CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 113

_id ddss2006-hb-187
id DDSS2006-HB-187
authors Lidia Diappi and Paola Bolchi
year 2006
title Gentrification Waves in the Inner-City of Milan - A multi agent / cellular automata model based on Smith's Rent Gap theory
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 187-201
summary The aim of this paper is to investigate the gentrification process by applying an urban spatial model of gentrification, based on Smith's (1979; 1987; 1996) Rent Gap theory. The rich sociological literature on the topic mainly assumes gentrification to be a cultural phenomenon, namely the result of a demand pressure of the suburban middle and upper class, willing to return to the city (Ley, 1980; Lipton, 1977, May, 1996). Little attempt has been made to investigate and build a sound economic explanation on the causes of the process. The Rent Gap theory (RGT) of Neil Smith still represents an important contribution in this direction. At the heart of Smith's argument there is the assumption that gentrification takes place because capitals return to the inner city, creating opportunities for residential relocation and profit. This paper illustrates a dynamic model of Smith's theory through a multi-agent/ cellular automata system approach (Batty, 2005) developed on a Netlogo platform. A set of behavioural rules for each agent involved (homeowner, landlord, tenant and developer, and the passive 'dwelling' agent with their rent and level of decay) are formalised. The simulations show the surge of neighbouring degradation or renovation and population turn over, starting with different initial states of decay and estate rent values. Consistent with a Self Organized Criticality approach, the model shows that non linear interactions at local level may produce different configurations of the system at macro level. This paper represents a further development of a previous version of the model (Diappi, Bolchi, 2005). The model proposed here includes some more realistic factors inspired by the features of housing market dynamics in the city of Milan. It includes the shape of the potential rent according to city form and functions, the subdivision in areal submarkets according to the current rents, and their maintenance levels. The model has a more realistic visualisation of the city and its form, and is able to show the different dynamics of the emergent neighbourhoods in the last ten years in Milan.
keywords Multi agent systems, Housing market, Gentrification, Emergent systems
series DDSS
last changed 2006/08/29 12:55

_id e290
authors Kalay, Yehuda E.
year 1987
title Worldview : An Integrated Geometric Modeling/Drafting System
source IEEE Computer Graphics and Applications. February, 1987. vol. 7: pp. 36-46 : ill. (some col.). includes bibliography
summary Worldview is a computer-aided architectural and engineering design system that combines the power of geometric modeling utilities with the intuitive design and communication capabilities of drafting utilities. This article describes the basic design concepts and implementation of the system, achieved by representing the designed artifact nonredundantly in a three-dimensional 'world' and manipulating it through multiple two-dimensional 'views.' The world consists of a collection of shapes that store all the formative information pertinent to the designed artifact, while the views consist of images of selected shapes, generated through particular two-way mapping transforms. Several views that depict the same set of shapes through different transforms can be displayed simultaneously, using multiple, dynamic, user- defined windows, thereby enabling addressability of points in the 3D world. Views also include such design and communication aids as dimension lines, construction lines, annotations, and graphic symbols to enhance the visual content of the images without encumbering the representation of the shapes themselves. Modifications applied to the shapes through any view are immediately apparent in all other views in which the shapes are imaged. The shapes are represented by a data structure based on the Hybrid Edge data model, which facilitates the integration of points, lines, surfaces, and volumetric bodies into one formative hierarchy. The integration of drafting and modeling simplifies the use of powerful modeling utilities by designers, facilitates the communication of the designed artifact, and enhances the integrity of the design as a whole
keywords drafting, systems, geometric modeling, representation, user interface, computer graphics, CAD, architecture, engineering
series CADline
email
last changed 2003/06/02 10:24

_id 0a09
authors Akin, O., Dave, B. and Pithavadian, S.
year 1987
title Problem Structuring in Architectural Design
source February, 1987. [4], 15 p. : ill. includes bibliography
summary The purpose of this research is to describe in operational terms the process of problem structuring while solving spatial problems in architectural design. The designer's behavior is described in terms of problem structuring, when problem parameters are established or transformed, and in terms of problem solving when these parameters are satisfied in a design solution. As opposed to problem solving, the structuring of problems is an under-studied but crucial aspect of complex tasks such as design. This work is based on observations derived from verbal protocol studies. To consider various levels of skill, the research subjects range from professional architects to novice designers. Subjects are given space planning problems which require them to develop solutions in accordance with individually established constraints and criteria, the majority of which are not explicit stated in the problem description. Based on the results of the protocol analysis, a framework is developed which explains how information processing characteristics, problem structure and different levels of expertise interact to influence the designer behavior
keywords architecture, design process, problem solving, protocol analysis, problem definition
series CADline
email
last changed 2003/05/17 10:09

