CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 211

_id 5509
authors Koutamanis, Alexandros
year 1990
title Development of a computerized handbook of architectural plans
source Delft University of Technology
summary The dissertation investigates an approach to the development of visual / spatial computer representations for architectural purposes through the development of the computerized handbook of architectural plans (chap), a knowledge-based computer system capable of recognizing the metric properties of architectural plans. This investigation can be summarized as an introduction of computer vision to the computerization of architectural representations: chap represents an attempt to automate recognition of the most essential among conventional architectural drawings, floor plans. The system accepts as input digitized images of architectural plans and recognizes their spatial primitives (locations) and their spatial articulation on a variety of abstraction levels. The final output of chap is a description of the plan in terms of the grouping formations detected in its spatial articulation. The overall structure of the description is based on an analysis of its conformity to the formal rules of its “stylistic” context (which in the initial version of chap is classical architecture). Chapter 1 suggests that the poor performance of computerized architectural drawing and design systems is among others evidence of the necessity to computerize visual / spatial architectural representations. A recognition system such as chap offers comprehensive means for the investigation of a methodology for the development and use of such representations. Chapter 2 describes a fundamental task of chap: recognition of the position and shape of locations, the atomic parts of the description of an architectural plan in chap. This operation represents the final and most significant part of the first stage in processing an image input in machine environment. Chapter 3 moves to the next significant problem, recognition of the spatial arrangement of locations in an architectural plan, that is, recognition of grouping relationships that determine the subdivision of a plan into parts. In the absence of systematic and exhaustive typologic studies of classical architecture that would allow us to define a repertory of the location group types possible in classical architectural plans, Chapter 3 follows a bottom-up approach based on grouping relationships derived from elementary architectural knowledge and formalized with assistance from Gestalt theory and its antecedents. The grouping process described in Chapter 3 corresponds both in purpose and in structure to the derivation of a description of an image in computer vision [Marr 1982]. Chapter 4 investigates the well-formedness of the description of a classical architectural plan in an analytical manner: each relevant level (or sublevel) of the classical canon according to Tzonis & Lefaivre [1986] is transformed into a single group of criteria of well-formedness which is investigated independently. The hierarchical structure of the classical canon determines the coordination of these criteria into a sequence of cognitive filters which progressively analyses the correspondence of the descriptions derived as in Chapter 3 to the constraints of the canon. The methodology and techniques presented in the dissertation are primarily considered with respect to chap, a specific recognition system. The resulting specification of chap gives a measure of the use of such a system within the context of a computerized collection of architectural precedents and also presents several extensions to other areas of architecture. Although these extensions are not considered as verifiable claims, Chapter 5 describes some of their implications, including on the role of architectural drawing in computerized design systems, on architectural typologies, and on the nature and structure of generative systems in architecture.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id c361
authors Logan, Brian S.
year 1986
title Representing the Structure of Design Problems
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 158-170
summary In recent years several experimental CAD systems have emerged which, focus specifically on the structure of design problems rather than on solution generation or appraisal (Sussman and Steele, 1980; McCallum, 1982). However, the development of these systems has been hampered by the lack of an adequate theoretical basis. There is little or no argument as to what the statements comprising these models actually mean, or on the types of operations that should be provided. This chapter describes an attempt to develop a semantically adequate basis for a model of the structure of design problems and presents a representation of this model in formal logic.
series CAAD Futures
last changed 1999/04/03 17:58

