CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 164

_id ecaaderis2023_45
id ecaaderis2023_45
authors Morton, David, Ahmed, Tarek MF and Humphery, Richard
year 2023
title BIM and Teaching in Architecture: Current thinking and approaches
source De Luca, F, Lykouras, I and Wurzer, G (eds.), Proceedings of the 9th eCAADe Regional International Symposium, TalTech, 15 - 16 June 2023, pp. 105–115
summary Increasing use of BIM has represented a continuing shift in traditional assumptions on how we navigate the design process. BIM is affording the student the ability to gain a greater understanding of their design ideas via the exploration of scale, spatial organisation and structure, amongst many other design layers, in increasing levels of detail, at the same point in the design process. Architectural education is at a delayed tipping point where architectural students are increasingly looking towards BIM to streamline their design process drawn by the production of realistic visualisation, but with a lack of knowledge and skill in its application. With a lack of guidance and understanding around the application of BIM, the use of BIM in this manner overlooks the potential of BIM to construct and test virtual simulations of proposed schemes, to support design enquiry. A historical concern for the pedagogy constructed around the students’ design process is the application of methods and techniques that support the progression through the design process, (Ambrose, 2014; dash mei & Safari, 2018). This study examines the design process of architectural students and the interaction between analogue and digital methods used in design. These primary modes of communication, offer the opportunity to query the roles and rules of traditional architectural conventions around ‘problem finding’ and ‘problem solving’, challenging the ‘traditional’ design process examined by pioneers like Bruner (1966) and Schon (1987). These approaches are distilled from the findings of the study and presented as guidance to those teaching in architectural aBIMemia to align pedagogic goals to methods of abstraction in this new era of design education reconsidering digital methods in design.
keywords BIM, BIM, Design Process, Architecture, Learning
series eCAADe
email
last changed 2024/02/05 14:28

_id 4d3b
authors Archea, John
year 1987
title Puzzle-Making : What Architects Do When No One is Looking
source New York: Wiley-Interscience, 1987. pp. 37-52. includes bibliography
summary The thesis of this paper is that architects work in a manner that is antithetical to problem-solving because they cannot explicate desired effects prior to their realization through the design process. In an attempt to clarify architecture's uncommon mode of action the author suggests that instead of specifying what they are trying to accomplish prior to their attempts to accomplish it as problem-solver do, architects treat design as a search for the most appropriate effects that can be attained in a unique context. They seek sets of combinatorial rules that will result in an internally consistent fit between a kit of parts and the effects that are achieved when those parts are assembled in a certain way
keywords puzzle making, problem solving, architecture, design process
series CADline
last changed 1999/02/12 15:07

_id bbeb
authors Pena, W., Parshall, S. and Kelly, K.
year 1987
title Problem Seeking: An architectural programming primer
source 3d ed. Washinton, D. C. AIA Press
summary Architectural programming is a team effort that requires close cooperation between architects and their clients. Problem Seeking, Fourth Edition lays out a five-step procedure that teams can follow when programming any building or series of buildings, from a small house to a hospital complex. This simple yet comprehensive process encompasses the entire range of factors that influence the design of buildings. This new edition of the only programming guide appropriate for both architect and client features new ways of thinking about programming, new strategies for effective group action, and new settings in which to explore programming concepts. Supplemented with more than 120 helpful illustrations and diagrams, this indispensable resource provides updated technical information and faster, easier access to explanations, examples, and tools.
series other
last changed 2003/04/23 15:14

_id ae05
authors Akin, Omer
year 1987
title Expertise of the Architect
source November, 1987. [13] p. unevenly numbered : ill. includes bibliography
summary One of the areas where the expertise of the seasoned architect comes out is in the initial structuring of design problems. During problem structuring the parameters and processes used in design are defined. Experienced architects modify these parameters both in global and local levels as a function of the success of their research process. Experienced architects also rely on 'scenarios' acquired through pervious experiences with similar problems to initialize their problem structures or to redefined them
keywords design, architecture, methods
series CADline
email
last changed 2003/05/17 10:09

_id 0518
authors Degelman, Larry O. and Miranda, Valerian
year 1987
title Development of Interfaces for CAD Processing in Architecture
doi https://doi.org/10.52842/conf.acadia.1987.095
source Integrating Computers into the Architectural Curriculum [ACADIA Conference Proceedings] Raleigh (North Carolina / USA) 1987, pp. 95-104
summary Substantial efforts within Europe and Japan, as well as the U.S., have been placed on automating construction processes within the building industry, while lesser efforts have been focused on computer integration in the design processes. This paper addresses the design end of the design/build spectrum and how this subject is approached in the educational and research programs at Texas A&M University. The problems of fragmentation and incompatibility of existing software data bases for building design are recognized as being the major drawbacks to significant progress in Computer-Aided Design. This is followed by a description of proposed models for future interfaces and communications linkages necessary for successful computer integration in the building design process.