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
doi https://doi.org/10.52842/conf.acadia.1994.039
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 016a
authors Balachandran, M. B. and Gero, John S.
year 1987
title A Knowledge-based Approach to Mathematical Design Modeling and Optimization
source engineering Optimization. 1987. vol. 12: pp. 91-115
summary Optimization is a well understood process in design domains. Designers formulate their design problems as single criterion or multicriteria optimization problems and then select an appropriate optimization algorithm to search for the optimal values for the design variables. The formulation and algorithm selection procedures have been considered to be activities which relied on substantive human knowledge. This paper describes a computer system, OPTIMA, which formulates design optimization problems from a pseudo-English description into canonical algebraic expressions. It then recognizes the formulation and selects appropriate algorithm(s) for its solution. Finally, it runs the selected algorithm(s) and sends the results back to the original descriptions. Areas of expert knowledge involved in carrying out the above tasks are identified. Such knowledge is explicitly encoded in the system. The basic philosophy and key features of the system are described and are illustrated with examples
keywords structures, algorithms, knowledge base, systems, optimization, engineering
series CADline
email
last changed 2003/06/02 13:58

_id 696c
authors Beheshti, M. and Monroy, M.
year 1988
title Requirements for Developing an Information System for Architecture
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 149-170
summary This paper discusses possibilities of developing new tools for architectural design. It argues that architects should meet the challenge of information technology and computer-based design techniques. One such attempt has been the first phase of the development of an architectural design information system (ADIS), also an architectural design decision support system. The system should benefit from the developments of the artificial intelligence to enable the architect to have access to information required to carry out design work. In other words: the system functions as a huge on-line electronic library of architecture, containing up-to-date architectural design information, literature, documents, etc. At the same time, the system offers necessary design aids such as computer programs for design process, drawing programs, evaluation programs, cost calculation programs, etc. The system also provides data communication between the architect and members of the design coalition team. This is found to be of vital importance in the architectural design process, because it can enable the architect to fit in changes, brought about in the project by different parties. Furthermore, they will be able, to oversee promptly the consequences of changes or decisions in a comprehensive manner. The system will offer advantages over the more commonly applied microcomputer based CAAD and IGDM (integrated graphics database management) systems, or even larger systems available to an architect. Computer programs as well as hardware change rapidly and become obsolete. Therefore, unrelenting investment pressure to up-date both software and hardware exists. The financial burden of this is heavy, in particular for smaller architectural practices (for instance an architect working for himself or herself and usually with few or no permanent staff). ADIS, as an on-line architectural design aid, is constantly up-dated by its own organisation. This task will be co-ordinated by the ADIS data- base administrator (DBA). The processing possibilities of the system are faster, therefore more complex processing tasks can be handled. Complicated large graphic data files, can be easily retrieved and manipulated by ADIS, a large system. In addition, the cost of an on-line system will be much less than any other system. The system is based on one model of the architectural design process, but will eventually contain a variety of design models, as it develops. The development of the system will be an evolutionary process, making use of its users' feed-back system. ADIS is seen as a step towards full automation of architectural design practices. Apart from being an architectural design support system, ADIS will assist the architect in his/her administrative and organisational activities.
series CAAD Futures
last changed 2003/11/21 15:16

_id 8e02
authors Brown, A.G.P. and Coenen, F.P.
year 2000
title Spatial reasoning: improving computational efficiency
source Automation in Construction 9 (4) (2000) pp. 361-367
summary When spatial data is analysed the result is often very computer intensive: even by the standards of contemporary technologies, the machine power needed is great and the processing times significant. This is particularly so in 3-D and 4-D scenarios. What we describe here is a technique, which tackles this and associated problems. The technique is founded in the idea of quad-tesseral addressing; a technique, which was originally applied to the analysis of atomic structures. It is based on ideas concerning Hierarchical clustering developed in the 1960s and 1970s to improve data access time [G.M. Morton, A computer oriented geodetic database and a new technique on file sequencing, IBM Canada, 1996.], and on atomic isohedral (same shape) tiling strategies developed in the 1970s and 1980s concerned with group theory [B. Grunbaum, G.C. Shephard, Tilings and Patterns, Freeman, New York, 1987.]. The technique was first suggested as a suitable representation for GIS in the early 1980s when the two strands were brought together and a tesseral arithmetic applied [F.C. Holdroyd, The Geometry of Tiling Hierarchies, Ars Combanitoria 16B (1983) 211–244.; S.B.M. Bell, B.M. Diaz, F.C. Holroyd, M.J.J. Jackson, Spatially referenced methods of processing raster and vector data, Image and Vision Computing 1 (4) (1983) 211–220.; Diaz, S.B.M. Bell, Spatial Data Processing Using Tesseral Methods, Natural Environment Research Council, Swindon, 1986.]. Here, we describe how that technique can equally be applied to the analysis of environmental interaction with built forms. The way in which the technique deals with the problems described is first to linearise the three-dimensional (3-D) space being investigated. Then, the reasoning applied to that space is applied within the same environment as the definition of the problem data. We show, with an illustrative example, how the technique can be applied. The problem then remains of how to visualise the results of the analysis so undertaken. We show how this has been accomplished so that the 3-D space and the results are represented in a way which facilitates rapid interpretation of the analysis, which has been carried out.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id e861
authors Burnham, G.T.
year 1987
title Microcomputer-Based Expert System for the Design of Operational Military Airfields
source Department of Architectural Science, University of Sydney
summary This thesis develops a number of prototypical expert systems on a microcomputer to assist the military designer or engineer with facets of military operational airfield design. An existing expert system shell BUILD written in PROLOG-1 was altered to provide a more permanent record of the results of the system execution. The individual knowledge base includes production rules which conform to the BUILD syntax requirements. A number of additional clauses related to the knowledge base are written in PROLOG-1. The expert system consists of some 200 rules and an additional 36 clauses. The rules contain knowledge on soil characteristics pertinent to airfields, factors involved in calculating lengths of runways and factors for determining the effort involved in construction. The knowledge for the expert systems was gathered from a combination of civilian and military literature sources, the author's own experience, and discussions with military and air force personnel currently engaged in the design, planning and construction of these facilities. Development of these prototypical expert systems demonstrates the feasibility of implementing expert systems on microcomputers in this domain. Furthermore, it demonstrates their possible application to military engineering design particularly where the design process relies on a large amount of tabulated data and heuristic knowledge. It is this type of knowledge that is often used by the military engineer to find a timely problem solution when provided with a range of options. [Unpublished. -- CADLINE has abstract only.]
keywords Applications, Military Engineering, Expert Systems, Design, Planning
series thesis:MSc
last changed 2002/12/14 19:15

_id 8f51
authors Cox, Brad J.
year 1987
title The Objective-C Environment; Past, Present, and Future
source COMPCON 88. December, 1987. 6 p. includes bibliography
summary The Objective-C environment is a growing collection of tools and reusable components (Software-ICs) for large-scale production system-building. Its goal is to make it possible for its users to build software systems in the way that hardware engineers build theirs, by reusing Software-ICs supplied by a marketplace in generic components rather than by building everything from scratch. The environment is based on conventional technology (C and Unix-style operating systems), which it includes and extends. The extensions presently include a compiled and an interpreted implementation of Objective-C (an object-oriented programming language based on C) and several libraries of reusable components (ICpaks)
keywords languages, OOPS, software, programming, business, Objective-C
series CADline
last changed 2003/06/02 13:58

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id ec19
authors Dhar, Vasant and Pople, Harry E.
year 1987
title Rule-Based Versus Structure- Base Models for Explaining Generating Expert Behavior
source Communications of the ACM. June, 1987. vol. 30: pp. 542-554 : ill. includes bibliography
summary Flexible representations are required in order to understand and generate expert behavior. In this article the authors argue for a representation that contains partial model components that are synthesized into qualitative models containing entities and relationships relevant to the domain. The model components can be replaced and arranged in response to changes in the task environment. The authors have found this 'model constructor' to be useful in synthesizing models that explain and generate expert behavior, and have explored its ability to support decision making in the problem domain of business resource planning, where reasoning is based on models that evolve in response to changing external conditions or internal policies
keywords AI, cognition, modeling, expert systems, knowledge base, representation
series CADline
last changed 2003/06/02 13:58

