CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 163

_id 0697
authors Balachandran, M.B. and Gero, John S.
year 1988
title Development of a Knowledge-Based System for Structural Optimization
source Dordrecht: Kluwer, 1988. pp. 17-24
summary Optimization is a useful and challenging activity in structural design. It provides designers with tools for better designs while saving time in the design process. The features of conventional optimization tools are presented and their limitations are outlined. The impact and role of knowledge-based methodologies in structural optimization processes is discussed. Structural optimization involves a number of tasks which require human expertise, and are traditionally assisted by human designers. These include design optimization formulation, problem recognition and the selection of appropriate algorithm(s). In this representation and processing of constraints are crucial tasks. This paper presents a framework for developing a knowledge-based system to accomplish these tasks. Based on the needs and the nature of the optimization process, a conceptual architecture of an integrated knowledge-based system is presented. The structure and functions of various components of the system are described
keywords knowledge base, systems, integration, optimization, structures, engineering
series CADline
email
last changed 2003/06/02 13:58

_id 476d
authors Gero, J. and Maher, M.
year 1988
title Future Roles of Knowledge-based Systems in the Design Process
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 81-90
summary This paper examines the future roles of knowledge-based systems in the design process. It commences with a brief review of computer-aided design and knowledge-based systems prior to examining the present and future roles of knowledge-based systems in design under the headings of: design analysis/formulation; design synthesis; and design evaluation. The paper concludes with a discussion on design integration, novel design, and detail design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 0803
authors Jabri, Marwan A. and Skellern, David J.
year 1988
title Automatic Floorplan Design Using PIAF
source August, 1988. 36 p. : ill. tables
summary This paper presents PIAF (a Package for Intelligent and Algorithmic Floorplanning), developed at Sydney University Electrical Engineering (SUEE) for use in custom integrated circuit design. Floorplanning plays a crucial role in the design of custom integrated circuits. When design is approached in a top-down fashion, the function to be implemented on silicon is first decomposed in a conceptual phase into a Functional Block Diagram (FBD). This FBD has a 'blocks and buses' structure where blocks represent sub- functions and buses represent the interconnections that carry data and other information between blocks. The decomposition of the function into sub-functions is hierarchical and aims at reducing the complexity of the design problem. When the FBD is known, the floorplanning process may be performed. When this task is performed manually, the designer searches for a relative placement of the blocks and for an area and shape for each block to minimize the overall chip layout area while at the same time meeting design constraints such as design tool limitations, interconnection characteristics and technological design rules. PIAF is a knowledge-based system (KBS) that has been developed at SUEE during the last four years. It relies on a strategy that partitions the floorplanning task in a way that allows efficient use of heuristics and specialized design knowledge in the generation and pruning of the solution space. This paper presents the operation of PIAF and discusses several implementation issues including; KBS structure, knowledge representation, knowledge acquisition, current context memory design, design quality factors and explanation facility. This paper uses a running example to present the operation of each PIAF's KBS-based solving phases
keywords knowledge, representation, knowledge acquisition, electrical engineering, design, integrated circuits, knowledge base, systems, layout, synthesis
series CADline
last changed 2003/06/02 10:24

_id 4904
authors Lapre, L. and Hudson, P.
year 1988
title Talking about Design: Supporting the Design Process with Different Goals
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 127-136
summary The architectural design process has more than one participant. Each participant has his own way of approaching the information embedded in a design. In the future the CAAD systems of these participants must be able to communicate and exchange information. For a communication of this kind there must be a common ground, a frame of reference, in which these different points of view can be expressed. This frame of reference or model must support participants accessing the same information with different objectives and for different purposes. We shall propose such a model based on research results obtained by the analysis of architectural knowledge and designs. The model incorporates certain aspects drawn from AI.
series CAAD Futures
last changed 1999/04/03 17:58