Efforts in the area of CAD development are undertaken within the "computers in architecture" emphasis area in the PhD program at this university and are targeted at resolution of the CAD interface problems. This happens in both the teaching and research programs. Initially, the communication problems between the building design team and the building systems software are being approached through a PhD-level course in software development for building design problems. In this context, the non-graphical aspects of CAD are being addressed through the development of user friendly, tutorial- type software. Longer range research objectives are directed at the special three-way interfaces between the (1) Design Team, (2) Graphics Handler, and (3) Analytical Engine, and the linkages of these to the Common Data Base.

series ACADIA
email
last changed 2022/06/07 07:55

_id 0faa
authors Duelund Mortensen, Peder
year 1991
title THE FULL-SCALE MODEL WORKSHOP
source Proceedings of the 3rd European Full-Scale Modelling Conference / ISBN 91-7740044-5 / Lund (Sweden) 13-16 September 1990, pp. 10-11
summary The workshop is an institution, available for use by the public and established at the Laboratory of Housing in the Art Academy's school of Architecture for a 3 year trial period beginning April 1985. This resumé contains brief descriptions of a variety of representative model projects and an overview of all projects carried out so far, including the pilot projects from 1983 and planned projects to and including January 1987. The Full Scale Model Workshop builds full size models of buildings, rooms and parts of buildings. The purpose of the Full Scale Model Workshop is to promote communication among building's users. The workshop is a tool in an attempt to build bridges between theory and practice in research, experimentation and communication of research results. New ideas and experiments of various sorts can be tried out cheaply, quickly and efficiently through the building of full scale models. Changes can be done on the spot as a planned part of the project and on the basis of ideas and experiments achieved through the model work itself. Buildings and their space can thus be communicated directly to all involved persons, regardless of technical background or training in evaluation of building projects.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:23

_id e290
authors Kalay, Yehuda E.
year 1987
title Worldview : An Integrated Geometric Modeling/Drafting System
source IEEE Computer Graphics and Applications. February, 1987. vol. 7: pp. 36-46 : ill. (some col.). includes bibliography
summary Worldview is a computer-aided architectural and engineering design system that combines the power of geometric modeling utilities with the intuitive design and communication capabilities of drafting utilities. This article describes the basic design concepts and implementation of the system, achieved by representing the designed artifact nonredundantly in a three-dimensional 'world' and manipulating it through multiple two-dimensional 'views.' The world consists of a collection of shapes that store all the formative information pertinent to the designed artifact, while the views consist of images of selected shapes, generated through particular two-way mapping transforms. Several views that depict the same set of shapes through different transforms can be displayed simultaneously, using multiple, dynamic, user- defined windows, thereby enabling addressability of points in the 3D world. Views also include such design and communication aids as dimension lines, construction lines, annotations, and graphic symbols to enhance the visual content of the images without encumbering the representation of the shapes themselves. Modifications applied to the shapes through any view are immediately apparent in all other views in which the shapes are imaged. The shapes are represented by a data structure based on the Hybrid Edge data model, which facilitates the integration of points, lines, surfaces, and volumetric bodies into one formative hierarchy. The integration of drafting and modeling simplifies the use of powerful modeling utilities by designers, facilitates the communication of the designed artifact, and enhances the integrity of the design as a whole
keywords drafting, systems, geometric modeling, representation, user interface, computer graphics, CAD, architecture, engineering
series CADline
email
last changed 2003/06/02 10:24

_id c95f
authors Petrovic, Ivan and Svetel, Igor
year 1994
title Conversation on Design Action: By Men or by Machines?
doi https://doi.org/10.52842/conf.ecaade.1994.015
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 15-23
summary A design studio of the future shall be based on dislocated, distributed design services, and feature the ‘design by collaboration’ enabled by the computer transmitted information. However, in a collaborative design process, computer may take an additional role, i.e., as an “ultimately structured dynamic communication medium ... based on the notion of commitment and interpretation” (Winograd and Flores 1987). Various models of ‘intelligent’ design systems based on the ideas of ‘open, distributed, artificial intelligence systems’ have shown that the computer-based design agents which act on the object-to-be-designed model could be involved in a “conversation for action” (Winograd and Flores, Ibid.). The aim of the paper is to illustrate a computer-based design system that enables ‘a-kind-of’ conversations by the design agents before the design decisions were made. After the description of a design experiment and the conversation that went on between the design agents, the traits of the applied ‘design design system’ are discussed.