_id e7a8
authors Emde, H.
year 1988
title Geometrical Fundamentals for Design and Visualization of Spatial Objects
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 171-178
summary Every architectural object is a 3-dimensional entity of the human environment, haptically tangible and optically visible. During the architectural process of planning every object should be designed as a body and should be visualized in pictures. Thus the parts of construction get an order in space and the steps of construction get an order in time. The ideal planning object is a simulated anticipation of the real building object, which is to be performed later on. The possibility to relate the planning object immediately to the building object relies on the fact that they both have the same "geometry" This means: both can be described in the same geometric manner. Creating and visualizing spatial objects is based on geometrical fundamentals. Theoretical knowledge and practical control of these fundamentals is essential for the faultless construction and the realistic presentation of architectural objects. Therefore they have to be taught and learned thoroughly in the course of an architectural education. Geometrical design includes the forming of object- models (geometry of body boundaries), the structuring of object-hierarchies (geometry of body combinations) and the colouring of objects. Geometrical visualization includes controlling the processes of motion, of the bodies (when moving objects) and of the center of observation (when moving subjects) as well as the representation of 3-dimensional objects in 2- dimensional pictures and sequences of pictures. All these activities of architects are instances of geometrical information processing. They can be performed with the aid of computers. As for the computer this requires suitable hardware and software, as for the architect it requires suitable knowledge and capabilities to be able to talk about and to recall the perceivable objects and processes of the design with logic abstracts (language of geometry). In contrast to logical, numerical and textual informations the geometric informations concerning spatial objects are of much higher complexity. Usually these complexes of information are absorbed, processed and transmitted by the architect in a perceptive manner. The computer support in the field of geometry assumes that the processing of perceptions of the human consciousness can be converted by the computer as a framework of logical relations. Computer aided construction and representation require both suited devices for haptical and optical communication and suitable programs in particular.
series CAAD Futures
last changed 1999/04/03 17:58

_id a7c1
authors Galle, Per
year 1987
title A Basic Problem Definition Language for Automated Floor Plan Design
source 113 p. 1987. DIKU Research Report No. 87/4
summary CADLINE has abstract only. Algorithms for automated floor plan design need a machine- readable description of properties of the desired floor plans. In this report BPDL ('Basic Problem Definition Language'), a rudimentary language for stating such descriptions, is developed. The development is based on a discussion of pragmatic aspects of possible features of the language. The resulting language is described by formal definitions of syntax and semantics, accompanied by informal explanations. Finally, experiments with a floor plan design algorithm that supports BPDL are reported and it is concluded that even a rudimentary language like BPDL can describe relatively non- trivial floor plan layouts, provided a set of geometrical primitives, attributes and relations that make up the language are carefully chosen. Further research along the lines of BPDL is suggested, and the importance of a systematic approach to development of future specification languages for architectural design is stressed
keywords architecture, floor plans, design, attributes, relations, semantics, algorithms, synthesis, planning, languages
series CADline
last changed 1999/02/12 15:08

_id 2ac0
authors Galle, Per
year 1987
title A Formalized Concept of Sketching in Automated Floor Plan Design
source 177 p. 1987. DIKO Research Report No.87/3
summary CADLINE has abstract only. Automated floor plan design, though originally motivated by the difficulties encountered by architects manually designing building layouts, raise several questions that may be of relevance to related application areas as well. e.g. design of electronic circuitry. One such question is, 'how do we come from a given set of constraints on size and placement of rooms (components) to a set of floor plans (circuit layouts) that satisfy these constraints?' In manual architectural design, sketches are used as an intermediate step. The present work is a study of a number of formalizations of the sketch concept which have been or could be used in computer- generation of architectural floor plans. A particular type of sketch, called the 'delta-derivative', is suggested and developed. The delta-derivative of a desired solution plan is an approximation of that solution plan and usually several other similar or 'equivalent' solutions. The idea is to generate sketches ('abstract' plans) before solutions ('concrete' plans), because they are simpler to compute, weeding out sketches that are not 'promising', and trying to refine the remaining sketches into solutions proper, thus limiting the amount of combinatorial search. Several abstraction levels of sketches may be used in this process. However, constraints as specified by the user of an automated design system are assumed to apply to the solutions; therefore a major theoretical problem which is addressed in the report is the derivation of sketch-level constraints that define which sketches to be generated. A comprehensive floor plan design system based on these ideas has been implemented, and empirical results are reported which confirms certain predicted advantages of delta-derivatives but also shows that the sketch-level constraints based on the developed theory are too weak if used alone; they allow generation of too many sketches which cannot possibly be refined into solutions. The report finally conjectures a solution to this problem
keywords CAD, planning, architecture, floor plans, design, combinatorics, programming, abstraction
series CADline
last changed 1999/02/12 15:08

