CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 176

_id 016a
authors Balachandran, M. B. and Gero, John S.
year 1987
title A Knowledge-based Approach to Mathematical Design Modeling and Optimization
source engineering Optimization. 1987. vol. 12: pp. 91-115
summary Optimization is a well understood process in design domains. Designers formulate their design problems as single criterion or multicriteria optimization problems and then select an appropriate optimization algorithm to search for the optimal values for the design variables. The formulation and algorithm selection procedures have been considered to be activities which relied on substantive human knowledge. This paper describes a computer system, OPTIMA, which formulates design optimization problems from a pseudo-English description into canonical algebraic expressions. It then recognizes the formulation and selects appropriate algorithm(s) for its solution. Finally, it runs the selected algorithm(s) and sends the results back to the original descriptions. Areas of expert knowledge involved in carrying out the above tasks are identified. Such knowledge is explicitly encoded in the system. The basic philosophy and key features of the system are described and are illustrated with examples
keywords structures, algorithms, knowledge base, systems, optimization, engineering
series CADline
email
last changed 2003/06/02 13:58

_id aa0b
authors Fenves, Stephen J.
year 1987
title Role of Artificial Intelligence and Knowledge-Base Expert System Methods in Civil Engineering
source 20, [21] p. Pittsburgh: Engineering Design Research Center, Carnegie Mellon University, December, 1987. includes bibliography
summary Present use of computers in civil engineering is largely devoted to numeric, algorithmic calculations. This mode is not appropriate for the empirical, heuristic, ill-structured problems of civil engineering practice. The paper reviews recent work in artificial intelligence and expert systems addressing these latter issues, identifies the distinctive features of engineering knowledge based systems, the roles of such systems, and attempts to predict their evolution
keywords AI, expert systems, knowledge base, design, methods, civil engineering
series CADline
last changed 2003/06/02 13:58

_id 889f
authors Krantz, Birgit
year 1987
title THE FULL-SCALE LABORATORY IN LUND
source Proceedings of the 1st European Full-Scale Workshop Conference / ISBN 87-88373-20-7 / Copenhagen (Denmark) 15-16 January 1987, pp. 7-17
summary An often repeated statement of the nature of the result of our general construction activities in general says that any building and environmental arrangement could be seen as a pure experimental product. The building, in this sense, is nothing but one single full-scale experiment started afresh each time, unfortunately, we could add, without the consistent follow-up measures. In view of this way of understanding the building process you might deduce the interest in a more anticipating attitude.and behaviour, namely the mock-up method or the full-scale design process, based on the philosophy that in a situation of uncertainty you had better try before than after. An underlying presumption is, however, that generally there is a lack of knowledge about the consequences by transferring spatial and design ideas from. drawings to one to one realization. A lack of knowledge not only-among lay, people but also among professionals. The mock-up practice can also to the same extent be derived from a pure investigative interest with the aim to virtually analyze general or specific problems in the* relationship man and the built environment, particularly buildings and spatial settings on the micro level. That means the use of the full-scale method for the search for basic design knowledge. In this sense the mock-up activities started in Sweden.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:09

_id diss_kuo
id diss_kuo
authors Kuo, C.J.
year 1999
title Unsupervised Dynamic Concurrent Computer-Aided Design Assistant
source Los Angeles: UCLA
summary The increasing capability of computer-aided architectural design systems has strengthened the role that the computer plays in the workplace. Due to the complexity of developing new techniques and research, these systems are undertaken mostly by scientists and engineers without significant architectural input (Willey, 1991). The design concept of these systems may be based on a well-defined and well-understood process, which is not yet realized in architectural design (Galle, 1994). The output of such research may not be easily adapted into the design process. Most of the techniques assume a complete understanding of the design space (Gero and Maher, 1987) (Willey, 1991). The description or construction of the design space is always time and space consuming, and the result can never be complete due to the ever-changing nature of architectural design. This research intends to initiate a solution for the above problems. The proposed system is an unsupervised-dynamic-concurrent-computer-aided-design assistant. The “unsupervised” means the learning process is not supervised by the user because it is against the designer's nature to “think-aloud” in the design studio and it also increases the work load. It is dynamic because the size of the knowledge base is constantly changing. Concurrent means that there are multiple procedures active simultaneously. This research focuses on learning the operational knowledge from an individual designer and reapplying it in future designs. A computer system for this experiment is constructed. It is capable of The preliminary result shows a positive feedback from test subjects. The purpose of this research is to suggest a potent computational frame within which future developments may flourish.
series thesis:PhD
last changed 2003/11/28 07:37

