CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 56
Reformat results as: short short into frame detailed detailed into frame
Efforts in the area of CAD development are undertaken within the "computers in architecture" emphasis area in the PhD program at this university and are targeted at resolution of the CAD interface problems. This happens in both the teaching and research programs. Initially, the communication problems between the building design team and the building systems software are being approached through a PhD-level course in software development for building design problems. In this context, the non-graphical aspects of CAD are being addressed through the development of user friendly, tutorial- type software. Longer range research objectives are directed at the special three-way interfaces between the (1) Design Team, (2) Graphics Handler, and (3) Analytical Engine, and the linkages of these to the Common Data Base.
It is the view of the author that a student can obtain much more from her or his first course in CAADD if some fundamental concepts are covered specifically and dramatically, rather than assumed or conveyed by osmosis. On the other hand, one does not want to significantly delay the teaching of he principal objective: how to use a computer as a partner in design and production. The answer to meeting these two divergent objectives is two-fold: (1) careful organization with computer based tutorials, and (2) integration of architectonic lessons during the introduction.
The objectives of he initial five weeks are (1) to demystify computers, (2) teach the fundamental concepts of computer systems relating to hardware (disks, cpu, memory, display), and software (programs, data, files), (3) illustrate programming and program design, and (4) convey the concept of discrete symbol manipulation and its relation to graphics and text.
Design assignments neither emphasized nor required the use of CAD techniques, as the experiment was designed to measure the students' acceptance of and adaptation to the use of CAD tools. The objective was to "teach" design in the traditional sense of a design studio, while making the computer an integral part of the setting in which the student learned designing and problem solving.
Measurements were made of (1) time for the "fundamentals" learning curve, (2) time for a "basic competence" learning curve, (3) hours utilized by categories of type of use, (4) hours utilized by equipment and software type, and (5) progress in design ability as evaluated by the traditional jury review methods.
An interview technique was developed to address three main concerns: (1) how computers are and should be utilized in areas--i.e., research, course preparation, lecture delivery, computer-aided instruction, grading and monitoring, and student exercises; (2) what kinds of applications are and should be utilized--i.e., word processing, statistics, graphics, drafting, modeling, audio-visual, database, etc.; and (3) what problems or concerns stand in the way of achieving the desired levels of computer usage.
The twenty-three full-time faculty surveyed (96% participation) represent 65 curriculum courses varying in format from design studio and labs to lecture. This paper outlines the methods of the study and presents the findings via graphs of current and desired computer usage by both area and application along with a graphic summary of statistics and trends. Also presented are a summary of root problems and concerns noted during the interview process and conclusions and limitations of study.
One cannot conduct such studies on real cities except, perhaps, as a point of departure at some specific point in time to provide an initial layout for a city knowing that future forms derived by the studies will diverge from that recorded in history. An entirely imaginary city is therefore chosen. Although the components of this city at the level of individual buildings are taken from known cities in history, this choice does not preclude alternative forms of the city. To some degree, building types are invariants and, as argued in the Appendix, so are the urban typologies into which they may be grouped. In this imaginary city students of urban history play the role of citizens or groups of citizens. As they defend their interests and make concessions, while interacting with each other in their respective roles, they determine the nature of the city as it evolves through the major periods of Western urban history in the form of threedimensional computer models.
My colleague R.J. van Pelt and I presented this approach to the study of urban history previously at ACADIA (Seebohm and van Pelt 1990). Yet we did not pay sufficient attention to the manner in which such urban models should be structured and how the efforts of the participants should be coordinated. In the following sections I therefore review what the requirements are for three-dimensional modeling to support studies in urban history as outlined both from the viewpoint of file structure of the models and other viewpoints which have bearing on this structure. Three alternative software schemes of progressively increasing complexity are then discussed with regard to their ability to satisfy these requirements. This comparative study of software alternatives and their corresponding file structures justifies the present choice of structure in relation to the simpler and better known generic alternatives which do not have the necessary flexibility for structuring the urban model. Such flexibility means, of course, that in the first instance the modeling software is more timeconsuming to learn than a simple point and click package in accord with the now established axiom that ease of learning software tools is inversely related to the functional power of the tools. (Smith 1987).
For more results click below: