, Ken Olssop of Digital said: «There is no reason for any individuals to have a computer in their home».The FutureJust as the ascent of woman/man-kind can be attributed to her/his capacity to discover amplifiers of the modest humancapability, so we shall discover how best to exploit our most important amplifier - that of the intellect. The more we know themore we can figure; the more we can figure the more we understand; the more we understand the more we can appraise;the more we can appraise the more we can decide; the more we can decide the more we can act; the more we can act themore we can shape; and the more we can shape, the better the chance that we can leave for future generations a trulysustainable built environment which is fit-for-purpose, cost-beneficial, environmentally friendly and culturally significactCentral to this aspiration will be our understanding of the relationship between real and virtual worlds and how to moveeffortlessly between them. We need to be able to design, from within the virtual world, environments which may be real ormay remain virtual or, perhaps, be part real and part virtual.What is certain is that the next 30 years will be every bit as exciting and challenging as the first 30 years.
series SIGRADI
email
last changed 2016/03/10 09:55

_id 0565
authors Oxman, Robert and Oxman, Rivka
year 1990
title The Computability of Architectural Knowledge
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 171-185
summary In an important contribution to the theoretical foundation of design computing, Mitchell noted "an increasingly urgent need to establish a demonstrably sound, comprehensive, rigorously formalized theoretical foundation upon which to base practical software development efforts" (Mitchell, 1986). In this paper we propose such a theoretical framework. A basic assumption of this work is that the advancement of design computing is dependent upon the emergence of a rigorous formulation of knowledge in design. We present a model of knowledge in architectural design which suggests a promising conceptual basis for dealing with knowledge in computer-aided design systems. We require models which can represent the formal knowledge and manipulative operations of the designer in all of their complexity-that is formal models rather than just geometric models. Shape Grammars (Stiny,1980) represent an example of such models, and constitute a relatively high level of design knowledge as compared to, for example, use of symmetry operations to generate simple formal configurations. Building upon an understanding of the classes of design knowledge as the conceptual basis for formal modeling systems may contribute a new realization of the potential of the medium for design. This will require a comprehensive approach to the definition of architectural and design knowledge. We consider here the implications of a well-defined body of architectural and design knowledge for design education and the potential mutual interaction-in a knowledge-rich environment-of design learning and CAAD learning. The computational factors connected with the representation of design knowledge and its integration in design systems are among the key problems of CAAD. Mitchell's model of knowledge in design incorporates formal knowledge in a comprehensive, multi-level, hierarchical structure in which types of knowledge are correlated with computational concepts. In the main focus of this paper we present a structured, multi-level model of design knowledge which we discuss with respect to current architectural theoretical considerations. Finally, we analyze the computational and educational relevance of such models.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 7a08
authors Smith Shaw, Doris
year 1986
title Case Studies in Architectural CADD Education
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 157-172
doi https://doi.org/10.52842/conf.acadia.1986.157
summary Stages in the formation of concepts necessary for mastery can be observed in cognitive development in many different areas of study. These stages seem to follow a particular hierarchy common to most learners. Distinct levels can be recognized by patterns of procedural errors. The remediation of errors can then take the form of building a conceptual framework rather than training in procedural patterns. This has been found to be highly efficient for learners at all stages since it can be aimed at the underlying problem area and not at isolated errors which may change frequently. It was felt, that concept development of architects learning to use computer-aided drawing programs would show such levels. Preliminary studies made at the U.S. Army Construction Engineering Research Laboratory upon selected subjects using computer-aided lessons in AutoCAD as a basis for observations reveal several categories of errors in using computer-aided design. These case studies show that the design process can be enhanced by automated drawing and design tools if the conceptual relationships are established as a part of the learning environment. Even more important, the observations show that architects have particular characteristics which differ from engineers and other CAD users. These differences require that education and software be tailored to their needs.
series ACADIA
last changed 2022/06/07 07:56