_id 404e
authors Oksala , T.
year 1988
title Logical Models for Rule-based CAAD
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 107-116
summary The aim of this paper is to present the basic results of a theoretic approach to represent architectural individual forms in CAD systems. From the point of view of design methodology and problem solving these descriptions might be conceived' as parts of possible environments satisfying the laws of some design theory in logical sense. This paper describes results in a series of logical studies towards rule and knowledge based systems for design automation. The effective use of programming languages and computers as design aids in architecture presupposes certain capabilities to articulate built environment logically. The use of graphic languages in the description of environmental items e.g. buildings might be theoretically mastered by formal production systems including linguistic, geometric, and spatio-material generation. The combination of the power of formal mechanisms and logical individual calculus offers suitable framework to generate arbitrary e.g. free spatial compositions as types or unique solutions. In this frame it is natural to represent in a coherent way very complex hierarchical parsing of buildings in explicit form as needed in computer implementations. In order to simulate real design work the individual configurations of possible built forms should be designed to satisfy known rules. In the preliminary stage partial solutions to design problems may be discussed in mathematical terms using frameworks like lattices, graphs, or group theoretical considerations of structural, functional, and visual organization of buildings. The capability to produce mathematically sophisticated geometric structures allows us to generalize the approach further. The theoretical design knowhow in architecture can be partly translated in to some logic and represented in a knowledge base. These rules are used as selection criteria for geometric design candidates in the sense of logical model theory and mathematical optimization. The economy of the system can be developed by using suitable conduct mechanisms familiar e.g. from logic programming. The semantics of logic offers a frame to consider computer assisted and formal generation in design. A number of semantic and pragmatic problems, however, remain to be solved. In any case conceptual analyses based on logic are applicable in order to rationally reconstruct architectural goals contributing to the quality of environmental design, which should be the main goal in the development of design systems in near future.
series CAAD Futures
last changed 1999/04/03 17:58

_id aef1
authors Rosenman, M.A., Gero, J.S. and Coyne, R.D. (et al)
year 1987
title SOLAREXPERT : A Prototype Expert System for Passive Solar Energy Design in Housing
source Canberra: Aust NZ Solar Energy Society, 1987. vol.II: pp. 361-370. Also published in People and Technology - Sun, Climate and Building, edited by V. Szokolay, Univ. of Queensland, Brisbane, 1988
summary Passive solar energy design is not an exact science in which a set of analytical procedures can be followed to produce results. Rather it depends heavily on subjective parameters and experience collected over time which is heuristic by nature. At present this knowledge is available in books but while this knowledge is comprehensive, it is unstructured and not always easy to make use of. A computer-based system allows for flexible interactive dialogue and for the incorporation of analytical procedures which may be required. This paper describes work on SOLAREXPERT, a prototype expert system to aid designers in passive solar energy design for single dwellings. The system operates at a strategic level to provide basic advice on the form of construction and types of passive solar systems and at a spatial zone level to provide more detailed advice on sizes and materials. It allows for modification of the information entered so that users may explore several possibilities
keywords applications, experience, housing, expert systems, energy, design, architecture
series CADline
email
last changed 2003/05/17 10:17

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
doi https://doi.org/10.52842/conf.acadia.1994.039
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 08a1
authors Balachandran, M.B. and Gero, John S.
year 1987
title A Knowledge-based Graphical Interface for Structural Design
source Southampton: CM Publications, 1987. pp. 335-346
summary This paper describes a knowledge-based graphical interface for the domain of structural engineering. The key aspects of the system include graphics interpretation, feature extraction of graphic objects and the identification of the entity itself. Details of the implementation of a prototype system using Prolog and C are provided. The domain knowledge is represented as frames. Examples are given to illustrate the performance of the system
keywords structures, user interface, knowledge base, systems, design, engineering, computer graphics, frames
series CADline
email
last changed 2003/06/02 13:58

