CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 174

_id 8a1b
authors Mackenzie, C.A.
year 1987
title Inducing Relational Grammars From Design Interpretations
source AI'87 : Proceeding of the Australian Joint Artificial Intelligence Conference. 1987. pp. 207-220 CADLINE has abstract only.
summary --- Also published in Artificial Intelligence Developments and Applications edited by J. S. Gero and R. Stanton, North-Holland Pub. 1988. The combination of a heuristic driven search and a tree systems inference technique to induce context-free design grammars is presented. This is achieved by searching for the most useful interpretations of each design in a sample set and discovering regularities in their tree systems representation. The knowledge induced is represented as an accepting tree systems automation and generative grammar. Examples from the domain of architectural design are given
keywords heuristics, inference, search, shape grammars, knowledge, representation, architecture
series CADline
last changed 2003/06/02 13:58

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
doi https://doi.org/10.52842/conf.acadia.1994.039
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 0cd8
authors Baker, Nelson C. and Fenves, Stephen J.
year 1987
title A Knowledge Acquisition Study of Structural Engineers Performing Preliminary Design
source 92 p. : ill. Pittsburgh, PA: Engineering Design Research Center, CMU, December, 1987. EDRC-12-19-87
summary This paper describes interviews with experts in structural engineering. Video recordings of the experts performing preliminary structural design for three buildings were obtained. The knowledge acquisition process is described and the conclusions reached are presented. The conclusions are discussed in terms of level of design detail, solution time, distribution of process and domain activities, the use of previous information in the design process, and the use of sketches
keywords knowledge acquisition, civil engineering, design process, design methods, drafting, systems, protocol analysis
series CADline
last changed 2003/06/02 10:24

_id 016a
authors Balachandran, M. B. and Gero, John S.
year 1987
title A Knowledge-based Approach to Mathematical Design Modeling and Optimization
source engineering Optimization. 1987. vol. 12: pp. 91-115
summary Optimization is a well understood process in design domains. Designers formulate their design problems as single criterion or multicriteria optimization problems and then select an appropriate optimization algorithm to search for the optimal values for the design variables. The formulation and algorithm selection procedures have been considered to be activities which relied on substantive human knowledge. This paper describes a computer system, OPTIMA, which formulates design optimization problems from a pseudo-English description into canonical algebraic expressions. It then recognizes the formulation and selects appropriate algorithm(s) for its solution. Finally, it runs the selected algorithm(s) and sends the results back to the original descriptions. Areas of expert knowledge involved in carrying out the above tasks are identified. Such knowledge is explicitly encoded in the system. The basic philosophy and key features of the system are described and are illustrated with examples
keywords structures, algorithms, knowledge base, systems, optimization, engineering
series CADline
email
last changed 2003/06/02 13:58

_id 05c2
authors Balachandran, M. B. and Gero, John S.
year 1987
title Use of Knowledge in Selection and Control of Optimization Algorithms
source engineering Optimization. 1987. vol. 12: pp. 163-173
summary Computers have been widely used in optimization based problem solving processes to assist with the numerical computations. The widespread availability of symbolic computational tools and recent developments in artificial intelligence now make it feasible to expand the role of computers in this area. Various classes of knowledge used to improve the efficiency of the optimization processes are presented in this paper. A prototype system developed in the domain of multicriteria decision making is demonstrated. The system contains knowledge needed to select appropriate optimization algorithms, to control the solution process, and to select alternate algorithms if needed
keywords multicriteria, algorithms, knowledge base, systems, problem solving, optimization
series CADline
email
last changed 2003/06/02 13:58

_id 08a1
authors Balachandran, M.B. and Gero, John S.
year 1987
title A Knowledge-based Graphical Interface for Structural Design
source Southampton: CM Publications, 1987. pp. 335-346
summary This paper describes a knowledge-based graphical interface for the domain of structural engineering. The key aspects of the system include graphics interpretation, feature extraction of graphic objects and the identification of the entity itself. Details of the implementation of a prototype system using Prolog and C are provided. The domain knowledge is represented as frames. Examples are given to illustrate the performance of the system
keywords structures, user interface, knowledge base, systems, design, engineering, computer graphics, frames
series CADline
email
last changed 2003/06/02 13:58

