CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 210

_id 80a1
authors Sasada, Tsuyoshi Tee
year 1986
title Computer-Generated Animation for Architecture and Urban Design
doi https://doi.org/10.52842/conf.ecaade.1986.285
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 285-294
summary Computer-generated animations are going to be a powerful design medium. During the last two years, we have created more than 10 animated films by using the computer. The purpose of animation varies as the case, however it is always related to the architecture and urban design. Using these computer-generated animation films, we edited a video tape of 54 minutes. Along with the video tape, this report shows our works in four parts with pictures taken from the films.
series eCAADe
last changed 2022/06/07 07:57

_id 644f
authors Bijl, Aart
year 1986
title Designing with Words and Pictures in a Logic Modelling Environment
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 128-145
summary At EdCAAD we are interested in design as something people do. Designed artefacts, the products of designing, are interesting only in so far as they tell us something about design. An extreme expression of this position is to say that the world of design is the thoughts in the heads of designers, plus the skills of designers in externalizing their thoughts; design artifacts, once perceived and accepted in the worlds of other people, are no longer part of the world of design. We can describe design, briefly, as a process of synthesis. Design has to achieve a fusion between parts to create new parts, so that the products are recognized, as having a right and proper place in the world of people. Parts should be understood as referring to anything - physical objects, abstract ideas, aspirations. These parts occur in some design environment from which parts are extracted, designed upon and results replaced; in the example of buildings, the environment is people and results have to be judged by reference to that environment. It is characteristic of design that both the process and the product are not subject to explicit and complete criteria. This view of design differs sharply from the more orthodox understanding of scientific and technological endeavours which rely predominantly on a process of analysis. In the latter case, the approach is to decompose a problem into parts until individual parts are recognized as being amenable to known operations and results are reassembled into a solution. This process has a peripheral role in design when evaluating selected aspects of tentative design proposals, but the absence of well-defined and widely recognized criteria for design excludes it from the main stream of analytical developments.
series CAAD Futures
last changed 2003/11/21 15:16

_id cb04
authors Calderaro, V., Giangrande, A., Mirabelli, P. and Mortola, E.
year 1986
title Decision Support Systems (DSS) in Computer Aided Architectural Design (CAAD)
doi https://doi.org/10.52842/conf.ecaade.1986.020
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 20-38
summary The paper describes a new procedure of design management and the results of its application to architectural design in an exercise developed in a didactic context. The procedure requires the participation of all “actors” (i.e. designers, experts, clients, users, etc.) involved in the design process and which contribute, directly or indirectly, to obtain the result. By generating and developing alternative design solutions, this procedure allows the exploration of a region of the performances space which is generally more vast than that explored by the traditional designer.
series eCAADe
email
last changed 2022/06/07 07:54

_id 63d0
authors Carrara, Gianfranco and Novembri, Gabriele
year 1986
title Constraint-bounded design search
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 146-157
summary The design process requires continual checking of the consistency of design choices against given sets of goals that have been fulfilled. Such a check is generally performed by comparing abstract representations of design goals with these of the sought real building objects (RBO) resulting from complex intellectual activities closely related to the designer's culture and to the environment in which he operates. In this chapter we define a possible formalization of such representations concerning the goals and the RBO that are usually considered in the architectural design process by our culture in our environment. The representation of design goals is performed by expressing their objective aspects (requirements) and by defining their allowable values (performance specifications). The resulting system of requirements defines the set of allowable solutions and infers an abstract representation of the sought building objects (BO) that consists of the set of characteristics (attributes and relations) which are considered relevant to represent the particular kind of RBO with respect to the consistency check with design goals. The values related to such characteristics define the performances of the RBO while their set establishes its behaviour. Generally speaking, there is no single real object corresponding to an abstract representation but the whole class of the RBO that are equivalent with respect to the values assumed by the considered characteristics. The more we increase the number of these, as well as their specifications, the smaller the class becomes until it coincides with a single real object - given that the assessed specifications be fully consistent. On the other hand, the corresponding representation evolves to the total prefiguration of the RBO. It is not therefore possible to completely define a BO representation in advance since this is inferred by the considered goals and is itself a result of the design process. What can only be established in advance is that any set of characteristics assumed to represent any RBO consists of hierarchic, topological, geometrical and functional relations among the parts of the object at any level of aggregation (from components to space units, to building units, to the whole building) that we define representation structure (RS). Consequently the RS may be thought as the elementary structures that, by superposition and interaction, set up the abstract representation that best fit with design goals.
series CAAD Futures
last changed 1999/04/03 17:58