_id c568
authors Balachandran, M.B. and John S. Gero
year 1987
title A Model for Knowledge Based Graphical Interfaces
source AI '87: Proceedings of the Australian Joint Artificial Intelligence Conference. 1987. pp. 505-521. Also published in Artificial Intelligence Developments and Applications edited by J. S. Gero and R Stanton, North-Holland Pub. 1988. -- CADLINE has abstract only.
summary This paper describes a model for knowledge-based graphical interface which incorporates a variety of knowledge of the domain of application. The key issues considered include graphics interpretation, extraction of features of graphics objects and identification of prototype objects. The role of such knowledge-based interfaces in computer-aided design is discussed. A prototype system developed in Prolog and C is described and its application in the domain of structural engineering is demonstrated
keywords user interface, computer graphics, knowledge base, systems, civil engineering, structures
series CADline
email
last changed 2003/06/02 13:58

_id 696c
authors Beheshti, M. and Monroy, M.
year 1988
title Requirements for Developing an Information System for Architecture
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 149-170
summary This paper discusses possibilities of developing new tools for architectural design. It argues that architects should meet the challenge of information technology and computer-based design techniques. One such attempt has been the first phase of the development of an architectural design information system (ADIS), also an architectural design decision support system. The system should benefit from the developments of the artificial intelligence to enable the architect to have access to information required to carry out design work. In other words: the system functions as a huge on-line electronic library of architecture, containing up-to-date architectural design information, literature, documents, etc. At the same time, the system offers necessary design aids such as computer programs for design process, drawing programs, evaluation programs, cost calculation programs, etc. The system also provides data communication between the architect and members of the design coalition team. This is found to be of vital importance in the architectural design process, because it can enable the architect to fit in changes, brought about in the project by different parties. Furthermore, they will be able, to oversee promptly the consequences of changes or decisions in a comprehensive manner. The system will offer advantages over the more commonly applied microcomputer based CAAD and IGDM (integrated graphics database management) systems, or even larger systems available to an architect. Computer programs as well as hardware change rapidly and become obsolete. Therefore, unrelenting investment pressure to up-date both software and hardware exists. The financial burden of this is heavy, in particular for smaller architectural practices (for instance an architect working for himself or herself and usually with few or no permanent staff). ADIS, as an on-line architectural design aid, is constantly up-dated by its own organisation. This task will be co-ordinated by the ADIS data- base administrator (DBA). The processing possibilities of the system are faster, therefore more complex processing tasks can be handled. Complicated large graphic data files, can be easily retrieved and manipulated by ADIS, a large system. In addition, the cost of an on-line system will be much less than any other system. The system is based on one model of the architectural design process, but will eventually contain a variety of design models, as it develops. The development of the system will be an evolutionary process, making use of its users' feed-back system. ADIS is seen as a step towards full automation of architectural design practices. Apart from being an architectural design support system, ADIS will assist the architect in his/her administrative and organisational activities.
series CAAD Futures
last changed 2003/11/21 15:16

_id e861
authors Burnham, G.T.
year 1987
title Microcomputer-Based Expert System for the Design of Operational Military Airfields
source Department of Architectural Science, University of Sydney
summary This thesis develops a number of prototypical expert systems on a microcomputer to assist the military designer or engineer with facets of military operational airfield design. An existing expert system shell BUILD written in PROLOG-1 was altered to provide a more permanent record of the results of the system execution. The individual knowledge base includes production rules which conform to the BUILD syntax requirements. A number of additional clauses related to the knowledge base are written in PROLOG-1. The expert system consists of some 200 rules and an additional 36 clauses. The rules contain knowledge on soil characteristics pertinent to airfields, factors involved in calculating lengths of runways and factors for determining the effort involved in construction. The knowledge for the expert systems was gathered from a combination of civilian and military literature sources, the author's own experience, and discussions with military and air force personnel currently engaged in the design, planning and construction of these facilities. Development of these prototypical expert systems demonstrates the feasibility of implementing expert systems on microcomputers in this domain. Furthermore, it demonstrates their possible application to military engineering design particularly where the design process relies on a large amount of tabulated data and heuristic knowledge. It is this type of knowledge that is often used by the military engineer to find a timely problem solution when provided with a range of options. [Unpublished. -- CADLINE has abstract only.]
keywords Applications, Military Engineering, Expert Systems, Design, Planning
series thesis:MSc
last changed 2002/12/14 19:15

