CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 172

_id 6683
authors Rasdorf, William J. and Wang, TsoJen E.
year 1987
title Spike : A Generic Design Standards Processing Expert System
source Southampton, UK: Computational Mechanics Publications, pp. 241-257. Also published in : Applications of Artificial Intelligence in Engineering International Conference Proceedings (2nd. : 1987 : Boston, MA.)
summary Standards, codes, and specifications play an important role in the design of buildings, bridges, and other engineering systems. A design configuration must be checked against all standards to ensure that it is acceptable. This process of design conformance checking using standards is often very tedious. The successful automation of conformance checking is one of the components of a comprehensive computer-aided design system. In that past, standards were interpreted and converted into application programs written in procedural programming languages such as FORTRAN. This approach is extremely inflexible and often error-prone. To support a fully automated computer-aided design system, standards must be incorporated into the design process in a more generic and flexible manner. This paper investigates the feasibility of alternatively casting standards in a form suitable for processing in a knowledge-based expert system environment. The emergence of expert systems from artificial intelligence research has provided a technology that readily lends itself to the automation of design standards. Knowledge-based expert systems have become a powerful tool in tackling domains like design where some of the problem-solving knowledge is diverse and ill-structured. Using an expert system tool, a standard can be represented and processed independent of a CAD application program. Two prototype standards processing systems utilizing the production system approach have been constructed and are presented herein. Although the obvious direct translation casting the provisions of a standard as rules in a production system has its advantages, a more generic and flexible representation scheme is proposed herein. The approach advocated in this paper is to represent standards as databases of facts which can be readily and generically processed by an expert system. The database representation is derived from a unified view of standards obtained by using the standards modeling tools proposed by previous researchers in this field during the past decade. Building on this existing technology resulted in a knowledge- based standards processing architecture which is generic, modular, and flexible. An implementation of this architecture is presented and described
keywords standards, civil engineering, expert systems
series CADline
last changed 2003/06/02 13:58

_id 66e5
authors Rasdorf, William J. and Wang, TsoJen E.
year 1987
title Generic Design Standards Processing in a Knowledge-based expert system Environment
source Design Process, National Science Foundation Workshop Proceedings. 1987. pp. 267-291. CADLINE has abstract only
summary Standards, codes, and specifications play an important role in the design of buildings, bridges, and other engineering systems. A design configuration must be checked against all standards to ensure that it is acceptable. This process of design conformance checking using standards is often very tedious. The successful automation of conformance checking is one of the components of a comprehensive computer-aided design system. In the past, standards were interpreted and converted into application program written in procedural programming languages such as FORTRAN. This approach is extremely inflexible and often error prone. To support a fully automated computer-aided design system, standards must be incorporated into the design process in a more generic and flexible manner. This paper investigates the feasibility of alternatively casting standards in a form suitable for processing in a knowledge-based expert system environment. The emergence of expert systems from artificial intelligence research has provided a technology that readily lends itself to the automation of design standards. Knowledge-based expert systems have become a powerful tool in tackling domains like design where some of the problem-solving knowledge is diverse and ill-structured. Using an expert system tool, a standard can be represented and processed independent of a CAD application program. Two prototype standards processing systems utilizing the production system approach have been constructed and are presented herein. Although the obvious direct translation casting the provisions of a standard as rules in a production system has its advantages, a more generic and flexible representation scheme is proposed herein. The approach advocated in this paper is to represent standards as databases of facts which can be readily and generically processed by an expert system. The database representation is derived from a unified view of standards obtained by using the standards modeling tools proposed by previous researchers in this field during the past decade. Building on this existing technology resulted in a knowledge- based standards processing architecture which is generic, modular, and flexible. An implementation of this architecture is presented and described
keywords knowledge base, standards, expert systems, civil engineering
series CADline
last changed 2003/06/02 13:58