_id 079f
authors Dickson, Gary W., DeSanctis, Gerardine and McBride, D. J.
year 1986
title Understanding the Effectiveness of Computer Graphics for Decision Support : A Cumulative Experimental Approach
source Communications of the ACM. January, 1986. vol. 29: pp. 40-47. includes bibliography
summary A total of 840 junior and senior-level undergraduate business students participated in three experiments that compared computer-generated graphical forms of data presentation to traditional tabular reports. The first experiment compared tables and bar charts for their effects on readability, interpretation accuracy, and decision making. No differences in interpretation accuracy or decision quality were observed for the two groups, although tabular reports were rated as 'easier to read and understand' than graphical reports. The second experiment compared line plots to tables for their effects on interpretation accuracy and decision quality. Subjects with graphical reports outperformed those with tables. There were no meaningful differences in interpretation accuracy across treatment groups. The third experiment compared graphical and tabular reports for their ability to convey a 'message' to the reader. Only in situations in which a vast amount of information was presented and relatively simple impressions were to be made, did subjects given graphs outperform those using tables. This program of cumulative experiments indicates that generalized claims of superiority of graphic presentation are unsupported, at least for decision-related activities. In fact, the experiments suggest that the effectiveness of the data display format is largely a function of the characteristics of the task at hand, and that impressions gleaned from 'one shot' studies of the effectiveness of the use of graphs may be nothing more than situationally dependent artifacts
keywords business, computer graphics, presentation, decision making, visualization
series CADline
last changed 2003/06/02 13:58

_id c898
authors Gero, John S.
year 1986
title An Overview of Knowledge Engineering and its Relevance to CAAD
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 107-119
summary Computer-aided architectural design (CAAD) has come to mean a number of often disparate activities. These can be placed into one of two categories: using the computer as a drafting and, to a lesser extent, modelling system; and using it as a design medium. The distinction between the two categories is often blurred. Using the computer as a drafting and modelling tool relies on computing notions concerned with representing objects and structures numerically and with ideas of computer programs as procedural algorithms. Similar notions underly the use of computers as a design medium. We shall return to these later. Clearly, all computer programs contain knowledge, whether methodological knowledge about processes or knowledge about structural relationships in models or databases. However, this knowledge is so intertwined with the procedural representation within the program that it can no longer be seen or found. Architecture is concerned with much more than numerical descriptions of buildings. It is concerned with concepts, ideas, judgement and experience. All these appear to be outside the realm of traditional computing. Yet architects discoursing use models of buildings largely unrelated to either numerical descriptions or procedural representations. They make use of knowledge - about objects, events and processes - and make nonprocedural (declarative) statements that can only be described symbolically. The limits of traditional computing are the limits of traditional computer-aided design systems, namely, that it is unable directly to represent and manipulate declarative, nonalgorithmic, knowledge or to perform symbolic reasoning. Developments in artificial intelligence have opened up ways of increasing the applicability of computers by acquiring and representing knowledge in computable forms. These approaches supplement rather than supplant existing uses of computers. They begin to allow the explicit representations of human knowledge. The remainder of this chapter provides a brief introduction to this field and describes, through applications, its relevance to computer- aided architectural design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id a6a9
authors Goebel, Martin and Kroemker, Detlef
year 1986
title A Multi-Microprocessor GKS Workstation
source IEEE Computer Graphics and Applications July, 1986. vol. 6: pp. 54-60 : ill. includes bibliography.
summary Implementers of graphical application systems hesitate to interface their applications to the GKS standard not only because GKS functionality seems to be less sufficient for a particular application but also because the use of GKS -- as it is offered in portable software implementations -- usually means a loss of system performance. This article describes an installation of GKS on a multi-microprocessor that is based on functional distribution principles as well as on the object-oriented distribution of a graphics system. The main concepts and advantages of a GKS workstation using more than one processing unit with at least one output pipeline are described. The flexibility of this approach opens a perspective view to a GKS workstation that is configurable to application requirements
keywords standards, GKS, graphs, systems, hardware
series CADline
last changed 2003/06/02 10:24

