CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 210

_id 678e
authors Aish, Robert
year 1986
title Three-dimensional Input and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 68-84
summary The aim of this chapter is to investigate techniques by which man-computer interaction could be improved, specifically in the context of architectural applications of CAD. In this application the object being designed is often an assembly of defined components. Even if the building is not actually fabricated from such components, it is usually conceptualized in these terms. In a conventional graphics- based CAD system these components are usually represented by graphical icons which are displayed on the graphics screen and arranged by the user. The system described here consists of three- dimensional modelling elements which the user physically assembles to form his design. Unlike conventional architectural models which are static (i.e. cannot be changed by the users) and passive (i.e. cannot be read by a CAD system), this model is both 'user generated' and 'machine readable'. The user can create, edit and view the model by simple, natural modelling activities and without the need to learn complex operating commands often associated with CAD systems. In particular, the user can view the model, altering his viewpoint and focus of attention in a completely natural way. Conventional computer graphics within an associated CAD system are used to represent the detailed geometry which the different three-dimensional icons may represent. In addition, computer graphics are also used to present the output of the performance attributes of the objects being modelled. In the architectural application described in this chapter an energy- balance evaluation is displayed for a building designed using the modelling device. While this system is not intended to offer a completely free-form input facility it can be considered to be a specialist man-machine interface of particular relevance to architects or engineers.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id 69c7
authors Woodbury, Robert F.
year 1986
title VEGA : A Geometric Modelling System
source 11 p. : ill. Engineering Design Research Center, CMU, April 1986. DRC-48-03-87. includes bibliography
summary VEGA is a program which models rigid solid objects in three dimensions. Specifically, its domain is assemblies of planar faced polyhedra. VEGA supports a variety of operations to create, modify, query and delete these assemblies. VEGA is intended to serve two purposes: that of a new medium of representation for the design process; and of a programming package to support geometric applications in a wide variety of domains. Here the author addresses primarily the first of these purposes, that of a new medium for design. Designers of physical objects use an external medium, traditionally paper or physical models, not only to record their work, but to provide information which assists in the understanding of implications of design decisions. Designers proceed by performing operations, which reflect internal design decisions, on this external medium. The operations used in design are generally reflective of these physical media. For example, models built of clay tend to be formed by a subtractive processes, whereas models built of wood tend to be additive in nature. Designers who use drawings as their medium still tend to use operations which reflect operations on physical models. Computers provide the fascinating potential to provide a much wider variety of operations at a much greater speed than is available with the traditional means of representation. In addition, a computer based representation can provide quantitative information not easily accessible from traditional forms. This opens the potential for the inclusion of formal means of evaluation in the design process; something which is generally almost absent in traditional design teaching. A computer program which effectively and 'naturally' models physical objects and operations on them would be a valuable assistance to both the teaching and practice design. VEGA has been designed with these objectives in mind. VEGA represents physical objects with a scheme known as boundary representation and provides a wide variety of operations on these objects. VEGA also provides means to associate other, non-geometric, information with the objects it represents. VEGA is implemented under the ANDREW system. It communicates to ANDREW through a graphics package, also developed by the author's group. VEGA is intended to serve as a medium for future studio courses in the Architecture, Industrial Design and Arts education
keywords geometric modeling, solid modeling, CAD, education, assemblies, B-rep, systems
series CADline
email
last changed 2003/06/02 10:24

_id 1083
authors Wu, Rui
year 2002
title Computer Aided Dimensional Control in Building Construction
source Eindhoven University of Technology
summary Dimensional control in the building industry can be defined as the operational techniques and activities that are necessary, during the construction process of a building, for the assurance of the defined dimension quality of a building (Hoof, 1986). Efficient and precise dimensional control of buildings under construction is becoming ever more important because of changes in the construction industry. More prefabricated components are used; more regulations appear; newly designed buildings have more complex shapes, and building construction is speeding up. To ensure the predefined dimensional quality, a plan of dimensional control must be designed, on the basis of building drawings and specifications delivered by architects, before the building is constructed. The dimensional control plan must provide site personnel with adequate information on, among others, setting out and assembling building components, which can often be done by means of Total Stations. The essence of designing a dimensional control plan is to find out which points should be used as positioning points, which points should be set out in advance or controlled afterwards, and not to forget why. In an effort to contribute to the improvement of the dimensional control of on-site construction projects, this research tries to capture the knowledge required to design an adequate dimensional control plan and make that knowledge more generally available, and build a digital connection between CAD systems and Total Stations, focusing on prefabricated concrete building structural elements. The instrument developed in this research for capturing of essential dimensional control information and knowledge makes use of Product Data Technology (PDT) and Knowledge Technology (KT). The chosen solution supports the stochastic analysis of optimal positioning points taking account of various sorts of deviations and their mutual relationships. The resulting information model has been written in a standardized information modelling language called UML (Unified Modelling Language). The model has been implemented in a Dimensional Control System (DCS) and applied in the “La Tour” construction project in Apeldoorn, the Netherlands. The DCS provides a digital way to bridge the floor plan design with dimensional control, predict dimensional deviation limits and output the data needed for a Total Station. The case study of “La Tour” tests the UML model and prototype of the DCS. The results prove that direct positioning of objects (by putting reflectors on the objects and using a Total Station and by inputting coordinates extracted and calculated from the AutoCAD drawings) provides higher speed, accuracy and reliability. It also shows a way to (pre)position free form objects in 3D where traditional methods cannot. In conclusion: (1) it seems to be justified to expect that the application of the DCS will contribute to increased confidence in dimensional control and the reduction of costs of failure, which potentially could support the increased use of cheaper construction methods, and will also contribute to the improvement of building design and construction process. (2) the scientific contribution of this research is a first step towards providing dimensional quality in a construction process covered by stochastic dimensional uncertainty, even for positioning of free form objects.
keywords Construction Management; Constructional Engineering; Computer Applications
series thesis:PhD
last changed 2003/02/12 22:37

_id 4e59
authors Koparkar, P. A. and Mudur, S.P.
year 1986
title Generation of Continuous Smooth Curves Resulting from Operations on Parametric Surface Patches
source Computer Aided Design. May, 1986. pp. 193-206 : ill. includes bibliography
summary In recent years a number of techniques based on the subdivision principle have been suggested for detecting the curves resulting from the intersection of two parametrically defined surface patches. Silhouette curves of surfaces can also be detected using analogous techniques. Usually the output is a set of pixels or line segments which form the complete curve, though not necessarily in an ordered manner. This paper presents data structures for maintaining the result of subdivision, and algorithms for tracing the curves in a continuous fashion. Using a few iterations of the Newton-Raphson technique the curve points may be refined to any required precision. For each point on the curve the nonlinear equations are chosen by looking at the local topological nature of the curve so as to guarantee convergence of the Newton-Raphson technique in one or two iterations
keywords curved surfaces, parametrization, curves, intersection, relaxation, geometric modeling, computational geometry
series CADline
last changed 2003/06/02 14:41

_id 28d8
authors Sarnak, Neil and Tarjan, Robert E.
year 1986
title Planar Point Location Using Persistent Search Trees
source Communications of the ACM July, 1986. vol. 29: pp. 669-679 : ill. includes bibliography.
summary A classical problem in computational geometry is the planar point location problem. This problem calls for preprocessing a polygonal subdivision of the plane defined by n line segments so that, given a sequence of points, the polygon containing each point can be determined quickly on-line. Several ways of solving this problem in O(log n) query time and O(n) space are known, but they are all rather complicated. The authors propose a simple O(log n) query-time, O(n) space solution, using persistent search trees. A persistent search tree differs from an ordinary search tree in that after an insertion or deletion, the old version of the tree can stillÔ h)0*0*0*°° ÔŚ be accessed. A persistent form of binary search tree that supports insertions and deletions in the present and queries in the past is developed. The time per query or update is O(log m), where m is the total number of updates, and the space needed is O(1) per update. The planar point location algorithm is an immediate application of this data structure. The structure also provides an alternative to Chazelle's 'hive graph' structure, which has a variety of applications in geometric retrieval
keywords search, data structures, algorithms, point inclusion, computational geometry
series CADline
last changed 2003/06/02 13:58