_id c568
authors Balachandran, M.B. and John S. Gero
year 1987
title A Model for Knowledge Based Graphical Interfaces
source AI '87: Proceedings of the Australian Joint Artificial Intelligence Conference. 1987. pp. 505-521. Also published in Artificial Intelligence Developments and Applications edited by J. S. Gero and R Stanton, North-Holland Pub. 1988. -- CADLINE has abstract only.
summary This paper describes a model for knowledge-based graphical interface which incorporates a variety of knowledge of the domain of application. The key issues considered include graphics interpretation, extraction of features of graphics objects and identification of prototype objects. The role of such knowledge-based interfaces in computer-aided design is discussed. A prototype system developed in Prolog and C is described and its application in the domain of structural engineering is demonstrated
keywords user interface, computer graphics, knowledge base, systems, civil engineering, structures
series CADline
email
last changed 2003/06/02 13:58

_id ecaade2017_172
id ecaade2017_172
authors Brand?o, Filipe, Paio, Alexandra and Whitelaw, Christopher
year 2017
title Mapping Mass Customization
doi https://doi.org/10.52842/conf.ecaade.2017.2.417
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 417-424
summary Mass customization (MC) and personal fabrication (PF) are current relevant topics in architecture offices practice and schools design research. Architects are adopting information based design and production techniques as a response to architectural century challenges. However, is not clear how various authors used and transformed the concept in practice, research and industry after three decades since the MC term was introduced by Davis (1987). Therefore, is essential to map the most relevant works in the field in relation to production and design control. The paper presents some of the results of the ongoing study through an evolving map that aims to visualize relationships, layering complexity and revealing difference.
keywords Mass Customization; Personal Fabrication; Housing; Map
series eCAADe
email
last changed 2022/06/07 07:54

_id e861
authors Burnham, G.T.
year 1987
title Microcomputer-Based Expert System for the Design of Operational Military Airfields
source Department of Architectural Science, University of Sydney
summary This thesis develops a number of prototypical expert systems on a microcomputer to assist the military designer or engineer with facets of military operational airfield design. An existing expert system shell BUILD written in PROLOG-1 was altered to provide a more permanent record of the results of the system execution. The individual knowledge base includes production rules which conform to the BUILD syntax requirements. A number of additional clauses related to the knowledge base are written in PROLOG-1. The expert system consists of some 200 rules and an additional 36 clauses. The rules contain knowledge on soil characteristics pertinent to airfields, factors involved in calculating lengths of runways and factors for determining the effort involved in construction. The knowledge for the expert systems was gathered from a combination of civilian and military literature sources, the author's own experience, and discussions with military and air force personnel currently engaged in the design, planning and construction of these facilities. Development of these prototypical expert systems demonstrates the feasibility of implementing expert systems on microcomputers in this domain. Furthermore, it demonstrates their possible application to military engineering design particularly where the design process relies on a large amount of tabulated data and heuristic knowledge. It is this type of knowledge that is often used by the military engineer to find a timely problem solution when provided with a range of options. [Unpublished. -- CADLINE has abstract only.]
keywords Applications, Military Engineering, Expert Systems, Design, Planning
series thesis:MSc
last changed 2002/12/14 19:15

_id a1a1
authors Cornick, T. and Bull, S.
year 1988
title Expert Systems for Detail Design in Building
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 117-126
summary Computer-Aided Architectural Design (CAAD) requires detailed knowledge of the construction of building elements to be effective as a complete design aid. Knowledge-based systems provide the tools for both encapsulating the "rules" of construction - i.e. the knowledge of good construction practice gained from experience - and relating those rules to geometric representation of building spaces and elements. The "rules" of construction are based upon the production and performance implications of building elements and how these satisfy various functional criteria. These building elements in turn may be related to construction materials, components and component assemblies. This paper presents two prototype knowledge-based systems, one dealing with the external envelope and the other with the internal space division of buildings. Each is "component specific" and is based upon its own model of the overall construction. This paper argues that "CAAD requires component specific knowledge bases and that integration of these knowledge bases into a knowledge-based design system for complete buildings can only occur if every knowledge base relates to a single coordinated construction model".
series CAAD Futures
last changed 1999/04/03 17:58