series eCAADe
last changed 2022/06/07 08:00

_id 0a09
authors Akin, O., Dave, B. and Pithavadian, S.
year 1987
title Problem Structuring in Architectural Design
source February, 1987. [4], 15 p. : ill. includes bibliography
summary The purpose of this research is to describe in operational terms the process of problem structuring while solving spatial problems in architectural design. The designer's behavior is described in terms of problem structuring, when problem parameters are established or transformed, and in terms of problem solving when these parameters are satisfied in a design solution. As opposed to problem solving, the structuring of problems is an under-studied but crucial aspect of complex tasks such as design. This work is based on observations derived from verbal protocol studies. To consider various levels of skill, the research subjects range from professional architects to novice designers. Subjects are given space planning problems which require them to develop solutions in accordance with individually established constraints and criteria, the majority of which are not explicit stated in the problem description. Based on the results of the protocol analysis, a framework is developed which explains how information processing characteristics, problem structure and different levels of expertise interact to influence the designer behavior
keywords architecture, design process, problem solving, protocol analysis, problem definition
series CADline
email
last changed 2003/05/17 10:09

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
doi https://doi.org/10.52842/conf.acadia.1994.039
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 266d
authors Badler, Norman I., Manoochehri, Kamran H. and Walters, Graham
year 1987
title Articulated Figure Positioning by Multiple Constraints
source IEEE Computer Graphics and Applications. June, 1987. vol. 7: pp. 28-38 : ill. Includes bibliography
summary A problem that arises in positioning an articulated figures is the solution of 3D joint positions (kinematics), when joint angles are given. If more than one such goal is to be achieved, the problem is often solved interactively by positioning or solving one component of the linkage, then adjusting another, then redoing the first, and so on. This iterative process is slow and tedious. The authors present a method that automatically solves multiple simultaneous joint position goals. The user interface offers a six-degree-of freedom input device to specify joint angles and goal positions interactively. Examples are used to demonstrate the power and efficiency of this method for key-position animation
keywords animation, constraints, computer graphics
series CADline
last changed 2003/06/02 13:58

_id 05c2
authors Balachandran, M. B. and Gero, John S.
year 1987
title Use of Knowledge in Selection and Control of Optimization Algorithms
source engineering Optimization. 1987. vol. 12: pp. 163-173
summary Computers have been widely used in optimization based problem solving processes to assist with the numerical computations. The widespread availability of symbolic computational tools and recent developments in artificial intelligence now make it feasible to expand the role of computers in this area. Various classes of knowledge used to improve the efficiency of the optimization processes are presented in this paper. A prototype system developed in the domain of multicriteria decision making is demonstrated. The system contains knowledge needed to select appropriate optimization algorithms, to control the solution process, and to select alternate algorithms if needed
keywords multicriteria, algorithms, knowledge base, systems, problem solving, optimization
series CADline
email
last changed 2003/06/02 13:58

_id 68cb
authors Fenves, Stephen J. and Baker, Nelson C.
year 1987
title Spatial and Functional Representation Language for Structural Design
source 21 p. : ill. Pittsburgh: Engineering Design Research Center, CMU, December, 1987. includes bibliography
summary Knowledge-based systems for structural design developed to date have used simple geometric representations which have not provided adequate spatial reasoning. Shape grammars are suggested as a representation for a knowledge-based system capable of performing spatial and functional reasoning. The representation needs to serve all disciplines involved in the design process, where different semantics of each discipline are associated with the same spatial information about design objects. The representation is demonstrated in the building design environment, where possible structural systems can be generated dependent upon the building's spatial layout
keywords representation, shape grammars, structures, design, problem solving, planning, civil engineering, architecture
series CADline
last changed 2003/06/02 10:24

_id e60d
authors Gross, Mark D., Ervin, Stephen M. and Anderson, James (et al)
year 1987
title Designing with Constraints
source John Wiley & Sons, 1987. pp. 53-83. includes bibliography
summary The constraint model of designing provides a means of demonstrating and exploring the computability of design. Designing is understood as a process of incrementally defining an initially ill-defined question, and concurrently proposing and testing possible answers. That is, not finding THE solution to A problem, but finding A solution to THE problem. Articulating (including inventing and modifying) the question, and exploring possible alternative answers (or designs), are two fundamental activities which can be supported by computers and the constraint model. The authors discuss the use of constraints to explicate design questions, circumscribe feasible regions and specify proposed solutions, and examine the processes of search and scrutiny within a region. Naming, solving history-keeping, block-structuring, identifying and resolving conflicts are among tasks identified that can be rendered to a computer. Questions of knowledge representation and inference making with ambiguity and imprecision are discussed. Examples of the application of the constraint model to design problems in architecture and site planning are illustrated by brief scenarios
keywords constraints, design process, search, knowledge
series CADline
last changed 2003/06/02 10:24