_id 1083
authors Wu, Rui
year 2002
title Computer Aided Dimensional Control in Building Construction
source Eindhoven University of Technology
summary Dimensional control in the building industry can be defined as the operational techniques and activities that are necessary, during the construction process of a building, for the assurance of the defined dimension quality of a building (Hoof, 1986). Efficient and precise dimensional control of buildings under construction is becoming ever more important because of changes in the construction industry. More prefabricated components are used; more regulations appear; newly designed buildings have more complex shapes, and building construction is speeding up. To ensure the predefined dimensional quality, a plan of dimensional control must be designed, on the basis of building drawings and specifications delivered by architects, before the building is constructed. The dimensional control plan must provide site personnel with adequate information on, among others, setting out and assembling building components, which can often be done by means of Total Stations. The essence of designing a dimensional control plan is to find out which points should be used as positioning points, which points should be set out in advance or controlled afterwards, and not to forget why. In an effort to contribute to the improvement of the dimensional control of on-site construction projects, this research tries to capture the knowledge required to design an adequate dimensional control plan and make that knowledge more generally available, and build a digital connection between CAD systems and Total Stations, focusing on prefabricated concrete building structural elements. The instrument developed in this research for capturing of essential dimensional control information and knowledge makes use of Product Data Technology (PDT) and Knowledge Technology (KT). The chosen solution supports the stochastic analysis of optimal positioning points taking account of various sorts of deviations and their mutual relationships. The resulting information model has been written in a standardized information modelling language called UML (Unified Modelling Language). The model has been implemented in a Dimensional Control System (DCS) and applied in the “La Tour” construction project in Apeldoorn, the Netherlands. The DCS provides a digital way to bridge the floor plan design with dimensional control, predict dimensional deviation limits and output the data needed for a Total Station. The case study of “La Tour” tests the UML model and prototype of the DCS. The results prove that direct positioning of objects (by putting reflectors on the objects and using a Total Station and by inputting coordinates extracted and calculated from the AutoCAD drawings) provides higher speed, accuracy and reliability. It also shows a way to (pre)position free form objects in 3D where traditional methods cannot. In conclusion: (1) it seems to be justified to expect that the application of the DCS will contribute to increased confidence in dimensional control and the reduction of costs of failure, which potentially could support the increased use of cheaper construction methods, and will also contribute to the improvement of building design and construction process. (2) the scientific contribution of this research is a first step towards providing dimensional quality in a construction process covered by stochastic dimensional uncertainty, even for positioning of free form objects.
keywords Construction Management; Constructional Engineering; Computer Applications
series thesis:PhD
last changed 2003/02/12 22:37

_id a70f
authors Yessios, Chris
year 1986
title What has yet to be CAD
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 29-36
doi https://doi.org/10.52842/conf.acadia.1986.029
summary The theme of this Acadia Conference was to a large extent addressed by Mitchell in his article "'What was Computer-aided design?"', published about two years ago. While one has to agree with most of his points, I find his predictions gloomy enough to wish I could disagree. Luckily, Mitchell has chosen to address what the majority of the profession (and many architectural schools) currently consider to be CAD. It turns out that this CAD is not what CAD is supposed to be. I have, therefore, purposely chosen a title which appears to echo an opposite view. My intention is not to express disagreement but rather to project the other face of CAD, in my own mind, the only CAD which deserves the name. Whether the current CAD should or will be called CAD in the future is of non-essential significance. As teachers of architectural design we need to be concerned that architectural CAD remains, to date, a very immature field. It is CAD only by name, since a true CAD system has yet to be 'discovered". This presentation consists of three major sections. The first reviews why the currently available CAD systems do not have the ingredients which may justify them as design oriented machines. This discussion leads to the identification of architectural modeling and knowledge systems as the two main areas which need to be researched so that they may offer the basis for the development of truly design oriented machines. Each is discussed under a separate section, but the point is also made that the two should work hand-in-hand and should be integrated into a completely unified system.
series ACADIA
email
last changed 2022/06/07 07:57

_id 678e
authors Aish, Robert
year 1986
title Three-dimensional Input and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 68-84
summary The aim of this chapter is to investigate techniques by which man-computer interaction could be improved, specifically in the context of architectural applications of CAD. In this application the object being designed is often an assembly of defined components. Even if the building is not actually fabricated from such components, it is usually conceptualized in these terms. In a conventional graphics- based CAD system these components are usually represented by graphical icons which are displayed on the graphics screen and arranged by the user. The system described here consists of three- dimensional modelling elements which the user physically assembles to form his design. Unlike conventional architectural models which are static (i.e. cannot be changed by the users) and passive (i.e. cannot be read by a CAD system), this model is both 'user generated' and 'machine readable'. The user can create, edit and view the model by simple, natural modelling activities and without the need to learn complex operating commands often associated with CAD systems. In particular, the user can view the model, altering his viewpoint and focus of attention in a completely natural way. Conventional computer graphics within an associated CAD system are used to represent the detailed geometry which the different three-dimensional icons may represent. In addition, computer graphics are also used to present the output of the performance attributes of the objects being modelled. In the architectural application described in this chapter an energy- balance evaluation is displayed for a building designed using the modelling device. While this system is not intended to offer a completely free-form input facility it can be considered to be a specialist man-machine interface of particular relevance to architects or engineers.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id 6643
authors Carrara, Gianfranco and Novembri, Gabriele
year 1986
title Expert System for Building Design
source Congress of the International Council for Building Research, Studies and Documentation (10th : 1986 : Washington). vol. 2: pp. 651-658. includes bibliography. -- abstract also in French
summary At the CABD LAB at the University of Rome, an interactive expert system for architecture is being implemented to supervise building design at every stage of development. The system operates by checking the consistency of design choices against given sets of constraints, and by automatically checking the design process. It is therefore an innovation with respect to current architectural software developed as specific design aids. The system is based on a general representation of building objects (from components to the whole building) by means of semantic nets and a set of inferential procedures. The general representation is developed by making explicit the relational structures according to which architects organize their knowledge about building objects. To do this, the `Frame' formalism is used: this is a knowledge representation technique used in the field of artificial intelligence. It is then shown that such an expert CAAD system is a general purpose tool for architectural design, enabling architects to assess any constraint and/or building attribute by means of a declarative method, which in no way affects their own specific design methodologies
keywords semantic networks, representation, constraints, expert systems, CAD, building, design process, knowledge, frames
series CADline
last changed 2003/06/02 13:58