_id 0565
authors Oxman, Robert and Oxman, Rivka
year 1990
title The Computability of Architectural Knowledge
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 171-185
summary In an important contribution to the theoretical foundation of design computing, Mitchell noted "an increasingly urgent need to establish a demonstrably sound, comprehensive, rigorously formalized theoretical foundation upon which to base practical software development efforts" (Mitchell, 1986). In this paper we propose such a theoretical framework. A basic assumption of this work is that the advancement of design computing is dependent upon the emergence of a rigorous formulation of knowledge in design. We present a model of knowledge in architectural design which suggests a promising conceptual basis for dealing with knowledge in computer-aided design systems. We require models which can represent the formal knowledge and manipulative operations of the designer in all of their complexity-that is formal models rather than just geometric models. Shape Grammars (Stiny,1980) represent an example of such models, and constitute a relatively high level of design knowledge as compared to, for example, use of symmetry operations to generate simple formal configurations. Building upon an understanding of the classes of design knowledge as the conceptual basis for formal modeling systems may contribute a new realization of the potential of the medium for design. This will require a comprehensive approach to the definition of architectural and design knowledge. We consider here the implications of a well-defined body of architectural and design knowledge for design education and the potential mutual interaction-in a knowledge-rich environment-of design learning and CAAD learning. The computational factors connected with the representation of design knowledge and its integration in design systems are among the key problems of CAAD. Mitchell's model of knowledge in design incorporates formal knowledge in a comprehensive, multi-level, hierarchical structure in which types of knowledge are correlated with computational concepts. In the main focus of this paper we present a structured, multi-level model of design knowledge which we discuss with respect to current architectural theoretical considerations. Finally, we analyze the computational and educational relevance of such models.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 29c2
authors Ozel, Filiz
year 1991
title An Intelligent Simulation Approach in Simulating Dynamic Processes in Architectural Environments
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 177-190
summary The implications of object-oriented data models and rule-based reasoning systems is being researched in a wide variety of application areas ranging from VLSI circuit design (Afsannanesh et al 1990) to architectural environments (Coyne et al 1990). The potential of this approach in the development of discrete event simulations is also being scrutinized (Birtwistle et al 1986). Such computer models are usually called "expert simulations" or "intelligent simulations". Typically rule-basing in such models allows the definition of intelligent-objects that can reason about the simulated dynamic processes through an inferencing system. The major advantage of this approach over traditional simulation languages is its ability to provide direct reference to real world objects and processes. The simulation of dynamic processes in architectural environments poses an additional Problem of resolving the interaction of architectural objects with other objects such as humans, water, smoke etc., depending on the process simulated. Object-oriented approach promises potential in solving this specific problem. The first part of this paper addresses expert simulation approach within the context of architectural settings, then the second part summarizes work done in the application of such an approach to an emergency egress simulation.
series CAAD Futures
last changed 1999/04/07 12:03

_id a6f1
authors Bridges, A.H.
year 1986
title Any Progress in Systematic Design?
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 5-15
summary In order to discuss this question it is necessary to reflect awhile on design methods in general. The usual categorization discusses 'generations' of design methods, but Levy (1981) proposes an alternative approach. He identifies five paradigm shifts during the course of the twentieth century which have influenced design methods debate. The first paradigm shift was achieved by 1920, when concern with industrial arts could be seen to have replaced concern with craftsmanship. The second shift, occurring in the early 1930s, resulted in the conception of a design profession. The third happened in the 1950s, when the design methods debate emerged; the fourth took place around 1970 and saw the establishment of 'design research'. Now, in the 1980s, we are going through the fifth paradigm shift, associated with the adoption of a holistic approach to design theory and with the emergence of the concept of design ideology. A major point in Levy's paper was the observation that most of these paradigm shifts were associated with radical social reforms or political upheavals. For instance, we may associate concern about public participation with the 1970s shift and the possible use (or misuse) of knowledge, information and power with the 1980s shift. What has emerged, however, from the work of colleagues engaged since the 1970s in attempting to underpin the practice of design with a coherent body of design theory is increasing evidence of the fundamental nature of a person's engagement with the design activity. This includes evidence of the existence of two distinctive modes of thought, one of which can be described as cognitive modelling and the other which can be described as rational thinking. Cognitive modelling is imagining, seeing in the mind's eye. Rational thinking is linguistic thinking, engaging in a form of internal debate. Cognitive modelling is externalized through action, and through the construction of external representations, especially drawings. Rational thinking is externalized through verbal language and, more formally, through mathematical and scientific notations. Cognitive modelling is analogic, presentational, holistic, integrative and based upon pattern recognition and pattern manipulation. Rational thinking is digital, sequential, analytical, explicatory and based upon categorization and logical inference. There is some relationship between the evidence for two distinctive modes of thought and the evidence of specialization in cerebral hemispheres (Cross, 1984). Design methods have tended to focus upon the rational aspects of design and have, therefore, neglected the cognitive aspects. By recognizing that there are peculiar 'designerly' ways of thinking combining both types of thought process used to perceive, construct and comprehend design representations mentally and then transform them into an external manifestation current work in design theory is promising at last to have some relevance to design practice.
series CAAD Futures
email
last changed 2003/11/21 15:16

_id e220
authors Balachandran, M.B. and Gero, John S.
year 1986
title Formulating and Recognizing Engineering Optimization Problems
source Aus. Conf Mechs. Struct. and Mats (10th : 1986 : Adelaide) edited by G. Sved. pp. 223-228. CADLINE has abstract only.
summary In applying optimization methodology to engineering design, a considerable amount of knowledge is utilized to construct and solve mathematical design models. However, computer based systems to assist this process have concentrated mainly on the numeric computational aspects of the process. This paper outlines a computer system which uses a knowledge-based systems approach to formulate and recognize design optimization problems. Areas of expert knowledge involved in mathematical design modeling and optimization are identified. Such knowledge is encoded explicitly in the system. An example is presented
keywords knowledge base, systems, engineering, design, mathematics, modeling, structures
series CADline
email
last changed 2003/06/02 13:58