_id 4910
authors Rasdorf, William J. and Watson, Bruce R.
year 1987
title A Knowledge-Based Approach to Engineering Information Retrieval and Management
source London, UK: Chapman and Hall Ltd., 1987. pp. 267-295
summary Building design, construction, operation, maintenance, and control are all processes that have achieved various levels of computer use. Although the degree of computerization varies significantly, one common aspect of the computing needs of each process is an abundance of data in the form of tables, standards, project definition information, catalogs, etc. In most cases this data is stored in files which are independently used for input to stand-alone single-process application programs, such as a structural analysis application. The utility of these independent files is therefore limited to a single application. As concepts of integration of engineering applications evolved, the use of databases and database management systems (DBMS) increased. A number of issues of significant concern emerged. First, there is a need to retrieve data from many independent, possibly widely distributed databases. Second, there is a need for a uniform means of doing so. Third, such databases routinely undergo dynamic change. Changes in a database schema commonly result from the evolution of a design, from changes in the design process itself, and from changes in other subsequent downstream processes. Such continuing changes must be reflected in the database schemas and they subsequently require that application programs be updated and that online users be educated on a continuing basis. This chapter describes a knowledge-based expert system that provides access to and integration of the many underlying databases needed to support the building design/construction process. The unique aspect of the expert system presented in this chapter is its capture of the knowledge that an experienced human user incorporates in his search for data in a database, i.e., it seeks to identify and use the generic knowledge needed to operate a DBMS to retrieve data. This knowledge is used by the interface to enable both the online users and the application programs to request data without knowing the data's location or precisely how to ask for it. Further, the interface makes use of mechanisms that allow the user to request data without knowing the exact name by which it is stored in the database. In doing so it formalizes the levels of complexity of that knowledge and points out the multidisciplinary applications of the research results
keywords civil engineering, knowledge base, database, expert systems
series CADline
last changed 2003/06/02 10:24

_id 8331
authors Rasdorf, William J., Ulberg, Karen J. and Baugh, John W. Jr.
year 1987
title A Structure-Based Model of Semantic Integrity Constraints for Relational Databases
source International Journal of Engineering with Computers. Springer-Verlag, Spring, 1987. vol. 2: pp. 31- 39
summary Database management systems (DBMSs) are in widespread use because of the ease and flexibility with which they enable users to access large volumes of data. The use of DBMSs has spread from its origin in business applications to scientific and engineering applications as well. As engineers rely more and more on the computer for data storage, our ability to manually keep track of relationships between data and to ensure data accuracy is severely limited. The inherent fluctuations in engineering design data as well as its large volume, increase the difficulty of doing so. Ensuring data accuracy through the use of integrity constraints which limit or constrain the values of the data is a central aspect of DBMS use. Enforcing constraints (to the extend possible) is a job for the DBMS. This alleviates some of the burden placed on the user and database administrator to maintain the integrity of the database. In addition, it enables integrity constraints to be conceptually centralized and made available for inspection and modification instead of being scattered among application programs. Despite their importance, however, capabilities for handling integrity constraints in commercial DBMSs are limited and they lack adequate integrity maintenance support. In addition, a comprehensive theoretical basis for such support-the role of a constraint classification, representation, invocation, and use methodology-has yet to be developed. This paper presents a formalism that classifies semantic integrity constraints based on the structure of the relational database model. Integrity constraints are characterized by the portion of the database structure they access, whether one or more relations, attributes, or tuples. Thus, the model is completely general, allowing the identification, definition, and arbitrary specification of any constraint on a relational database. It also provides a basis for the implementation of a database integrity subsystem. Examples of each type of constraint are illustrated using a small engineering database, and various implementation issues are discussed
keywords civil engineering, relational database, constraints management
series CADline
last changed 2003/06/02 13:58

_id ee8f
authors Rasdorf, William J.
year 1987
title Extending Database Management Systems for Engineering Applications
source Computers in Mechanical Engineering (CIME). American Society of Mechanical Engineers, March, 1987. vol. 5: pp. 62-69
summary During the design of a manufactured component, large amounts of information pertaining to all aspects of the design must be stored, accessed, and operated upon. A database management system (DBMS), composed of a central repository of data and the associated software for controlling accesses to it and operations on it, provides one way to uniformly store, manage, and use this information. This paper presents a framework for an extension to relational database management systems that combines a set of engineering constraints with a database of engineering data items. The representation requires a database that is able to store all of the data normally associated with engineering design as well as the constraints imposed upon the engineering design process. A powerful and flexible constraint processing system is needed to adequately ensure that engineering data conforms to the limitations imposed upon it by the design process. Such a system must be capable of allowing constraints to be invoked at a variety of times, and provide numerous options for the user when violations are detected. This paper introduces a concept called structured constraints that integrates state- of-the-art advances in DBMSs and current research in engineering constraint processing to further enhance CAD system capabilities. It discusses the extensions to relational database theory that are needed to achieve such a constraint handling capability for mechanical engineering applications. The goal sought is a managed repository of data supporting interfaces to a wide variety of application programs and supporting processing capabilities for maintaining data integrity by incorporating engineering constraints. The Structured Constraint model is a general method for classifying semantic integrity constraints. It is based on the structure of the relational model and is therefore independent of any particular query language. In addition, it is a formalism that possesses conceptual clarity and generality which make it useful for representing and communicating arbitrary constraints. The key contribution of this formalism is its basis for a completely definable implementation of an engineering integrity system
keywords civil engineering, relational database, constraints management, management, DBMS
series CADline
last changed 2003/06/02 10:24