_id 014f
authors Christiansson, Per
year 1986
title Integrated Building CAD at the Lund Institute of Technology, Department of Structural Engineering
source 1986. 8 p. Includes Per Christiansson reports and publication list
summary A description of the department, equipment, research projects and education
keywords education, CAD, engineering, architecture
series CADline
last changed 1999/02/12 15:07

_id aa60
authors Christiansson, Per
year 1986
title Properties of Future Knowledge Based Systems : The Interactive Consultation System Example
source computer Aided Architectural Design - Developments in Education and Practice. 1986. 14 p. : ill. includes bibliography
summary An introduction to knowledge based systems is presented to point out possibilities and limitations of the new software and hardware technology now beginning to be available. A pilot study on the use of an expert system shell (the ES/P Advisor), is briefly discussed. A part of the Swedish concrete building code was implemented in the expert system shell to demonstrate the use of an interactive consultation system. Ideas on how compact video-discs can be used in this type of systems are also put forward
keywords knowledge base, systems, expert systems, CAD, media
series CADline
last changed 1999/02/12 15:07

_id a833
authors Jong, M. de
year 1986
title A Spatial Relational Reference Model (3RM)
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 85-91
summary In this chapter we hope to provide the reader with an impression of the objective, framework and possibilities of 3RM in the construction industry. In Dutch, 3RM stands for 'Ruimtelijk Relationeel Referentie Model' (Spatial Relational Reference Model). The model could begin to be used as an information-bearer in the building industry within which the specific trade information for each of the building participants could be interrelated, including drafting symbolism, building costs, physical qualities and building regulations. In this way, the model can be used as a means to a more efficient running of the building process and enabling the integration of information, at project level, provided by various building participants. The project should be defined in the same way as is a typical architectural project, whereby the actual development as well as the project management is carried out by architects. For the time being, development is limited to integral use at the design stage, but it also offers sufficient expansion possibilities to be able to function as a new communications model throughout the complete building process. We shall first provide information as to the origin, the objective and the execution of the project. Thereafter, we shall attempt to state the theoretical information problem within the building industry and the solution to this offered through 3RM. Finally, we shall report upon the results of the first phase of the 3RM project.
series CAAD Futures
last changed 1999/04/03 17:58

_id ed11
authors Kieffer, Bruce D.
year 1986
title An Interactive CAD Based System Integrating Visual Analysis & Design
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 191-202
doi https://doi.org/10.52842/conf.acadia.1986.191
summary The paper describes the development of an enhanced CAD based instructional system specifically focusing on a linkage between the analytical and creative tasks necessary during the early schematic or conceptual design. The first two components of the system are fairly conventional items and include a tutorial and library of six (6) two and three dimensional CAD design files which document the visual and organizational aspects of archetype buildings and spaces. The CAD facility allows a user to selectively highlight and combine for review, various features of a buildings design. This allows its users to literally, "build-up" an understanding of the complexity of factors at work in recognizably good building. The final component to a customized CAD environment allowing users to develop their own designs with the same tools used during analysis of the archetypes. In addition to a description of the system, the paper identifies the effectiveness measures and instructional setting being established for evaluation of the system.
series ACADIA
email
last changed 2022/06/07 07:52

_id 682d
authors Kim, Uk
year 1986
title Model for an Integrated Design Evaluation System using Knowledge Bases
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 204-215
doi https://doi.org/10.52842/conf.acadia.1986.204
summary Computer-aided architectural design (CAAD) systems need to be integrated so that one unified system can generate and do various analysis and evaluation of building models. A data system can not solve this problem because all design concepts can not be stored in the database before the design is completed. As design stage proceeds, design concept and necessary information for analysis and evaluation become complex and detailed. In order to accommodate increasing entities and new relationships between them, knowledge-based systems are integrated into the database of building models. frame structure and production rules are adopted to represent knowledge about the database, and to represent evaluation rules respectively. The system is implemented in Prolog on an Apollo workstation.
series ACADIA
last changed 2022/06/07 07:52

_id 0e5e
authors Kociolek, A.
year 1986
title CAD in Polish Building
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 235-245
summary There is little CAAD in Polish architectural design offices, and only recently have practising architects discovered the computer. On the other hand, CAAD has been used for some time in research and development based at universities or in large design organizations. This chapter gives a broad picture of the computerization of building design in Poland, a complex process which concerns planning and financing, hardware, software, CAD practice, standardization, training, education, etc. Here architectural applications are treated on an equal basis, together with other applications representing design disciplines involved in design, such as structural and mechanical engineering. The underlying philosophy of this chapter is a belief that proper and well-balanced computerization of design in building which leaves creative work to human beings should result in better design and eventually in improvements in the built environment. Therefore integration of the design process in building seems more important for design practice than attempts to replace an architect by a computer, although the intellectual attraction of this problem is recognized.
series CAAD Futures
last changed 1999/04/03 17:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_791128 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002