_id 7f64
authors Harfmann, A.C., Swerdloff, L.M. and Kalay, Y.E.
year 1986
title The Terminal Crit
doi https://doi.org/10.52842/conf.acadia.1986.079
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 79-87
summary Numerous attempts have been made to develop formal design methods with -the purpose of increasing the predictability, consistency and dissemination of the design process and improving the quality of the objects produced. The ill- structured nature of design, and the perception of design activities as intuitive and experience dependent have frustrated many of the efforts to structure these process. The growing complexity of the built environment and advances in technology have led to a more rigorous effort to understand and externalize creative activities. Computer aided design tools have recently been playing an important role in the evolution of the design process as a rationally defined activity. The use of- computers for drafting, analysis, and 2 or 3 dimensional modeling is rapidly becoming an accepted method in many design schools and practitioners. A next logical step in the externalization of the design process is to endow the computer with the ability to manipulate and critique parts of the design. Under this scenario, the "terminal crit" is redefined to mean critiques that are carried out by both the designer and the computer. The paper presents the rationalization of the design process as a continuum into which CAD has been introduced. The effects of computers on the design process are studied through a specific incorporation of CAD tools into a conventional design studio, and a research project intended to advance the role of CAD in design.
series ACADIA
email
last changed 2022/06/07 07:49

_id 0e5e
authors Kociolek, A.
year 1986
title CAD in Polish Building
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 235-245
summary There is little CAAD in Polish architectural design offices, and only recently have practising architects discovered the computer. On the other hand, CAAD has been used for some time in research and development based at universities or in large design organizations. This chapter gives a broad picture of the computerization of building design in Poland, a complex process which concerns planning and financing, hardware, software, CAD practice, standardization, training, education, etc. Here architectural applications are treated on an equal basis, together with other applications representing design disciplines involved in design, such as structural and mechanical engineering. The underlying philosophy of this chapter is a belief that proper and well-balanced computerization of design in building which leaves creative work to human beings should result in better design and eventually in improvements in the built environment. Therefore integration of the design process in building seems more important for design practice than attempts to replace an architect by a computer, although the intellectual attraction of this problem is recognized.
series CAAD Futures
last changed 1999/04/03 17:58

_id 20a8
authors Ruffle, Simon
year 1986
title How Can CAD Provide for the Changing Role of the Architect?
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 197-199
summary At the RIBA Conference of 1981 entitled 'New Opportunities', and more recently at the 1984 ACA Annual Conference on 'Architects in Competition' there has been talk of marketing, new areas of practice, recapturing areas of practice lost to other professions, more accountability to client and public 'the decline of the mystique of the professional'. It is these issues, rather than technical advances in software and hardware, that will be the prime movers in getting computers into widespread practice in the future. In this chapter we will examine how changing attitudes in the profession might affect three practical issues in computing with which the author has been preoccupied in the past year. We will conclude by considering how, in future, early design stage computing may need to be linked to architectural theory, and, as this is a conference where we are encouraged to be outspoken, we will raise the issue of a computer-based theory of architecture.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id ab08
authors Samad, Tariq
year 1986
title A Natural Language Interface for Computer-Aided Design
source ix, 188 p. Boston: Kluwer Academic Publishers, 1986. includes bibliography: p. [174]-184 and index. -- (Kluwer International Series in Engineering and Computer Science)
summary A description of CLEOPATRA, a natural language interface for a particular sub-domain of computer aided design--circuit simulation post processing. The language is based on an approach to natural language understanding that supplements a case frame parser with a few novel features that give the approach more generality and power than pervious approaches without sacrificing the intuitive appeal of case-frame semantics
keywords CAD, natural languages, user interface, integrated circuits
series CADline
last changed 1999/02/12 15:09