_id a1a1
authors Cornick, T. and Bull, S.
year 1988
title Expert Systems for Detail Design in Building
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 117-126
summary Computer-Aided Architectural Design (CAAD) requires detailed knowledge of the construction of building elements to be effective as a complete design aid. Knowledge-based systems provide the tools for both encapsulating the "rules" of construction - i.e. the knowledge of good construction practice gained from experience - and relating those rules to geometric representation of building spaces and elements. The "rules" of construction are based upon the production and performance implications of building elements and how these satisfy various functional criteria. These building elements in turn may be related to construction materials, components and component assemblies. This paper presents two prototype knowledge-based systems, one dealing with the external envelope and the other with the internal space division of buildings. Each is "component specific" and is based upon its own model of the overall construction. This paper argues that "CAAD requires component specific knowledge bases and that integration of these knowledge bases into a knowledge-based design system for complete buildings can only occur if every knowledge base relates to a single coordinated construction model".
series CAAD Futures
last changed 1999/04/03 17:58

_id 0748
authors Coyne, R.D., Rosenman, M.A. and Radford, A.D. (et.al.)
year 1987
title Innovation and Creativity in Knowledge-based CAD
source Amsterdam: North-Holland, 1987. pp. 435-465
summary The authors examine the creativity of knowledge-based design systems from a narrow information processing perspective. As a property of the design process innovation and creativity can be identified by observing both the quality of the product, and also the characteristics of the process itself. The key theme running through the discussion is the acquisition of knowledge as the key to understanding creativity. This involves not only the ability of a system to acquire knowledge, but also its ability to control its own processes and change its own structure. In order to discuss this view a model of design systems is put forward in which a distinction between interpretative and syntactic subsystems for innovation and creativity is made
keywords design process, knowledge base, systems, creativity, knowledge acquisition, representation
series CADline
email
last changed 2003/05/17 10:13

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id e7a8
authors Emde, H.
year 1988
title Geometrical Fundamentals for Design and Visualization of Spatial Objects
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 171-178
summary Every architectural object is a 3-dimensional entity of the human environment, haptically tangible and optically visible. During the architectural process of planning every object should be designed as a body and should be visualized in pictures. Thus the parts of construction get an order in space and the steps of construction get an order in time. The ideal planning object is a simulated anticipation of the real building object, which is to be performed later on. The possibility to relate the planning object immediately to the building object relies on the fact that they both have the same "geometry" This means: both can be described in the same geometric manner. Creating and visualizing spatial objects is based on geometrical fundamentals. Theoretical knowledge and practical control of these fundamentals is essential for the faultless construction and the realistic presentation of architectural objects. Therefore they have to be taught and learned thoroughly in the course of an architectural education. Geometrical design includes the forming of object- models (geometry of body boundaries), the structuring of object-hierarchies (geometry of body combinations) and the colouring of objects. Geometrical visualization includes controlling the processes of motion, of the bodies (when moving objects) and of the center of observation (when moving subjects) as well as the representation of 3-dimensional objects in 2- dimensional pictures and sequences of pictures. All these activities of architects are instances of geometrical information processing. They can be performed with the aid of computers. As for the computer this requires suitable hardware and software, as for the architect it requires suitable knowledge and capabilities to be able to talk about and to recall the perceivable objects and processes of the design with logic abstracts (language of geometry). In contrast to logical, numerical and textual informations the geometric informations concerning spatial objects are of much higher complexity. Usually these complexes of information are absorbed, processed and transmitted by the architect in a perceptive manner. The computer support in the field of geometry assumes that the processing of perceptions of the human consciousness can be converted by the computer as a framework of logical relations. Computer aided construction and representation require both suited devices for haptical and optical communication and suitable programs in particular.
series CAAD Futures
last changed 1999/04/03 17:58

_id 68cb
authors Fenves, Stephen J. and Baker, Nelson C.
year 1987
title Spatial and Functional Representation Language for Structural Design
source 21 p. : ill. Pittsburgh: Engineering Design Research Center, CMU, December, 1987. includes bibliography
summary Knowledge-based systems for structural design developed to date have used simple geometric representations which have not provided adequate spatial reasoning. Shape grammars are suggested as a representation for a knowledge-based system capable of performing spatial and functional reasoning. The representation needs to serve all disciplines involved in the design process, where different semantics of each discipline are associated with the same spatial information about design objects. The representation is demonstrated in the building design environment, where possible structural systems can be generated dependent upon the building's spatial layout
keywords representation, shape grammars, structures, design, problem solving, planning, civil engineering, architecture
series CADline
last changed 2003/06/02 10:24