_id a48f
authors Krishnan, D. and Patnaik, L.M.
year 1986
title GEODERM : Geometric Shape Design System Using an Entity-Relationship Model
source Computer Aided Design. May, 1986. vol. 18: pp. 207-218 : ill. includes bibliography and 7 appendixes
summary GEODERM, a microcomputer-based solid modeler which incorporates the parametric object model, is discussed. The entity-relationship model, which is used to describe the conceptual schema of the geometric database, is also presented. Three of the four modules of GEODERM, which have been implemented are described in some detail. They are the Solid Definition Language (SDL), the Solid Manipulation Language (SML) and the User-System Interface
keywords CAD, solid modeling, relational database, geometric modeling,parametrization
series CADline
last changed 2003/06/02 13:58

_id 0565
authors Oxman, Robert and Oxman, Rivka
year 1990
title The Computability of Architectural Knowledge
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 171-185
summary In an important contribution to the theoretical foundation of design computing, Mitchell noted "an increasingly urgent need to establish a demonstrably sound, comprehensive, rigorously formalized theoretical foundation upon which to base practical software development efforts" (Mitchell, 1986). In this paper we propose such a theoretical framework. A basic assumption of this work is that the advancement of design computing is dependent upon the emergence of a rigorous formulation of knowledge in design. We present a model of knowledge in architectural design which suggests a promising conceptual basis for dealing with knowledge in computer-aided design systems. We require models which can represent the formal knowledge and manipulative operations of the designer in all of their complexity-that is formal models rather than just geometric models. Shape Grammars (Stiny,1980) represent an example of such models, and constitute a relatively high level of design knowledge as compared to, for example, use of symmetry operations to generate simple formal configurations. Building upon an understanding of the classes of design knowledge as the conceptual basis for formal modeling systems may contribute a new realization of the potential of the medium for design. This will require a comprehensive approach to the definition of architectural and design knowledge. We consider here the implications of a well-defined body of architectural and design knowledge for design education and the potential mutual interaction-in a knowledge-rich environment-of design learning and CAAD learning. The computational factors connected with the representation of design knowledge and its integration in design systems are among the key problems of CAAD. Mitchell's model of knowledge in design incorporates formal knowledge in a comprehensive, multi-level, hierarchical structure in which types of knowledge are correlated with computational concepts. In the main focus of this paper we present a structured, multi-level model of design knowledge which we discuss with respect to current architectural theoretical considerations. Finally, we analyze the computational and educational relevance of such models.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 6728
authors Rossignac, Jaroslaw R. and Requicha, Aristides A. G.
year 1986
title Depth- Buffering Display Techniques for Constructive Solid Geometry
source IEEE Computer Graphics and Applications. September, 1986. vol. 6: pp. 29-39 : ill. some col. includes bibliography
summary Solid modelers based on constructive solid geometry (CSG) typically generate shaded displays directly from CSG by using ray-casting techniques, which do not require information on the faces, edges, and vertices that bound a solid. This article describes an alternative - a simple new algorithm based on a depth-buffering or z-buffering approach. The z- buffer display algorithm operates directly on CSG, does not require explicit boundary data, and is easier to implement than ray casting. Ray-casting and z-buffering algorithms have comparable performances, but z-buffering is often faster for objects with complex surfaces, because it avoids expensive curve/surface intersection calculations. Because of their simplicity, depth-buffering algorithms for CSG are well- suited to hardware implementations, and may lead to machines simpler than those now being built for ray casting
keywords geometric modeling, CSG, display, computer graphics
series CADline
last changed 2003/06/02 13:58

_id c92d
authors Sederberg, Thomas W. and Goldman, Ronald N.
year 1986
title Algebraic Geometry for Computer-Aided Geometric Design
source IEEE Computer Graphics and Applications. June, 1986. vol. 6: pp. 52-59
summary An object description associating a tolerance with each of its topological features (vertices, edges, and faces) is introduced. The use of tolerances leads to a definition of topological consistency that is readily applied to boundary representations. The implications of using tolerances to aid in making consistent topological determinations from imprecise geometric data are explored and applied to the calculations of a polyhedral solid modeler
keywords Algorithms; Curves; Computational Geometry; Mathematics; Education; Intersection
series CADline
last changed 2003/06/02 10:24

_id 452c
authors Vanier, D. J. and Worling, Jamie
year 1986
title Three-dimensional Visualization: A Case Study
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 92-102
summary Three-dimensional computer visualization has intrigued both building designers and computer scientists for decades. Research and conference papers present an extensive list of existing and potential uses for threedimensional geometric data for the building industry (Baer et al., 1979). Early studies on visualization include urban planning (Rogers, 1980), treeshading simulation (Schiler and Greenberg, 1980), sun studies (Anon, 1984), finite element analysis (Proulx, 1983), and facade texture rendering (Nizzolese, 1980). With the advent of better interfaces, faster computer processing speeds and better application packages, there had been interest on the part of both researchers and practitioners in three-dimensional -models for energy analysis (Pittman and Greenberg, 1980), modelling with transparencies (Hebert, 1982), super-realistic rendering (Greenberg, 1984), visual impact (Bridges, 1983), interference clash checking (Trickett, 1980), and complex object visualization (Haward, 1984). The Division of Building Research is currently investigating the application of geometric modelling in the building delivery process using sophisticated software (Evans, 1985). The first stage of the project (Vanier, 1985), a feasibility study, deals with the aesthetics of the mode. It identifies two significant requirements for geometric modelling systems: the need for a comprehensive data structure and the requirement for realistic accuracies and tolerances. This chapter presents the results of the second phase of this geometric modelling project, which is the construction of 'working' and 'presentation' models for a building.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 47c5
authors Weiler, Kevin J.
year 1986
title Topological Structures for Geometric Modeling
source Computer and Systems Engineering, Rensselaer Polytechnic Institute
summary Geometric modeling technology for representing three-dimensional objects has progressed from early wireframe representations, through surface representations, to the most recent representation, solid modeling. Each of these forms has many possible representations. The boundary representation technique, where the surfaces, edges, and vertices of objects are represented explicitly, has found particularly wide application. Many of the more sophisticated versions of boundary representations explicitly store topological information about the positional relationships among surfaces, edges, and vertices. This thesis places emphasis on the use of topological information about the shape being modeled to provide a framework for geometric modeling boundary representations and their implementations, while placing little constraint on the actual geometric surface representations used. The major thrusts of the thesis fall into two areas of geometric modeling. First, a theoretical basis for two-manifold solid modeling boundary topology representation is developed. The minimum theoretical and minimum practical topological adjacency information required for the unambiguous topological representation of manifold solid objects is determined. This provides a basis for checking the correctness of existing and proposed representations. The correctness of the winged edge structure is also explored, and several new representations which have advantages over existing techniques are described and their sufficiency verified. Second, a non-two-manifold boundary geometric modeling topology representation is developed which allows the unified and simultaneous representation of wireframe, surface, and solid modeling forms, while featuring a representable range beyond what is achievable in any of the previous modeling forms. In addition to exterior surface features, interior features can be modeled, and non-manifold features can be represented directly. A new data structure, the Radial Edge structure, which provides access to all topological adjacencies in a non-manifold boundary representation, is described and its completeness is verified. A general set of non-manifold topology manipulation operators is also described which is independent of a specific data structure and is useful for insulating higher levels of geometric modeling functionality from the specifics and complexities of underlying data structures. The coordination of geometric and topological information in a geometric modeling system is also discussed.
series thesis:MSc
last changed 2003/02/12 22:37

_id 6105
authors Rasdorf, William J. and Fenves, Stephen J.
year 1986
title Constraint Enforcement in a Structural Design Database
source Journal of the Structural Division. American Society of Civil Engineers, December, 1986. vol. 112: pp. 2565-2577
summary During the design of a commercial structure, large amounts of information pertaining to all aspects of the design must be stored, accessed, and operated upon. A database management system (DBMS), composed of a central repository of data and the associated software for controlling accesses to it, provides one way to generate, represent, manage, and use this information. However, DBMSs are not presently structured in such a way that they can flexibly represent complex engineering constraint relationships, including those defined by codes, standards, and specifications. This paper examines structural design constraints and addresses the question of how they can be incorporated into DBMSs. It presents four representations of engineering constraints: the text of a design specification, the equations extracted from the specification, the dependency network among the constrained data items, and a relational DBMS model. The database model was implemented using a commercially available DBMS and the limitations of the implementation are explored. What is new in this DBMS model is that a constraint dependency subnetwork is associated directly with the stored data that it constrains. The implemented result is a new abstraction, consisting of a relation and a set of computations and checks, that enforces the relationships embodied in the dependency network. The database user need only initially define a set of rules and computed attributes. These are then used by the DBMS to automatically perform the appropriate checks and assignments. The database user is, to a significant degree, free of constraint checking concerns because the system itself knows what to do
keywords constraints management, civil engineering, database, DBMS
series CADline
last changed 2003/06/02 13:58