_id e861
authors Burnham, G.T.
year 1987
title Microcomputer-Based Expert System for the Design of Operational Military Airfields
source Department of Architectural Science, University of Sydney
summary This thesis develops a number of prototypical expert systems on a microcomputer to assist the military designer or engineer with facets of military operational airfield design. An existing expert system shell BUILD written in PROLOG-1 was altered to provide a more permanent record of the results of the system execution. The individual knowledge base includes production rules which conform to the BUILD syntax requirements. A number of additional clauses related to the knowledge base are written in PROLOG-1. The expert system consists of some 200 rules and an additional 36 clauses. The rules contain knowledge on soil characteristics pertinent to airfields, factors involved in calculating lengths of runways and factors for determining the effort involved in construction. The knowledge for the expert systems was gathered from a combination of civilian and military literature sources, the author's own experience, and discussions with military and air force personnel currently engaged in the design, planning and construction of these facilities. Development of these prototypical expert systems demonstrates the feasibility of implementing expert systems on microcomputers in this domain. Furthermore, it demonstrates their possible application to military engineering design particularly where the design process relies on a large amount of tabulated data and heuristic knowledge. It is this type of knowledge that is often used by the military engineer to find a timely problem solution when provided with a range of options. [Unpublished. -- CADLINE has abstract only.]
keywords Applications, Military Engineering, Expert Systems, Design, Planning
series thesis:MSc
last changed 2002/12/14 19:15

_id aa0b
authors Fenves, Stephen J.
year 1987
title Role of Artificial Intelligence and Knowledge-Base Expert System Methods in Civil Engineering
source 20, [21] p. Pittsburgh: Engineering Design Research Center, Carnegie Mellon University, December, 1987. includes bibliography
summary Present use of computers in civil engineering is largely devoted to numeric, algorithmic calculations. This mode is not appropriate for the empirical, heuristic, ill-structured problems of civil engineering practice. The paper reviews recent work in artificial intelligence and expert systems addressing these latter issues, identifies the distinctive features of engineering knowledge based systems, the roles of such systems, and attempts to predict their evolution
keywords AI, expert systems, knowledge base, design, methods, civil engineering
series CADline
last changed 2003/06/02 13:58

_id aef1
authors Rosenman, M.A., Gero, J.S. and Coyne, R.D. (et al)
year 1987
title SOLAREXPERT : A Prototype Expert System for Passive Solar Energy Design in Housing
source Canberra: Aust NZ Solar Energy Society, 1987. vol.II: pp. 361-370. Also published in People and Technology - Sun, Climate and Building, edited by V. Szokolay, Univ. of Queensland, Brisbane, 1988
summary Passive solar energy design is not an exact science in which a set of analytical procedures can be followed to produce results. Rather it depends heavily on subjective parameters and experience collected over time which is heuristic by nature. At present this knowledge is available in books but while this knowledge is comprehensive, it is unstructured and not always easy to make use of. A computer-based system allows for flexible interactive dialogue and for the incorporation of analytical procedures which may be required. This paper describes work on SOLAREXPERT, a prototype expert system to aid designers in passive solar energy design for single dwellings. The system operates at a strategic level to provide basic advice on the form of construction and types of passive solar systems and at a spatial zone level to provide more detailed advice on sizes and materials. It allows for modification of the information entered so that users may explore several possibilities
keywords applications, experience, housing, expert systems, energy, design, architecture
series CADline
email
last changed 2003/05/17 10:17