_id 020d
authors Shaviv, Edna
year 1986
title Layout Design Problems: Systematic Approaches
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 28-52
summary The complexity of the layout design problems known as the 'spatial allocation problems' gave rise to several approaches, which can be generally classified into two main streams. The first attempts to use the computer to generate solutions of the building layout, while in the second, computers are used only to evaluate manually generated solutions. In both classes the generation or evaluation of the layout are performed systematically. Computer algorithms for 'spatial allocation problems' first appeared more than twenty-five years ago (Koopmans, 1957). From 1957 to 1970 over thirty different programs were developed for generating the floor plan layout automatically, as is summarized in CAP-Computer Architecture Program, Vol. 2 (Stewart et al., 1970). It seems that any architect who entered the area of CAAD felt that it was his responsibility to find a solution to this prime architectural problem. Most of the programs were developed for batch processing, and were run on a mainframe without any sophisticated input/output devices. It is interesting to mention that, because of the lack of these sophisticated input/output devices, early researchers used the approach of automatic generation of optimal or quasioptimal layout solution under given constraints. Gradually, we find a recession and slowdown in the development of computer programs for generation of layout solutions. With the improvement of interactive input/output devices and user interfaces, the inclination today is to develop integrated systems in which the architectural solution is obtained manually by the architect and is introduced to the computer for the appraisal of the designer's layout solution (Maver, 1977). The manmachine integrative systems could work well, but it seems that in most of the integrated systems today, and in the commercial ones in particular, there is no route to any appraisal technique of the layout problem. Without any evaluation techniques in commercial integrated systems it seems that the geometrical database exists Just to create working drawings and sometimes also perspectives.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 7a08
authors Smith Shaw, Doris
year 1986
title Case Studies in Architectural CADD Education
doi https://doi.org/10.52842/conf.acadia.1986.157
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 157-172
summary Stages in the formation of concepts necessary for mastery can be observed in cognitive development in many different areas of study. These stages seem to follow a particular hierarchy common to most learners. Distinct levels can be recognized by patterns of procedural errors. The remediation of errors can then take the form of building a conceptual framework rather than training in procedural patterns. This has been found to be highly efficient for learners at all stages since it can be aimed at the underlying problem area and not at isolated errors which may change frequently. It was felt, that concept development of architects learning to use computer-aided drawing programs would show such levels. Preliminary studies made at the U.S. Army Construction Engineering Research Laboratory upon selected subjects using computer-aided lessons in AutoCAD as a basis for observations reveal several categories of errors in using computer-aided design. These case studies show that the design process can be enhanced by automated drawing and design tools if the conceptual relationships are established as a part of the learning environment. Even more important, the observations show that architects have particular characteristics which differ from engineers and other CAD users. These differences require that education and software be tailored to their needs.
series ACADIA
last changed 2022/06/07 07:56

_id 0a6e
authors Walters, Roger
year 1986
title CAAD: Shorter-term Gains; Longerterm Costs?
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 185-196
summary Assessment of CAAD systems in use is complex: it needs careful qualifications and is often contradictory. It is suggested that little progress has been made in making sense of the impacts of computing on design and design organizations. Impacts are more diverse and complicated than has been assumed. Assessments tend to be either overtly optimistic or pessimistic, yet the need is to be realistic. Moreover, impacts have been the subject of speculation and marketing rather than systematic study. Carefully documented case studies of projects or longitudinal studies of organizational impacts remain the exception. This chapter draws upon recorded user experience reported elsewhere (Walters, 1983)' and presents an assessment of the performance in use of current production systems. It presents an end-user view and also identifies a number of outstanding design research topics It is suggested that different systems in different organizations in different settings will give rise to new impacts. A wide variety of outcomes is possible. It seems unlikely that any simple set of relationships can account for all the data that inquiry reveals. The task becomes one of identifying variables that lead to differential outcomes, as the same cause may lead to different effects (Attewell and Rule, 1984). This becomes a long-term task. Each optimistic impact may be countered by some other more pessimistic impact. Moreover, the changes brought about on design by computing are significant because both beneficial and non- beneficial impacts are present together. Impacts are held in a dynamic balance that is subject to constant evolution. This viewpoint accounts for otherwise conflicting conclusions. It is unlikely that the full range of impacts is yet known, and a wide range of impacts and outcomes already need to be taken into account. It seems that CAD alone cannot either guarantee improved design or that it inevitably leads to some diminished role for the designer. CAD can lead to either possible outcome, depending upon the particular combination of impacts present. Careful matching of systems to design organization and work environment is therefore needed. The design management role becomes crucial.
series CAAD Futures
last changed 1999/04/03 17:58