_id caadria2006_601
id caadria2006_601
authors BINSU CHIANG, MAO-LIN CHIU
year 2006
title PRIVATE/UN-PRIVATE SPACE: Scenario-based Digital Design for Enhancing User Awareness
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 601-603
doi https://doi.org/10.52842/conf.caadria.2006.x.s8b
summary Context awareness is important for human senses of places as well as human computer interaction. The aim of this research paper is focusing on controlling the user's privacy in a smart space which is adaptive to different users for enhancing the user's awareness in his diary life. In Environmental Psychology, the definition of privacy is that an individual has the control of deciding what information of himself is released to others, and under how he interact with others. (Westin 1970) And privacy is categorized as the linguistic privacy and visual privacy. (Sundstorm 1986). Solutions for privacy control: Plan Layout, Vision Boundary, Access Control and Architecture Metaphor - the transmission of information is not ascertainable for every single user. Although information are shown in public, but information is implied by cues and symbols. Only a certain user or a group of users have access to the full context of information. The methodology is to form an analytic framework to study the relationship between information, user and activities by using the computational supports derived from KitchenSense, ConceptNet, Python, 3d Studio Max and Flash; and to record patterns built up by users' behaviour and actions. Furthermore, the scenario-based simulation can envision the real world conditions by adding interfaces for enhancing user awareness.
series CAADRIA
email
last changed 2022/06/07 07:49

_id a6f1
authors Bridges, A.H.
year 1986
title Any Progress in Systematic Design?
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 5-15
summary In order to discuss this question it is necessary to reflect awhile on design methods in general. The usual categorization discusses 'generations' of design methods, but Levy (1981) proposes an alternative approach. He identifies five paradigm shifts during the course of the twentieth century which have influenced design methods debate. The first paradigm shift was achieved by 1920, when concern with industrial arts could be seen to have replaced concern with craftsmanship. The second shift, occurring in the early 1930s, resulted in the conception of a design profession. The third happened in the 1950s, when the design methods debate emerged; the fourth took place around 1970 and saw the establishment of 'design research'. Now, in the 1980s, we are going through the fifth paradigm shift, associated with the adoption of a holistic approach to design theory and with the emergence of the concept of design ideology. A major point in Levy's paper was the observation that most of these paradigm shifts were associated with radical social reforms or political upheavals. For instance, we may associate concern about public participation with the 1970s shift and the possible use (or misuse) of knowledge, information and power with the 1980s shift. What has emerged, however, from the work of colleagues engaged since the 1970s in attempting to underpin the practice of design with a coherent body of design theory is increasing evidence of the fundamental nature of a person's engagement with the design activity. This includes evidence of the existence of two distinctive modes of thought, one of which can be described as cognitive modelling and the other which can be described as rational thinking. Cognitive modelling is imagining, seeing in the mind's eye. Rational thinking is linguistic thinking, engaging in a form of internal debate. Cognitive modelling is externalized through action, and through the construction of external representations, especially drawings. Rational thinking is externalized through verbal language and, more formally, through mathematical and scientific notations. Cognitive modelling is analogic, presentational, holistic, integrative and based upon pattern recognition and pattern manipulation. Rational thinking is digital, sequential, analytical, explicatory and based upon categorization and logical inference. There is some relationship between the evidence for two distinctive modes of thought and the evidence of specialization in cerebral hemispheres (Cross, 1984). Design methods have tended to focus upon the rational aspects of design and have, therefore, neglected the cognitive aspects. By recognizing that there are peculiar 'designerly' ways of thinking combining both types of thought process used to perceive, construct and comprehend design representations mentally and then transform them into an external manifestation current work in design theory is promising at last to have some relevance to design practice.
series CAAD Futures
email
last changed 2003/11/21 15:16