_id e524
authors Miranda, Valerian and Degelman, Larry 0.
year 1987
title An Experimental Computer-Aided Design Studio
doi https://doi.org/10.52842/conf.acadia.1987.019
source Integrating Computers into the Architectural Curriculum [ACADIA Conference Proceedings] Raleigh (North Carolina / USA) 1987, pp. 19-28
summary A pilot experiment was conducted in the use of microcomputers and Computer Aided Design (CAD) software for architectural design education. The CAD workstations were incorporated into two consecutive semesters of the third year design studio and consisted of TANDY 3000 HD (tm) microcomputers with 20 megabyte hard disks, digitizer tablets, digitizer mice, enhanced graphics capabilities, dot-matrix printers and multi-pen plotters. Software packages included the Personal Architect (tm), VersaCAD (tm), DataCAD (tm), word processing software etc. Student to machine ratio of 4 to 1 was maintained and the use of the equipment was made available to students for approximately 20 hours per day.

Design assignments neither emphasized nor required the use of CAD techniques, as the experiment was designed to measure the students' acceptance of and adaptation to the use of CAD tools. The objective was to "teach" design in the traditional sense of a design studio, while making the computer an integral part of the setting in which the student learned designing and problem solving.

Measurements were made of (1) time for the "fundamentals" learning curve, (2) time for a "basic competence" learning curve, (3) hours utilized by categories of type of use, (4) hours utilized by equipment and software type, and (5) progress in design ability as evaluated by the traditional jury review methods.

series ACADIA
email
last changed 2022/06/07 07:58

_id 404e
authors Oksala , T.
year 1988
title Logical Models for Rule-based CAAD
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 107-116
summary The aim of this paper is to present the basic results of a theoretic approach to represent architectural individual forms in CAD systems. From the point of view of design methodology and problem solving these descriptions might be conceived' as parts of possible environments satisfying the laws of some design theory in logical sense. This paper describes results in a series of logical studies towards rule and knowledge based systems for design automation. The effective use of programming languages and computers as design aids in architecture presupposes certain capabilities to articulate built environment logically. The use of graphic languages in the description of environmental items e.g. buildings might be theoretically mastered by formal production systems including linguistic, geometric, and spatio-material generation. The combination of the power of formal mechanisms and logical individual calculus offers suitable framework to generate arbitrary e.g. free spatial compositions as types or unique solutions. In this frame it is natural to represent in a coherent way very complex hierarchical parsing of buildings in explicit form as needed in computer implementations. In order to simulate real design work the individual configurations of possible built forms should be designed to satisfy known rules. In the preliminary stage partial solutions to design problems may be discussed in mathematical terms using frameworks like lattices, graphs, or group theoretical considerations of structural, functional, and visual organization of buildings. The capability to produce mathematically sophisticated geometric structures allows us to generalize the approach further. The theoretical design knowhow in architecture can be partly translated in to some logic and represented in a knowledge base. These rules are used as selection criteria for geometric design candidates in the sense of logical model theory and mathematical optimization. The economy of the system can be developed by using suitable conduct mechanisms familiar e.g. from logic programming. The semantics of logic offers a frame to consider computer assisted and formal generation in design. A number of semantic and pragmatic problems, however, remain to be solved. In any case conceptual analyses based on logic are applicable in order to rationally reconstruct architectural goals contributing to the quality of environmental design, which should be the main goal in the development of design systems in near future.
series CAAD Futures
last changed 1999/04/03 17:58