_id 02c6
authors Wheeler, B.J.Q
year 1986
title A Unified Model for Building
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 200-231
summary It is commonly recognized that the time-honoured procedure for preparing an architectural design for building on site is inefficient. Each member of a team of consultant professionals makes an independently documented contribution. For a typical project involving an architect and structural, electrical, mechanical and public services engineers there will be at least five separate sets of general- arrangement drawings, each forming a model of the building, primarily illustrating one discipline but often having to include elements of others in order to make the drawing readable. For example, an air-conditioning duct-work layout is more easily understood when superimposed on the room layout it serves which the engineer is not responsible for but has to understand. Both during their parallel evolution and later, when changes have to be made during the detailed design and production drawing stages, it is difficult and time consuming to keep all versions coordinated. Complete coordination is rarely achieved in time, and conflicts between one discipline and another have to be rectified when encountered on site with resulting contractual implications. Add the interior designer, the landscape architect and other specialized consultants at one end of the list and contractors' shop drawings relating to the work of all the consultants at the other, and the number of different versions of the same thing grows, escalating the concomitant task of coordination. The potential for disputes over what is the current status of the design is enormous, first, amongst the consultants and second, between the consultants and the contractor. When amendments are made by one party, delay and confusion tend to follow during the period it takes the other parties to update their versions to include them. The idea of solving this problem by using a common computer-based model which all members of the project team can directly contribute to is surely a universally assumed goal amongst all those involved in computer-aided building production. The architect produces a root drawing or model, the 'Architect's base plan', to which the other consultants have read-only access and on top of which they can add their own write-protected files. Every time they access the model to write in the outcome of their work on the project they see the current version of the 'Architect's base plan' and can thus respond immediately to recent changes and avoid wasting time on redundant work. The architect meanwhile adds uniquely architectural material in his own overlaid files and maintains the root model as everybody's work requires. The traditional working pattern is maintained while all the participants have the ability to see their colleagues, work but only make changes to those parts for which they are responsible.
series CAAD Futures
last changed 1999/04/03 17:58

_id 82ab
authors Wrona, Stefan K.
year 1986
title The Profits of CAAD Can Be Increased by an Integrated Participatory Design Approach
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 53-57
summary Computer-aided Architectural Design is understood in Poland as comprising all computer applications in an architectural design office. In Polish architectural practice (with a few exceptions) it is still under theoretical consideration and in an experimental phase. Therefore if we are talking about the future of CAAD in Poland we are thinking about a much more long-term future than for Western countries. However, if new economic and organizational changes initiated in Poland in the early 1980s continue, future problems and solutions in CAAD will, for us, become similar to those in Western countries.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 0ebf
id 0ebf
authors Hanson, N.L.R. and Radford, Antony D.
year 1986
title On Modelling the Work of the Architect Glenn Murcutt
source Design Computing, pp. 189-203
summary A prototypical design grammar for a class of country houses by the Australian award-winning architect Glenn Murcutt is developed. The rules of the design grammar are executed to create a design for a country house on a real site with a real brief, in parallel with a design by Murcutt himself. Feedback from Murcutt and the differences between the designs and the reasons for them are discussed. Some conclusions are drawn on the role and assumptions of design grammars as rule- based expert systems and the qualities of design activity which cannot be modelled by such systems
keywords expert systems, architecture, design, shape grammars, applications
series CADline
email
last changed 2003/12/01 20:29