_id 2d41
authors Flemming, Ulrich
year 1986
title The Role of Shape Grammars in the Analysis and Creation of Designs
source New York: John Wiley & Sons, 1986. pp. 213-244 : ill. includes bibliography
summary The paper gives an informal introduction to the shape grammar formalism. It presents results form a case study in which this formalism was applied to a realistic problem in order to convey the flavor of work with such grammars, to demonstrate its advantages and to show that our familiarity with this formalism has now progressed to a level were issues of architectural substance can be addressed. The paper concludes with the outline of a simple way to implement shape grammars by computer: it does not resolve the theoretical problems that exist for such implementations, but makes non-trivial applications like the case study possible
keywords shape grammars, design, architecture
series CADline
email
last changed 2003/02/26 17:24

_id 2363
authors Gross, Mark Donald
year 1986
title Design as exploring constraints
source Massachusetts Institute of Technology, Dept. of Architecture
summary A theory of designing is proposed, developed, and illustrated with examples from the domain of physical form. Designing is seen as the exploration of alternative sets of constraints and of the regions of alternative solutions they bound. Designers with different objectives reach different solutions within the same set of constraints, as do designers with the same objectives operating under different constraints. Constraints represent design rules, relations, conventions, and natural laws to be maintained. Some constraints and objectives are given at the outset of a design but many more are adopted along the way. Varying the constraints and the objectives is part of the design process. The theory accounts for various kinds of expertise in designing: knowledge of particular constraints in a design domain; inference--calculating the consequences of design decisions; preference--using objectives to guide decision-making; and partitioning--skill in dividing a large and complicated design into sets of simpler pieces, and understanding the dependencies between decisions. The ability to manage ambiguity and vagueness is an important aspect of design expertise. A computational model supporting the theory is proposed and its implementation discussed briefly. The constraint explorer, a computational environment for designing based on constraint descriptions is described. We see how the constraint explorer might be used in connection with a simple space- planning problem. The problem is taken from the procedures of the Stichting Architecten Research (S.A.R.), a specific architectural design methodology developed to help architects systematically explore layout variability in alternative floorplan designs. Finally, a selected review of related work in constraint-based programming environments, architectural design methods, and the intersection of the two fields is presented.
series thesis:PhD
email
more http://dmg.caup.washington.edu
last changed 2003/03/15 06:49

_id c55f
authors Kalay, Yehuda E.
year 1986
title The Impact of CAD On Architectural Design Education in the United States
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 348-355
doi https://doi.org/10.52842/conf.ecaade.1986.348
summary Computer-Aided Design (CAD) began to appear in schools of architecture in the United States over 15 years ago. By 1982, over 50% of all accredited schools of architecture in North America included some form of CAD in their curricula. This number has continued to steadily increase. For the most part, the use of CAD has been restricted to the few individuals working on special "CAD projects" and to the researchers developing CAD products. The reasons for this limitation have included the low availability, difficulty of use, restricted access and high cost of the CAD systems, as well as limited faculty and administrative support. Recently, however, partly due to the introduction of micro- computer CAD software, and partly due to the growing awareness of the importance of CAD in architectural education and practice, some schools have begun to introduce CAD as part of the general design curriculum.
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2008_175
id sigradi2008_175
authors Knight, Terry; Larry Sass, Kenfield Griffith, Ayodh Vasant Kamath
year 2008
title Visual-Physical Grammars
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper introduces new visual-physical design grammars for the design and manufacture of building assembly systems that provide visually rich, culturally resonant design variations for housing. The building systems are intended to be tailored for particular cultures and communities by incorporating vernacular, decorative design into the assembly design. Two complementary areas of computational design research are brought together in this work: shape grammars and digital fabrication. The visual or graphic aspects of the research are explored through shape grammars. The physical design and manufacturing aspects are explored through advanced digital design and fabrication technologies and, in particular, build on recent work on mono-material assemblies with interlocking components that can be fabricated with CNC machines and assembled easily by hand on-site (Sass, 2007). This paper describes the initial, proof-of-concept stage of this work: the development of an automated, visual-physical grammar for an assembly system based on a vernacular language of Greek meander designs. A shape grammar for the two-dimensional Greek meander language (Knight, 1986) was translated into a three-dimensional assembly system. The components of the system are uniquely designed, concrete “meander bricks” (Figure 1). The components have integrated alignment features so that they can be easily fitted and locked together manually without binding materials. Components interlock horizontally to form courses, and courses interlock vertically in different ways to produce a visual variety of meander walls. The assembly components were prototyped at desktop scale with a layered manufacturing machine to test their appearance after assembly and their potential for design variations (Figure 2). Components were then evaluated as full-scale concrete objects for satisfaction of physical constraints related to concrete forming and component strength. The automated grammar (computer program) for this system generates assembly design variations with complete CAD/CAM data for fabrication of components formed from layered, CNC cut molds. Using the grammar, a full-scale mockup of a corner wall section was constructed to assess the structural, material, and aesthetic feasibility of the system, as well as ease of assembly. The results of this study demonstrate clearly the potentials for embedding visual properties in structural systems. They provide the foundations for further work on assembly systems for complete houses and other small-scale structures, and grammars to generate them. In the long-term, this research will lead to new solutions for economical, easily manufactured housing which is especially critical in developing countries and for post-disaster environments. These new housing solutions will not only provide shelter but will also support important cultural values through the integration of familiar visual design features. The use of inexpensive, portable digital design and fabrication technologies will allow local communities to be active, cooperative participants in the design and construction of their homes. Beyond the specific context of housing, visual-physical grammars have the potential to positively impact design and manufacture of designed artifacts at many scales, and in many domains, particularly for artifacts where visual aesthetics need to be considered jointly with physical or material requirements and design customization or variation is important.
keywords Shape grammar, digital fabrication, building assembly, mass customization, housing
series SIGRADI
email
last changed 2016/03/10 09:54