_id 6683
authors Rasdorf, William J. and Wang, TsoJen E.
year 1987
title Spike : A Generic Design Standards Processing Expert System
source Southampton, UK: Computational Mechanics Publications, pp. 241-257. Also published in : Applications of Artificial Intelligence in Engineering International Conference Proceedings (2nd. : 1987 : Boston, MA.)
summary Standards, codes, and specifications play an important role in the design of buildings, bridges, and other engineering systems. A design configuration must be checked against all standards to ensure that it is acceptable. This process of design conformance checking using standards is often very tedious. The successful automation of conformance checking is one of the components of a comprehensive computer-aided design system. In that past, standards were interpreted and converted into application programs written in procedural programming languages such as FORTRAN. This approach is extremely inflexible and often error-prone. To support a fully automated computer-aided design system, standards must be incorporated into the design process in a more generic and flexible manner. This paper investigates the feasibility of alternatively casting standards in a form suitable for processing in a knowledge-based expert system environment. The emergence of expert systems from artificial intelligence research has provided a technology that readily lends itself to the automation of design standards. Knowledge-based expert systems have become a powerful tool in tackling domains like design where some of the problem-solving knowledge is diverse and ill-structured. Using an expert system tool, a standard can be represented and processed independent of a CAD application program. Two prototype standards processing systems utilizing the production system approach have been constructed and are presented herein. Although the obvious direct translation casting the provisions of a standard as rules in a production system has its advantages, a more generic and flexible representation scheme is proposed herein. The approach advocated in this paper is to represent standards as databases of facts which can be readily and generically processed by an expert system. The database representation is derived from a unified view of standards obtained by using the standards modeling tools proposed by previous researchers in this field during the past decade. Building on this existing technology resulted in a knowledge- based standards processing architecture which is generic, modular, and flexible. An implementation of this architecture is presented and described
keywords standards, civil engineering, expert systems
series CADline
last changed 2003/06/02 13:58

_id 66e5
authors Rasdorf, William J. and Wang, TsoJen E.
year 1987
title Generic Design Standards Processing in a Knowledge-based expert system Environment
source Design Process, National Science Foundation Workshop Proceedings. 1987. pp. 267-291. CADLINE has abstract only
summary Standards, codes, and specifications play an important role in the design of buildings, bridges, and other engineering systems. A design configuration must be checked against all standards to ensure that it is acceptable. This process of design conformance checking using standards is often very tedious. The successful automation of conformance checking is one of the components of a comprehensive computer-aided design system. In the past, standards were interpreted and converted into application program written in procedural programming languages such as FORTRAN. This approach is extremely inflexible and often error prone. To support a fully automated computer-aided design system, standards must be incorporated into the design process in a more generic and flexible manner. This paper investigates the feasibility of alternatively casting standards in a form suitable for processing in a knowledge-based expert system environment. The emergence of expert systems from artificial intelligence research has provided a technology that readily lends itself to the automation of design standards. Knowledge-based expert systems have become a powerful tool in tackling domains like design where some of the problem-solving knowledge is diverse and ill-structured. Using an expert system tool, a standard can be represented and processed independent of a CAD application program. Two prototype standards processing systems utilizing the production system approach have been constructed and are presented herein. Although the obvious direct translation casting the provisions of a standard as rules in a production system has its advantages, a more generic and flexible representation scheme is proposed herein. The approach advocated in this paper is to represent standards as databases of facts which can be readily and generically processed by an expert system. The database representation is derived from a unified view of standards obtained by using the standards modeling tools proposed by previous researchers in this field during the past decade. Building on this existing technology resulted in a knowledge- based standards processing architecture which is generic, modular, and flexible. An implementation of this architecture is presented and described
keywords knowledge base, standards, expert systems, civil engineering
series CADline
last changed 2003/06/02 13:58

_id sigradi2013_234
id sigradi2013_234
authors Alencar, Viviane; Gabriela Celani
year 2013
title The Art of Computer Graphics Programming: Translating Pioneer Programs
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 500 - 504
summary Considering the importance of the use of programming languages for teaching computational design to architects, this paper proposes the translation of computer programs from a pioneer work in this field into a more contemporary programming language. The book The Art of Computer Graphics Programming: A Structured Introduction for Architects and Designers was published in 1987 by William J. Mitchell, Robin Ligget and Thomas Kvan, and remains an important reference for architects. The original Pascal codes in the book were translated into Processing, and made available through an Internet website, along with images and comments, in order to give late Prof. Mitchell’s work the consideration it deserves.
keywords Processing; Pascal; Computer graphics
series SIGRADI
email
last changed 2016/03/10 09:47

_id c89d
authors Bancroft, Pamela J.
year 1987
title The Integration of Computing into Architectural Education Through Computer Literate Faculty
doi https://doi.org/10.52842/conf.acadia.1987.109
source Integrating Computers into the Architectural Curriculum [ACADIA Conference Proceedings] Raleigh (North Carolina / USA) 1987, pp. 109-120
summary This paper discusses the apparent correlation between faculty computer literacy and the success of integrating computing into architectural education. Relevant questions of a 1985 national survey which was conducted to study the historical development of faculty computer utilization are analyzed and interpreted. The survey results are then used as the basis for a series of recommendations given for increasing computer literacy among faculty in architectural schools, thus increasing the integration of computing.

series ACADIA
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_85932 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002