_id 0748
authors Coyne, R.D., Rosenman, M.A. and Radford, A.D. (et.al.)
year 1987
title Innovation and Creativity in Knowledge-based CAD
source Amsterdam: North-Holland, 1987. pp. 435-465
summary The authors examine the creativity of knowledge-based design systems from a narrow information processing perspective. As a property of the design process innovation and creativity can be identified by observing both the quality of the product, and also the characteristics of the process itself. The key theme running through the discussion is the acquisition of knowledge as the key to understanding creativity. This involves not only the ability of a system to acquire knowledge, but also its ability to control its own processes and change its own structure. In order to discuss this view a model of design systems is put forward in which a distinction between interpretative and syntactic subsystems for innovation and creativity is made
keywords design process, knowledge base, systems, creativity, knowledge acquisition, representation
series CADline
email
last changed 2003/05/17 10:13

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id ec19
authors Dhar, Vasant and Pople, Harry E.
year 1987
title Rule-Based Versus Structure- Base Models for Explaining Generating Expert Behavior
source Communications of the ACM. June, 1987. vol. 30: pp. 542-554 : ill. includes bibliography
summary Flexible representations are required in order to understand and generate expert behavior. In this article the authors argue for a representation that contains partial model components that are synthesized into qualitative models containing entities and relationships relevant to the domain. The model components can be replaced and arranged in response to changes in the task environment. The authors have found this 'model constructor' to be useful in synthesizing models that explain and generate expert behavior, and have explored its ability to support decision making in the problem domain of business resource planning, where reasoning is based on models that evolve in response to changing external conditions or internal policies
keywords AI, cognition, modeling, expert systems, knowledge base, representation
series CADline
last changed 2003/06/02 13:58

_id 84ca
authors Dupagne, A.
year 1987
title Teaching Machines. A Creative Revival of Architectural Education or a Pernicious Restoration of Technical Dominance?
doi https://doi.org/10.52842/conf.ecaade.1987.x.b2u
source Architectural Education and the Information Explosion [eCAADe Conference Proceedings] Zurich (Switzerland) 5-7 September 1987.
summary Architectural design is not a science nor a technology. Architectural design is a praxis of both. It embodies knowledge coming from a large range of varied domains, like policy, culture, economy, environmental science, psychology, ..., but it must be clearly distinguished from Bach. It has little to do with the knowledge development or with a better understanding of physical phenomena. Architectural design is a creative activity generating products that intend to achieve: (-) the fulfilment of individual and social needs; (-) serve certain purposes; (-) in order to change the world. // It is a purposeful activity intervening directly on the built environment in order to intentionally modify it. Therefore, teaching architectural design can reasonably be organized as a training for action and, by contrast, the knowledge attainment becomes a relatively secondary objective.
series eCAADe
last changed 2022/06/07 07:50

_id e7a8
authors Emde, H.
year 1988
title Geometrical Fundamentals for Design and Visualization of Spatial Objects
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 171-178
summary Every architectural object is a 3-dimensional entity of the human environment, haptically tangible and optically visible. During the architectural process of planning every object should be designed as a body and should be visualized in pictures. Thus the parts of construction get an order in space and the steps of construction get an order in time. The ideal planning object is a simulated anticipation of the real building object, which is to be performed later on. The possibility to relate the planning object immediately to the building object relies on the fact that they both have the same "geometry" This means: both can be described in the same geometric manner. Creating and visualizing spatial objects is based on geometrical fundamentals. Theoretical knowledge and practical control of these fundamentals is essential for the faultless construction and the realistic presentation of architectural objects. Therefore they have to be taught and learned thoroughly in the course of an architectural education. Geometrical design includes the forming of object- models (geometry of body boundaries), the structuring of object-hierarchies (geometry of body combinations) and the colouring of objects. Geometrical visualization includes controlling the processes of motion, of the bodies (when moving objects) and of the center of observation (when moving subjects) as well as the representation of 3-dimensional objects in 2- dimensional pictures and sequences of pictures. All these activities of architects are instances of geometrical information processing. They can be performed with the aid of computers. As for the computer this requires suitable hardware and software, as for the architect it requires suitable knowledge and capabilities to be able to talk about and to recall the perceivable objects and processes of the design with logic abstracts (language of geometry). In contrast to logical, numerical and textual informations the geometric informations concerning spatial objects are of much higher complexity. Usually these complexes of information are absorbed, processed and transmitted by the architect in a perceptive manner. The computer support in the field of geometry assumes that the processing of perceptions of the human consciousness can be converted by the computer as a framework of logical relations. Computer aided construction and representation require both suited devices for haptical and optical communication and suitable programs in particular.
series CAAD Futures
last changed 1999/04/03 17:58