_id 476d
authors Gero, J. and Maher, M.
year 1988
title Future Roles of Knowledge-based Systems in the Design Process
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 81-90
summary This paper examines the future roles of knowledge-based systems in the design process. It commences with a brief review of computer-aided design and knowledge-based systems prior to examining the present and future roles of knowledge-based systems in design under the headings of: design analysis/formulation; design synthesis; and design evaluation. The paper concludes with a discussion on design integration, novel design, and detail design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id c948
authors Gero, John S. and Maher, Mary Lou
year 1987
title A Future Role of Knowledge-based Systems in the Design Process
source CAAD Futures'87 International Conference Computer Aided Architectural Design. May, 1987. Amsterdam: Elsevier, pp. 81-90. includes bibliography
summary This paper examines the future role of knowledge-based systems in the design process. It commences with a brief review of computer-aided design and knowledge-based systems prior to examining the present and future roles of knowledge- based systems in design under the headings of: Design Analysis (design formulation); Design Synthesis; Design Evaluation; and Detail Design. The paper concludes with a discussion on design integration and on novel design
keywords design process, knowledge base, systems, CAD, synthesis, evaluation, analysis, detailing
series CADline
email
last changed 2003/06/02 10:24

_id 448b
authors Gerzso, Miguel J.
year 1987
title On the Reasons for Designing an Object Based Language Called TM
source 1987. 7 p. : ill. includes bibliography
summary One of the most basic problems in attempting to use computers for architectural applications has been the generation of design alternatives. In order to approach this problem, it is claimed in the paper that in reality it is two basic problems: a methodological problem and a data and procedural representation problem. Diagrammatic Production Rules (DPR's), developed previously by the author, have been proposed for dealing with methodological problem and TM, an object based language, is proposed in the paper for dealing with the data and procedural representation problem. An example of a DPR and a 'program' in TM are included to illustrate the relationship between the two
keywords languages, representation, OOPS, CAD, applications, programming, architecture, synthesis, design
series CADline
last changed 2003/06/02 13:58

_id cd8d
authors Herbert, Daniel M.
year 1987
title Study Drawings in Architectural Design: Applications for CAD Systems
source Integrating Computers into the Architectural Curriculum [ACADIA Conference Proceedings] Raleigh (North Carolina / USA) 1987, pp. 157-168
doi https://doi.org/10.52842/conf.acadia.1987.157
summary To guide their future development, research and teaching in computer-aided design must look beyond the technical capabilities of computer systems to establish a theoretical foundation based on known processes in design. This paper suggests that such a theoretical foundation can be derived by analyzing architectural study drawings -- defined as the rough drawings that architects make in the exploratory stages of design -- to determine their epistemelogical properties. The analysis brings forward concepts from a number of disciplines related to the structure of human knowledge to identify five properties of study drawings. Based on these properties, the paper proposes strategies for application to the next generation of research and teaching in CAD systems.
series ACADIA
last changed 2022/06/07 07:49

_id 0740
authors Herman, M. Jackson, N. and Pomerenke, S.
year 1987
title Four-D Architectural Exploration Through CAD: Applications of the Computer to Architectural History
source Integrating Computers into the Architectural Curriculum [ACADIA Conference Proceedings] Raleigh (North Carolina / USA) 1987, pp. 55-64
doi https://doi.org/10.52842/conf.acadia.1987.055
summary This paper, which is based on ongoing research, demonstrates methods of utilizing Computer-Aided Design (CAD) to explore objects of architectural significance in relation to time and space. The paper shows how the use of animated walk-through allows these objects to be experienced with the realism of built form which no other means of recording can achieve.

The paper argues that, through the use of the computer, the whole nature of Architectural History, as it is currently taught in schools of architecture, will need to be changed and that a more pragmatic, hands- on approach to the subject will have to be adopted. Thus we advocate that the computer, the tool of today and the future, will allow students to experience architecture in the way they did in the past, from the Grand Tour to the architectural apprenticeship, aU before the introduction of architectural academies.

series ACADIA
type normal paper
last changed 2022/06/07 07:51

_id 671c
authors Kalay, Yehuda E., Swerdloff, Lucien M. and Harfmann, Anton C.
year 1987
title A Knowledge-Based Approach to Dynamic Computer-Aided Design Task Allocation
source Expert Systems in Computer-Aided Design: Proceeding of the IFIP WG 5.2 Working Conference on Expert system in Computer-Aided Design --- edited by Gero, John S Sydney: North-Holland, 1987. pp. 203-224 : ill. includes bibliography.
summary A model of the design process control that supports dynamic allocation of tasks between a designer and a computer is presented. The model is discussed theoretically, and is demonstrated through a Prolog implementation for the participatory design of single family houses. Its utility and universal applicability are established, as well as its relationship to other computational approaches to design automation
keywords expert systems, design process, knowledge base, architecture, control, housing, applications
series CADline
email
last changed 2003/06/02 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5HOMELOGIN (you are user _anon_636859 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002