_id 2fac
authors Schmitt, Gerhard
year 1987
title ARCHPLAN - An Architectural Planning Front End to Engineering Design Expert Systems
source ii, 22 p. : ill
summary Engineering Design Research Center, CMU, 1987. EDRC-48-04-87. ARCHPLAN is a knowledge-based ARCHitectural PLANning front end to a set of vertically integrated engineering expert systems. ARCHPLAN is part of a larger project to explore the principles of parallel operation of expert systems in an Integrated Building Design Environment. It is designed toÔ h)0*0*0*°° ÔŒ operate in conjunction with HIRISE, a structural design expert system; with CORE and SPACER, two expert systems for the spatial layout of buildings; and with other knowledge based systems dealing with construction planning, specification, and foundation design. ARCHPLAN operates either in connection with these expert systems or as a stand- alone program. It consists of three major parts: the application, the user interface, and the graphics package
keywords The application offers a knowledge based approach towards the
series CADline
last changed 1999/02/12 15:09

_id 0cd8
authors Baker, Nelson C. and Fenves, Stephen J.
year 1987
title A Knowledge Acquisition Study of Structural Engineers Performing Preliminary Design
source 92 p. : ill. Pittsburgh, PA: Engineering Design Research Center, CMU, December, 1987. EDRC-12-19-87
summary This paper describes interviews with experts in structural engineering. Video recordings of the experts performing preliminary structural design for three buildings were obtained. The knowledge acquisition process is described and the conclusions reached are presented. The conclusions are discussed in terms of level of design detail, solution time, distribution of process and domain activities, the use of previous information in the design process, and the use of sketches
keywords knowledge acquisition, civil engineering, design process, design methods, drafting, systems, protocol analysis
series CADline
last changed 2003/06/02 10:24

_id c568
authors Balachandran, M.B. and John S. Gero
year 1987
title A Model for Knowledge Based Graphical Interfaces
source AI '87: Proceedings of the Australian Joint Artificial Intelligence Conference. 1987. pp. 505-521. Also published in Artificial Intelligence Developments and Applications edited by J. S. Gero and R Stanton, North-Holland Pub. 1988. -- CADLINE has abstract only.
summary This paper describes a model for knowledge-based graphical interface which incorporates a variety of knowledge of the domain of application. The key issues considered include graphics interpretation, extraction of features of graphics objects and identification of prototype objects. The role of such knowledge-based interfaces in computer-aided design is discussed. A prototype system developed in Prolog and C is described and its application in the domain of structural engineering is demonstrated
keywords user interface, computer graphics, knowledge base, systems, civil engineering, structures
series CADline
email
last changed 2003/06/02 13:58

_id 8f51
authors Cox, Brad J.
year 1987
title The Objective-C Environment; Past, Present, and Future
source COMPCON 88. December, 1987. 6 p. includes bibliography
summary The Objective-C environment is a growing collection of tools and reusable components (Software-ICs) for large-scale production system-building. Its goal is to make it possible for its users to build software systems in the way that hardware engineers build theirs, by reusing Software-ICs supplied by a marketplace in generic components rather than by building everything from scratch. The environment is based on conventional technology (C and Unix-style operating systems), which it includes and extends. The extensions presently include a compiled and an interpreted implementation of Objective-C (an object-oriented programming language based on C) and several libraries of reusable components (ICpaks)
keywords languages, OOPS, software, programming, business, Objective-C
series CADline
last changed 2003/06/02 13:58

_id 8385
authors Holtz, Neal M. and Rasdorf, William J.
year 1988
title An Evaluation of Programming Languages and Language Features for Engineering Software Development
source International Journal of Engineering with Computers. Springer-Verlag, 1988. vol. 3: pp. 183-199
summary Also published as 'Procedural Programming Languages for the Development of CAD and CAE Systems Software,' in the proceedings of ASME International Conference on Computers in Engineering (1987 : New York, NY). The scope of engineering software has increased dramatically in the past decade. In its early years, most engineering applications were concerned solely with solving difficult numerical problems, and little attention was paid to man- machine interaction, to data management, or to integrated software systems. Now computers solve a much wider variety of problems, including those in which numerical computations are less predominant. In addition, completely new areas of engineering applications such as artificial intelligence have recently emerged. It is well recognized that the particular programming language used to develop an engineering application can dramatically affect the development cost, operating cost. reliability, and usability of the resulting software. With the increase in the variety, functionality, and complexity of engineering software, with its more widespread use, and with its increasing importance, more attention must be paid to programming language suitability so that rational decisions regarding language selection may be made. It is important that professional engineers be aware of the issues addressed in this paper, for it is they who must design, acquire, and use applications software, as well as occasionally develop or manage its development. This paper addresses the need for engineers to possess a working knowledge of the fundamentals of computer programming languages. In pursuit of this, the paper briefly reviews the history of four well known programming languages. It then attempts to identify and to look critically at the attributes of programming languages that significantly affect the production of engineering software. The four procedural programming languages chosen for review are those intended for scientific and general purpose programming, FORTRAN 77, C, Pascal, and Modula-2. These languages are compared and some general observations are made. As it is felt important that professional engineers should be able to make informed decisions about programming language selection, the emphasis throughout this paper is on a methodology of evaluation of programming languages. Choosing an appropriate language can be a complex task and many factors must be considered. Consequently, fundamentals are stressed
keywords programming, engineering, languages, software, management, evaluation, FORTRAN, C, PASCAL, MODULA-2, CAD, CAE
series CADline
last changed 2003/06/02 13:58