_id 68cb
authors Fenves, Stephen J. and Baker, Nelson C.
year 1987
title Spatial and Functional Representation Language for Structural Design
source 21 p. : ill. Pittsburgh: Engineering Design Research Center, CMU, December, 1987. includes bibliography
summary Knowledge-based systems for structural design developed to date have used simple geometric representations which have not provided adequate spatial reasoning. Shape grammars are suggested as a representation for a knowledge-based system capable of performing spatial and functional reasoning. The representation needs to serve all disciplines involved in the design process, where different semantics of each discipline are associated with the same spatial information about design objects. The representation is demonstrated in the building design environment, where possible structural systems can be generated dependent upon the building's spatial layout
keywords representation, shape grammars, structures, design, problem solving, planning, civil engineering, architecture
series CADline
last changed 2003/06/02 10:24

_id aa0b
authors Fenves, Stephen J.
year 1987
title Role of Artificial Intelligence and Knowledge-Base Expert System Methods in Civil Engineering
source 20, [21] p. Pittsburgh: Engineering Design Research Center, Carnegie Mellon University, December, 1987. includes bibliography
summary Present use of computers in civil engineering is largely devoted to numeric, algorithmic calculations. This mode is not appropriate for the empirical, heuristic, ill-structured problems of civil engineering practice. The paper reviews recent work in artificial intelligence and expert systems addressing these latter issues, identifies the distinctive features of engineering knowledge based systems, the roles of such systems, and attempts to predict their evolution
keywords AI, expert systems, knowledge base, design, methods, civil engineering
series CADline
last changed 2003/06/02 13:58

_id 2613
authors Frew, Robert S.
year 1990
title The Organization of CAD Teaching in Design Schools
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 387-392
summary This paper is the result of a survey of European CAD teaching that was conducted in 1987 and 1988. It makes comparisons with teaching at the Yale School of Architecture, and goes on to analyze the issues that should be addressed in a CAD program in a school of architecture.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 801f
authors Galle, Per
year 1987
title Branch & Sample : Systematic Combinatorial Search without Optimization
source 73 p. 1987. DIKU Research Report No. 87/5. CADLINE has abstract only
summary Many constraint satisfaction problems are combinatorically explosive, i.e. have far too many solutions. Optimization techniques may help in selecting solutions for consideration, but a reasonable measure of optimality is not always at hand. The branch & sample algorithm is presented as an alternative to optimization. If the constraints themselves limit the solution set sufficiently, the algorithm finds all solutions, but otherwise a suitable number of solutions (determined by the user) is generated, such that each new solution has a maximal distance to those already generated. The distance measure used is a so called ultrametric distance expressible in terms of the search tree: solutions are viewed as m-tuples of fixed length, each of whose m decision variables corresponds to a level in the search tree. The distance between two solutions is the number of edges from their leaf nodes to the closest common predecessor node in the tree. For problems whose decision variables depend on each other (as is often the case) the set of solutions generated in this way corresponds well to the intuitive notion of a 'representative sample.' The principles of Branch & Sample are first introduced informally, then the algorithm is developed by stepwise refinement, and two examples of its use are given. A fully tested application-independent implementation of the algorithm in C is given as an appendix
keywords algorithms, combinatorics, search, constraints, floor plans, layout, synthesis, architecture
series CADline
last changed 1999/02/12 15:08

_id 476d
authors Gero, J. and Maher, M.
year 1988
title Future Roles of Knowledge-based Systems in the Design Process
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 81-90
summary This paper examines the future roles of knowledge-based systems in the design process. It commences with a brief review of computer-aided design and knowledge-based systems prior to examining the present and future roles of knowledge-based systems in design under the headings of: design analysis/formulation; design synthesis; and design evaluation. The paper concludes with a discussion on design integration, novel design, and detail design.
series CAAD Futures
email
last changed 2003/05/16 20:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_526229 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002