_id 020d
authors Shaviv, Edna
year 1986
title Layout Design Problems: Systematic Approaches
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 28-52
summary The complexity of the layout design problems known as the 'spatial allocation problems' gave rise to several approaches, which can be generally classified into two main streams. The first attempts to use the computer to generate solutions of the building layout, while in the second, computers are used only to evaluate manually generated solutions. In both classes the generation or evaluation of the layout are performed systematically. Computer algorithms for 'spatial allocation problems' first appeared more than twenty-five years ago (Koopmans, 1957). From 1957 to 1970 over thirty different programs were developed for generating the floor plan layout automatically, as is summarized in CAP-Computer Architecture Program, Vol. 2 (Stewart et al., 1970). It seems that any architect who entered the area of CAAD felt that it was his responsibility to find a solution to this prime architectural problem. Most of the programs were developed for batch processing, and were run on a mainframe without any sophisticated input/output devices. It is interesting to mention that, because of the lack of these sophisticated input/output devices, early researchers used the approach of automatic generation of optimal or quasioptimal layout solution under given constraints. Gradually, we find a recession and slowdown in the development of computer programs for generation of layout solutions. With the improvement of interactive input/output devices and user interfaces, the inclination today is to develop integrated systems in which the architectural solution is obtained manually by the architect and is introduced to the computer for the appraisal of the designer's layout solution (Maver, 1977). The manmachine integrative systems could work well, but it seems that in most of the integrated systems today, and in the commercial ones in particular, there is no route to any appraisal technique of the layout problem. Without any evaluation techniques in commercial integrated systems it seems that the geometrical database exists Just to create working drawings and sometimes also perspectives.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2fc1
authors Zdepski, M. Stephen and Goldman, Glen
year 1986
title The Computability of Design
doi https://doi.org/10.52842/conf.acadia.1986.103
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 103-111
summary A number of architectural design studios (second, third and fifth year) at the School of Architecture at the New Jersey Institute of Technology have undertaken traditional design problems through the use of IBM-AT microcomputer based CAD/Graphics systems. Utilizing three-dimensional modeling software, color graphics "paint" software, and animation software, the studios integrated the use of computers into the very heart of the core program as the primary means of design, simulation, and evaluation. At the same time, other non-computer based studios engaged in similar (and often identical) design problems. Therefore, the opportunity became available to compare and evaluate both the impact the computer made to the traditional architectural studio and also to the building design itself.
series ACADIA
email
last changed 2022/06/07 07:57

_id 678e
authors Aish, Robert
year 1986
title Three-dimensional Input and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 68-84
summary The aim of this chapter is to investigate techniques by which man-computer interaction could be improved, specifically in the context of architectural applications of CAD. In this application the object being designed is often an assembly of defined components. Even if the building is not actually fabricated from such components, it is usually conceptualized in these terms. In a conventional graphics- based CAD system these components are usually represented by graphical icons which are displayed on the graphics screen and arranged by the user. The system described here consists of three- dimensional modelling elements which the user physically assembles to form his design. Unlike conventional architectural models which are static (i.e. cannot be changed by the users) and passive (i.e. cannot be read by a CAD system), this model is both 'user generated' and 'machine readable'. The user can create, edit and view the model by simple, natural modelling activities and without the need to learn complex operating commands often associated with CAD systems. In particular, the user can view the model, altering his viewpoint and focus of attention in a completely natural way. Conventional computer graphics within an associated CAD system are used to represent the detailed geometry which the different three-dimensional icons may represent. In addition, computer graphics are also used to present the output of the performance attributes of the objects being modelled. In the architectural application described in this chapter an energy- balance evaluation is displayed for a building designed using the modelling device. While this system is not intended to offer a completely free-form input facility it can be considered to be a specialist man-machine interface of particular relevance to architects or engineers.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id 8db7
authors Gero, John S., Radford, Antony D. and Rosenman, Michael A. (et al)
year 1986
title Knowledge-based Building Design
source CIB 86, Advanced Building Technology, Proceedings. 1986. vol. 1: pp. 93-102
summary CADLINE has abstract only. The use of the right knowledge depends not only on its availability but also on the designer recognizing that it is needed. The great majority of failures in building design and construction come from the non-application of existing, recorded knowledge; the designer either could not find the right information, or never recognized that the existing basis for making design decisions was inadequate in a new context. This paper describes some work towards the development of knowledge-based computer-aided design tools in which the knowledge is explicit, explained and open to modification. The philosophy behind the work is that design is almost always better if it is based on better knowledge, and that knowledge should be linked as closely as possible to the design activity. Rather than rely on a theoretical discussion, the authors make some brief statements about the nature of such knowledge-based systems and then give some working examples from the Architectural Computing Unit in the University of Sydney
keywords building, knowledge base, design, architecture, CAD
series CADline
email
last changed 2003/06/02 13:58