_id 448b
authors Gerzso, Miguel J.
year 1987
title On the Reasons for Designing an Object Based Language Called TM
source 1987. 7 p. : ill. includes bibliography
summary One of the most basic problems in attempting to use computers for architectural applications has been the generation of design alternatives. In order to approach this problem, it is claimed in the paper that in reality it is two basic problems: a methodological problem and a data and procedural representation problem. Diagrammatic Production Rules (DPR's), developed previously by the author, have been proposed for dealing with methodological problem and TM, an object based language, is proposed in the paper for dealing with the data and procedural representation problem. An example of a DPR and a 'program' in TM are included to illustrate the relationship between the two
keywords languages, representation, OOPS, CAD, applications, programming, architecture, synthesis, design
series CADline
last changed 2003/06/02 13:58

_id cd8d
authors Herbert, Daniel M.
year 1987
title Study Drawings in Architectural Design: Applications for CAD Systems
doi https://doi.org/10.52842/conf.acadia.1987.157
source Integrating Computers into the Architectural Curriculum [ACADIA Conference Proceedings] Raleigh (North Carolina / USA) 1987, pp. 157-168
summary To guide their future development, research and teaching in computer-aided design must look beyond the technical capabilities of computer systems to establish a theoretical foundation based on known processes in design. This paper suggests that such a theoretical foundation can be derived by analyzing architectural study drawings -- defined as the rough drawings that architects make in the exploratory stages of design -- to determine their epistemelogical properties. The analysis brings forward concepts from a number of disciplines related to the structure of human knowledge to identify five properties of study drawings. Based on these properties, the paper proposes strategies for application to the next generation of research and teaching in CAD systems.
series ACADIA
last changed 2022/06/07 07:49

_id 8385
authors Holtz, Neal M. and Rasdorf, William J.
year 1988
title An Evaluation of Programming Languages and Language Features for Engineering Software Development
source International Journal of Engineering with Computers. Springer-Verlag, 1988. vol. 3: pp. 183-199
summary Also published as 'Procedural Programming Languages for the Development of CAD and CAE Systems Software,' in the proceedings of ASME International Conference on Computers in Engineering (1987 : New York, NY). The scope of engineering software has increased dramatically in the past decade. In its early years, most engineering applications were concerned solely with solving difficult numerical problems, and little attention was paid to man- machine interaction, to data management, or to integrated software systems. Now computers solve a much wider variety of problems, including those in which numerical computations are less predominant. In addition, completely new areas of engineering applications such as artificial intelligence have recently emerged. It is well recognized that the particular programming language used to develop an engineering application can dramatically affect the development cost, operating cost. reliability, and usability of the resulting software. With the increase in the variety, functionality, and complexity of engineering software, with its more widespread use, and with its increasing importance, more attention must be paid to programming language suitability so that rational decisions regarding language selection may be made. It is important that professional engineers be aware of the issues addressed in this paper, for it is they who must design, acquire, and use applications software, as well as occasionally develop or manage its development. This paper addresses the need for engineers to possess a working knowledge of the fundamentals of computer programming languages. In pursuit of this, the paper briefly reviews the history of four well known programming languages. It then attempts to identify and to look critically at the attributes of programming languages that significantly affect the production of engineering software. The four procedural programming languages chosen for review are those intended for scientific and general purpose programming, FORTRAN 77, C, Pascal, and Modula-2. These languages are compared and some general observations are made. As it is felt important that professional engineers should be able to make informed decisions about programming language selection, the emphasis throughout this paper is on a methodology of evaluation of programming languages. Choosing an appropriate language can be a complex task and many factors must be considered. Consequently, fundamentals are stressed
keywords programming, engineering, languages, software, management, evaluation, FORTRAN, C, PASCAL, MODULA-2, CAD, CAE
series CADline
last changed 2003/06/02 13:58

_id c890
authors Hutchinson, Peter J., Rosenman, Michael A. and Gero, John S.
year 1987
title RETWALL : An Expert System for the Selection and Preliminary Design of Earth Retaining Structures
source Knowledge Based Systems. 1987. vol. 1: pp. 11-23
summary This paper describes an expert system for the selection and preliminary design of engineering earth retaining structures. It describes the domain and how the knowledge was acquired from textbooks, questionnaires and interviews. Details of the implementation of RETWALL using the expert system shell BUILD are provided as is a full script of a session
keywords expert systems, knowledge, representation, engineering, applications,knowledge acquisition, software
series CADline
email
last changed 2003/06/02 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_972566 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002