_id c7e0
id c7e0
authors Maria Gabriela Caffarena Celani
year 2002
title BEYOND ANALYSIS AND REPRESENTATION IN CAD: A NEW COMPUTATIONAL APPROACH TO DESIGN EDUCATION
source Submitted to the Department of Architecture in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Architecture: Design & Computation at the Massachusetts Institute of Technology
summary This thesis aims at changing students' attitude towards the use of computer-aided design (CAD) in architecture. It starts from the premise that CAD is used mostly for analysis and representation, and not as a real design aide, and that architecture students have a bias against learning computer programming. For this purpose, a prototypical instruction system that mixes computer-aided design and computational design theory was developed, based on a series of fundamental concepts that are common to both fields. This system was influenced by Mitchell's (1987) The Art of Computer Graphics Programming and Stiny's (1976) shape grammars. Despite being based on solid theoretical foundations, CAD has progressively become an exclusively practical tool, since its origins in the 50's and 60's, while computational design theories have been mostly restricted to the academic circles. This thesis proposes an inversion in the present situation: the study of CAD theory, and the application of computational design into practice. The system proposed provides a conceptual framework that can be adapted to different circumstances, including course formats and resources, as well as students' background and technical training. It is based on seven fundamental concepts from computational design theories that are also important to the study of shape grammars: symmetry, recursion, rule-based compositions, parameterization of shapes, generative systems, algorithmization of design procedures, and shape emergence. These concepts are introduced within a CAD context, where their practical implementation and experimentation are possible, focusing the understanding of the computational nature of design. During this research, the proposed system was tested in two case studies with students from schools that had contrary orientations in terms of the importance of CAD in the architectural curriculum. In these experimental courses, students' activities evolved from using a commercial CAD tool in an innovative way, to the use of programming techniques for creating meaningful tools. Despite not having a statistical reach, the fieldwork allowed drawing preliminary conclusions about the proposed system's efficacy, since virtually all the students reported changing their understanding of the role of CAD in architecture, while some also acknowledged a conceptual influence in other subjects and in the way they see architecture.
keywords Symmetry
series thesis:PhD
type normal paper
email
more http://www.fec.unicamp.br/~celani/
last changed 2004/11/17 20:51

_id a60d
authors Bairstow, Jeffrey N.
year 1987
title Personal Workstations Redefine Desktop Computing
source high Technology. March, 1987. pp. 18-23 : ill. includes bibliography: p. 64
summary Becoming an essential tool in any creative activity, the personal workstations were successfully adopted by software developers for designing both system and application software, by electronics engineers for computer-aided design, and by a wide range of businesses for technical publishing. The rapid adoption of networking and file standards by the workstation manufacturers will undoubtedly put them in a good position to install large networks of both PCs and workstations linked to existing corporate mainframe computers
keywords hardware, technology, business
series CADline
last changed 2003/06/02 13:58

_id a18d
authors Rasdorf, William J. and Storaasli, Olaf O.
year 1987
title Educational Fundamentals of Computer-Aided Engineering
source International Journal of Applied Engineering Education. Oxford: Pergamon Press, 1987. vol. 3: pp. 247-254
summary The role of computer science is increasing in nearly every engineering discipline. One of the dilemmas in engineering education today is how future engineers can best assimilate the advanced, yet fundamental, knowledge of computer science appropriate for their professional engineering career. This paper suggests that the role of the academic community must be to prepare engineering students to use computer methods and applications as a part of their fundamental engineering education. It is the responsibility of colleges and universities to incorporate contemporary computing fundamentals into their academic curriculum to improve the professional qualifications of their engineering graduates. This paper discusses current educational practices and their shortcomings as well as new options to reinforce and enhance the role of computing in engineering. The key ingredients, operating system fundamentals, data structures, program control and organization, algorithms, and computer architectures (relative to concurrent processing) are discussed. The paper suggests that to convey the essentials of computer science to future engineers requires in part, the addition of computer courses to the engineering curriculum. It also requires a strengthening of the computational content of many others so that the student comes to treat the computer as a fundamental component of his work. Indeed this is a major undertaking but the benefits of advanced computer knowledge by new engineering graduates promises to provide significant future innovations in the engineering profession. The proper tradeoff between engineering fundamentals and computer science is changing with many of the concepts of engineering now being packaged in algorithms or on computer chips. The impact of advances in computer technology on engineering education are therefore discussed. Several of the benefits of enhanced computational expertise by engineers are enumerated and case studies of recent NASA initiatives whose success required that engineers possess an in-depth knowledge of computer science are presented
keywords CAE, civil engineering, education
series CADline
last changed 2003/06/02 10:24

_id 016a
authors Balachandran, M. B. and Gero, John S.
year 1987
title A Knowledge-based Approach to Mathematical Design Modeling and Optimization
source engineering Optimization. 1987. vol. 12: pp. 91-115
summary Optimization is a well understood process in design domains. Designers formulate their design problems as single criterion or multicriteria optimization problems and then select an appropriate optimization algorithm to search for the optimal values for the design variables. The formulation and algorithm selection procedures have been considered to be activities which relied on substantive human knowledge. This paper describes a computer system, OPTIMA, which formulates design optimization problems from a pseudo-English description into canonical algebraic expressions. It then recognizes the formulation and selects appropriate algorithm(s) for its solution. Finally, it runs the selected algorithm(s) and sends the results back to the original descriptions. Areas of expert knowledge involved in carrying out the above tasks are identified. Such knowledge is explicitly encoded in the system. The basic philosophy and key features of the system are described and are illustrated with examples
keywords structures, algorithms, knowledge base, systems, optimization, engineering
series CADline
email
last changed 2003/06/02 13:58

_id 9583
authors Brown, Stephen
year 1987
title Computer-Aided Learning Support for Environmental Design Students Ergonomic Design
source Proceedings of the Human Factors Society 31st Annual Meeting 1987 pp. 889-893
summary Intelligent CAD systems could be a useful vehicle for disseminating Human Factors principles among non Human Factors designers. Limitations of current CAD systems are discussed and an experimental system is described. It is suggested that future CAD systems should be less than expert, should be responsive to different learning styles and should employ a variety of electronic media at the user interface.
series other
last changed 2002/07/07 16:01

_id a1a1
authors Cornick, T. and Bull, S.
year 1988
title Expert Systems for Detail Design in Building
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 117-126
summary Computer-Aided Architectural Design (CAAD) requires detailed knowledge of the construction of building elements to be effective as a complete design aid. Knowledge-based systems provide the tools for both encapsulating the "rules" of construction - i.e. the knowledge of good construction practice gained from experience - and relating those rules to geometric representation of building spaces and elements. The "rules" of construction are based upon the production and performance implications of building elements and how these satisfy various functional criteria. These building elements in turn may be related to construction materials, components and component assemblies. This paper presents two prototype knowledge-based systems, one dealing with the external envelope and the other with the internal space division of buildings. Each is "component specific" and is based upon its own model of the overall construction. This paper argues that "CAAD requires component specific knowledge bases and that integration of these knowledge bases into a knowledge-based design system for complete buildings can only occur if every knowledge base relates to a single coordinated construction model".
series CAAD Futures
last changed 1999/04/03 17:58

_id ec19
authors Dhar, Vasant and Pople, Harry E.
year 1987
title Rule-Based Versus Structure- Base Models for Explaining Generating Expert Behavior
source Communications of the ACM. June, 1987. vol. 30: pp. 542-554 : ill. includes bibliography
summary Flexible representations are required in order to understand and generate expert behavior. In this article the authors argue for a representation that contains partial model components that are synthesized into qualitative models containing entities and relationships relevant to the domain. The model components can be replaced and arranged in response to changes in the task environment. The authors have found this 'model constructor' to be useful in synthesizing models that explain and generate expert behavior, and have explored its ability to support decision making in the problem domain of business resource planning, where reasoning is based on models that evolve in response to changing external conditions or internal policies
keywords AI, cognition, modeling, expert systems, knowledge base, representation
series CADline
last changed 2003/06/02 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_553496 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002