_id 68aa
authors Greenberg, Donald P.
year 1986
title Computer Graphics and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 63-67
summary The field of computer graphics has made enormous progress during the past decade. It is rapidly approaching the time when we will be able to create images of such realism that it will be possible to 'walk through' nonexistent spaces and to evaluate their aesthetic quality based on the simulations. In this chapter we wish to document the historical development of computer graphics image creation and describe some techniques which are currently being developed. We will try to explain some pilot projects that we are just beginning to undertake at the Program of Computer Graphics and the Center for Theory and Simulation in Science and Engineering at Cornell University.
series CAAD Futures
last changed 1999/04/03 17:58

_id 682d
authors Kim, Uk
year 1986
title Model for an Integrated Design Evaluation System using Knowledge Bases
doi https://doi.org/10.52842/conf.acadia.1986.204
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 204-215
summary Computer-aided architectural design (CAAD) systems need to be integrated so that one unified system can generate and do various analysis and evaluation of building models. A data system can not solve this problem because all design concepts can not be stored in the database before the design is completed. As design stage proceeds, design concept and necessary information for analysis and evaluation become complex and detailed. In order to accommodate increasing entities and new relationships between them, knowledge-based systems are integrated into the database of building models. frame structure and production rules are adopted to represent knowledge about the database, and to represent evaluation rules respectively. The system is implemented in Prolog on an Apollo workstation.
series ACADIA
last changed 2022/06/07 07:52

_id 0e5e
authors Kociolek, A.
year 1986
title CAD in Polish Building
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 235-245
summary There is little CAAD in Polish architectural design offices, and only recently have practising architects discovered the computer. On the other hand, CAAD has been used for some time in research and development based at universities or in large design organizations. This chapter gives a broad picture of the computerization of building design in Poland, a complex process which concerns planning and financing, hardware, software, CAD practice, standardization, training, education, etc. Here architectural applications are treated on an equal basis, together with other applications representing design disciplines involved in design, such as structural and mechanical engineering. The underlying philosophy of this chapter is a belief that proper and well-balanced computerization of design in building which leaves creative work to human beings should result in better design and eventually in improvements in the built environment. Therefore integration of the design process in building seems more important for design practice than attempts to replace an architect by a computer, although the intellectual attraction of this problem is recognized.
series CAAD Futures
last changed 1999/04/03 17:58

_id 4f56
authors Paasi, Jyrki
year 1986
title Architectural Space Synthesizer - The last link of a CAAD system
doi https://doi.org/10.52842/conf.acadia.1986.217
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 217-223
summary Computer technology and CAD are about to change radically the thousands of years of tradition of the architect's work. We are leaving behind the old method of drawing by hand, replacing the pencil with a stylus for pointing elements of mathematical models of projects. We are changing over from two dimensional to three dimensional design. Decisive for the architect to achieve a successful outcome has always been and will always be the visualisation of the project right from its early stages. There is a trend -in our time and a risk in the. new technology of fragmenting our work and making it more abstract. The new technology is based on the old one and in the beginning its user still has the habits of the old. Therefore the visualisation in present CAD systems and three dimensional design is based on the old plane projections; axonometrics and perspectives. However, there is an essentially better way which happens also to be natural to the new technology and simple to realize using it. This is the spherical projection.
series ACADIA
last changed 2022/06/07 07:58