_id ae5f
authors Krishnamurti, Ramesh
year 1986
title Modelling Design Descriptions
source January, 1986. [5] p. : ill
summary This paper reports some of the principles that underlie a modelling environment being developed at EdCAAD. It describes research that is part of a larger programme directed at computer-based systems that can accommodate the idiosyncratic nature of design practice, without prescriptions to the form or content of designs. That is, towards developing systems to assist in the design process by enabling designers -via conversations with the machine - to make 'reasonable' statements about design objects; to ask 'reasonable' questions about these objects; and to perform 'reasonable' tasks on these objects. Implicit in the authors' approach is the view that designing is an activity dependent on designers' perceptions of design tasks and their resolution. In the context of computer-aided design, this view of design demands that the crucial element in any machine environment lies in the ability of the machine to accept (partial) descriptions of design objects. Moreover, these descriptions can be manipulated according to some (perhaps unanticipated) criteria that the designer may wish to apply. The authors present a model for intentional descriptions of objects. That is, a description that can be structures so that it can be used to recognize objects and can be compared with other descriptions. Such a description of an object should be organized around entities with associated descriptions, it must be able to represent partial knowledge about an object, and it must accommodate multiple descriptors which can describe the object from different viewpoints. Last, but not least, these descriptions should possess a quality of 'truth' in that they reflect the (factual or otherwise) beliefs held by the designer. One way to treat these descriptions is to regard them as statements that belong to some logical framework
keywords design process, representation, intentionallity
series CADline
last changed 1999/02/12 15:08

_id a6cd
authors Salvemini, Mauro
year 1986
title Automatic Methods of Data Presentation for Planning Analysis and Urbanistic Applications
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 275-284
doi https://doi.org/10.52842/conf.ecaade.1986.275
summary Urbanistics and land analysis on different scales both have a basic need: processing an ever increasing amount of data and numerical information. This might seem extremely easy to handle especially where we have computer at our disposal, but unfortunately that is not true. The great wealth of data and information now available means that on one hand an unarrestable process is set in motion whereby more and more data are required but the analysis and consultation of this data becomes longer, more complex and laborious as the amount of data increases. There is also the danger that data produces more data and gives way to a process which can be endless. The planner must also make quick decisions on what is happening and use several target analyses based on a vast quantity of data which he must process with the automatic system available. There must always be strict compatibility between the available data processing system and the quantity of data. The representation of data in image form is an important aid in carrying out correct analyses as well as in decision making .Basically it is a question of making synthetic, decisional use of information contained in raw data. Systems which can process data visually are practically indispensable in urbanistics.

series eCAADe
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_973697 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002