_id 2b40
authors Hanson, N.L.R. and Radford, Antony D.
year 1986
title Living on the Edge : A Grammar For Some Country Houses by Glenn Murcutt
source Architecture Australia. 1986. vol. 75: pp. 66-73
summary Glenn Murcutt is an award-winning Australian architect whose work displays a consistent pattern of development in its response to the environment and brief. A set of syntactic and abductive rules is developed that models the generation of a subset of his work. The model and the architect's response to its operation is described
keywords architecture, shape grammars, applications
series CADline
last changed 2003/06/02 13:58

_id sigradi2008_175
id sigradi2008_175
authors Knight, Terry; Larry Sass, Kenfield Griffith, Ayodh Vasant Kamath
year 2008
title Visual-Physical Grammars
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper introduces new visual-physical design grammars for the design and manufacture of building assembly systems that provide visually rich, culturally resonant design variations for housing. The building systems are intended to be tailored for particular cultures and communities by incorporating vernacular, decorative design into the assembly design. Two complementary areas of computational design research are brought together in this work: shape grammars and digital fabrication. The visual or graphic aspects of the research are explored through shape grammars. The physical design and manufacturing aspects are explored through advanced digital design and fabrication technologies and, in particular, build on recent work on mono-material assemblies with interlocking components that can be fabricated with CNC machines and assembled easily by hand on-site (Sass, 2007). This paper describes the initial, proof-of-concept stage of this work: the development of an automated, visual-physical grammar for an assembly system based on a vernacular language of Greek meander designs. A shape grammar for the two-dimensional Greek meander language (Knight, 1986) was translated into a three-dimensional assembly system. The components of the system are uniquely designed, concrete “meander bricks” (Figure 1). The components have integrated alignment features so that they can be easily fitted and locked together manually without binding materials. Components interlock horizontally to form courses, and courses interlock vertically in different ways to produce a visual variety of meander walls. The assembly components were prototyped at desktop scale with a layered manufacturing machine to test their appearance after assembly and their potential for design variations (Figure 2). Components were then evaluated as full-scale concrete objects for satisfaction of physical constraints related to concrete forming and component strength. The automated grammar (computer program) for this system generates assembly design variations with complete CAD/CAM data for fabrication of components formed from layered, CNC cut molds. Using the grammar, a full-scale mockup of a corner wall section was constructed to assess the structural, material, and aesthetic feasibility of the system, as well as ease of assembly. The results of this study demonstrate clearly the potentials for embedding visual properties in structural systems. They provide the foundations for further work on assembly systems for complete houses and other small-scale structures, and grammars to generate them. In the long-term, this research will lead to new solutions for economical, easily manufactured housing which is especially critical in developing countries and for post-disaster environments. These new housing solutions will not only provide shelter but will also support important cultural values through the integration of familiar visual design features. The use of inexpensive, portable digital design and fabrication technologies will allow local communities to be active, cooperative participants in the design and construction of their homes. Beyond the specific context of housing, visual-physical grammars have the potential to positively impact design and manufacture of designed artifacts at many scales, and in many domains, particularly for artifacts where visual aesthetics need to be considered jointly with physical or material requirements and design customization or variation is important.
keywords Shape grammar, digital fabrication, building assembly, mass customization, housing
series SIGRADI
email
last changed 2016/03/10 09:54

_id 2ec8
authors Arditi, Aries and Gillman, Arthur E.
year 1986
title Computing for the Blind User
source BYTE Publication Inc. March, 1986. pp. 199-208. includes some reference notes
summary In this article the authors present some of the human-factors issues specific to non visual personal computing. The authors' concern is with the accuracy, speed, and generality of the blind-user interface, to make computers more accessible and efficient for blind and visually impaired persons
keywords user interface, disabilities
series CADline
last changed 2003/06/02 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_33735 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002