_id ddss9846
id ddss9846
authors Rigatti, Decio
year 1998
title Rubem Berta Housing Estate: Order and Structure, Designand Use
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary The main goal of this paper is to investigate, through some space configurational based tools, a quite common phenomenon found in many different locations in Brazil, concerning the process of urban changes individually introduced by dwellers of public housing estates. A significant number of housing estates, particularly those designed according to rationalist concepts, seem to be unable to support space related social requirements and are then widely transformed when compared to the original layouts. Beyond the quantitative features, the morphological changes that take place in those housing estates mean a fundamental new approach to understand how completely new urban structures can arisefrom the space produced by a comprehensive urban design, took as a starting point for the transformations made by the dwellers of those settlements. As a case study is analysed the Rubem Berta Housing Estate which was built in Porto Alegre/RS, Brazil, for 20,000 people in the late 70’s. Since the begining of its occupation in 1986 and the invasion that took place in 1987, the urban transformations there have never stopped. It’s possible to realize that the dwellers individually use some constant physical rules to define the new settlement which are very similar within the estate itself and, at the same time, very similar to those found in other transformed housing estates of this sort. The physical rules introduced change the features of the entire settlement in two different levels: a) locally, through the transformations introduced in order to solve individual needs; b) globally, the local rules of physical transformations produce a new overall structure for the whole urban complex. The knowledge of this process makes it possible to bring to the surface of architectural theory some generic configurational codes that can be used as a tool for designing public housing estates in Brazil.
series DDSS
last changed 2003/08/07 16:36

_id 0f76
authors Balachandran, M. B. and Gero, John S.
year 1986
title Knowledge-based Design Optimization
source IAAI'86 Conference. 1986. pp. i:4:1-14
summary CADLINE has abstract only. Optimization is a well understood process in design domains. A designer formulates the design problem as a single criterion or multicriteria optimization problem and then selects an appropriate optimization algorithm to search for the optimal values for the design variables. The formulation and algorithm selection procedures have been considered to be activities which relied on substantive human knowledge. This paper describes a computer system, OPTIMA, which formulates design optimization problems from a pseudo-English description into canonical algebraic expressions. It then recognizes the formulation and selects appropriate algorithm(s) for their solutions. Finally, it runs the selected algorithm(s) and sends the results to the original descriptions. Areas of expert knowledge involved in carrying out the above tasks are identified. Such knowledge is explicitly encoded in the systems. The basic philosophy and key features of the system are described and are illustrated by examples
keywords algorithms, expert systems, knowledge base, design, optimization, structures, engineering
series CADline
email
last changed 2003/06/02 13:58

_id 2eb1
authors Bridges, Alan H.
year 1986
title Alternative Approaches Towards the Teaching of Computer Aided Architectural Design
doi https://doi.org/10.52842/conf.ecaade.1986.331
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 331-340
summary The problems of architectural education in general and CAD education in particular are discussed. The paper suggests that the computing requirements of architectural practice are different to those of architectural education and that much of the software used in schools of architecture is not used in an educationally structured way. A number of proposals for the educational use of computers are made, together with recommendations for a common computing environment.
series eCAADe
email
last changed 2022/06/07 07:54

_id c967
authors Fantacone, Enrico
year 1994
title Exporting CAD Teaching into Developing Countries
doi https://doi.org/10.52842/conf.ecaade.1994.x.t3s
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 222
summary In 1986 the Faculty of Architecture was established in Maputo. It is financed by the Italian Ministry of Foreign Affairs and managed by a Scientific Council of the Faculty of Architecture of "Università La Sapienza" of Rome. The need to create human technical resources beeing able to work profesionally as soon as they finish their studies, made the teaching basis for lab exercises and design. The new architects (the first six students graduated in 1991), need to design and make very important decisions without any control by more experienced local technical institutions. The creation of a CAAD laboratory, and the teaching of information technologies and metodologies in architectural designing aimes to achieve a double goal: (-) to make the new architects able to manage on their own, because of the lack of qualified human resources, large quantity of data, and difficult design problems; (-) to make University, the most important scientific center in the country, an information exchange center between developped countries, and Moçambique.
series eCAADe
last changed 2022/06/07 07:50

_id 4512
authors Flemming, Ulrich
year 1986
title On the Representation and Generation of Loosely-Packed Arrangements of Rectangles
source 33 p. : ill Pittsburgh: Engineering Design Research Center, CMU, September, 1986. includes bibliography.
summary Several computer programs that enumerate rectangular dissections as solutions to certain layout problems have established a distinct paradigm for dealing with the crucial theoretical issues involved. The present paper suggests an extension of the paradigm to include `loosely-packed arrangements of rectangles,' which are of wider applicability in an architectural context. The paper introduces orthogonal structures to represent these arrangements and establishes the conditions of well-formedness for these structures. It presents a grammar to enumerate orthogonal structures and suggests that best use is made of the grammar if it is incorporated into a generative expert system, able to serve as a vehicle to discover, encode and utilize a broad range of constraints and criteria in the generation of layout alternatives
keywords expert systems, architecture, space allocation, floor plans, rectangles, shape grammars, layout
series CADline
email
last changed 2003/02/26 17:24

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_310472 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002