_id 45b7
authors Oxman, R.E.
year 1988
title Expert System for Generation and Evaluation in Architectural Design
source Technion, Faculty of Architecture and Town Planing, Haifa
summary The research field, focuses on a new research area of Knowledge Based Systems for Architectural Design. The research deals with concepts and tools emerging from Artificial Intelligence, Knowledge Based Systems and Expert Systems. The research is involved with the construction of a theoretical basis for the development of approaches and methods for the representation and control of design knowledge as a reasoning process. Key questions which attempt to reconsider representation and control in design are formulated. The following questions serve as a research framework out of which new approaches, methods and tools were developed. (1.)What are the existing ideas, methods and tools in Expert Systems? (2.) What are the performance characteristics of Expert Systems in Architectural Design ? (3.) What are the desired operative characteristics and interactions for Expert Systems in design ? (4.) How is it possible to formulate and apply the diverse forms of Architectural Knowledge in Expert Systems for design? (5.) What are the problems of implementation in the development of Expert Systems for design ? The state of the art in knowledge based systems is surveyed, while emphasizing the differences between conventional systems and knowledge based systems. Representation and control methods and the components of expert systems are reviewed. Expert systems for diagnosis, interpretation, planning and design are analysed with respect to their performance characteristics. Techniques and technologies of existing tools are defined. An expert system for the generation and evaluation of ill defined architectural design problems is develped. A formalization of the concept of 'design interpretation' is proposed and developed. It is applied in the process of defining and classifying the performance characteristics of expert systems for design. This concept is based upon two sets of reasoning processes: those which enable a mapping between design requirements and solution descriptions in the generation stage of design and those between solution descriptions and performance evaluation in the evaluation stage of design. On the basis of the formalization of this concept, an expert system capable of integrating various modes of performance is proposed and developed. The system functions as a 'design generator', a 'design critic', or a' design critic-generator'. These modes, which integrate generation and evaluation in the same system, operate by employing both forward chaining and backward chaining inference mechanisms. As a result of the examination of desired forms of interactions, a new approach for dual direction interpretation between graphic and verbal modes is developed. This approach reflects the importance of both graphical and verbal expression in design. The approach is based upon a simultaneous mapping between symbolic-verbal interpretation and graphic interpretation. The work presents the mapping process through the concept of design interpretation, employing geometrical knowledge, typological knowledge and evaluation knowledge. A tool which provides communication between an expert system and a graphic system was developed and is presented. The importance of such a tool in expert systems for design resides in the provision of free choice to the user for interacting with the system either graphically or verbally during the design process. An additional component in the development of knowledge-based systems for design is related to the important question of knowledge definition and the representational schemata of design knowledge. A new representational scheme for complex architectural knowledge, termed 'The generation and refinement scheme of a design prototype' is proposed and developed. Its operation as part of a total integrated design system is demonstrated. The scheme is based upon the structures of knowledge of design precedents which constitute typical situations and solutions in architectural design. This scheme provides an appropriate representation for the two types of knowledge which operate in a refinement process of a design prototype. Generative knowledge describes the solution space by predefined refinement stages; interpretive knowledge enables their selection. The examination of representational methods for the proposed scheme indicated that employing a single representational method lacked enough generalization and expressive power for the needs of the design knowledge structures. It was found that a way to represent complex structures is through the integration of multiple methods of representation, each one according to the knowledge characteristics. In order to represent the proposed scheme of design knowledge, a unique method was developed which integrates both rules and frames. The method consists of a rules-frames-rules structure for the representation of a design prototype. An approach is developed for the implementation of these concepts in an expert system for design. PRODS: A prototype based expert system shell for design is developed and demonstrated. The system consists of three basic components: a rule-based expert system shell, a frame system, and a knowledge base interface. All system interactions are controlled by the inference engine. It passes control between the rule-base and the frame-base inference engines, and provides communications between the rule-based and frame-based representations. It is suggested that expert system can interface with external CAD systems including graphics, communicating through a central representation. These concepts and developments are demonstrated in two implementations. The PREDIKT system for the preliminary design of the residential kitchen; the PROUST system for the selection and refinement of dwelling types. PREDIKT demonstrates the integration of rules and a graphical-verbal interpreter; in addition, PROUST demonstrates the significance of hybrid representation in the generation and refinement processes. The results and conlusions are summarized. Future research agenda within the field of knowledge-based systems for design is discussed, and potential research areas are defined.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 83b7
authors Oxman, Rivka E. and Gero, John S.
year 1988
title Designing by Prototype Refinement in Architecture
source Amsterdam: CMP, 1988. pp. 395- 412 : ill. includes bibliography
summary Design knowledge in the form of a priori knowledge is put forward as an essential ingredient in knowledge-based design. The concept of the prototype in design is introduced and different strategies for refinement processes are discussed. The concept of a generative prototype is proposed as a way to represent a generative design description in knowledge-based design systems. The refinement process is considered a successive classification of prototypes and subtypes, by executing design operations associated with the type. The application of these approaches is implemented in a system called PRODS: A PROtotype-based Design System. Finally, issues such as the role of prototypes and other forms of reasoning for creative design are discussed
keywords prototypes, knowledge base, design process
series CADline
email
last changed 2003/06/02 13:58

_id c568
authors Balachandran, M.B. and John S. Gero
year 1987
title A Model for Knowledge Based Graphical Interfaces
source AI '87: Proceedings of the Australian Joint Artificial Intelligence Conference. 1987. pp. 505-521. Also published in Artificial Intelligence Developments and Applications edited by J. S. Gero and R Stanton, North-Holland Pub. 1988. -- CADLINE has abstract only.
summary This paper describes a model for knowledge-based graphical interface which incorporates a variety of knowledge of the domain of application. The key issues considered include graphics interpretation, extraction of features of graphics objects and identification of prototype objects. The role of such knowledge-based interfaces in computer-aided design is discussed. A prototype system developed in Prolog and C is described and its application in the domain of structural engineering is demonstrated
keywords user interface, computer graphics, knowledge base, systems, civil engineering, structures
series CADline
email
last changed 2003/06/02 13:58

_id c6d5
authors Balachandran, M.B.
year 1988
title A Model for Knowledge-Based Design Optimization [PhD dissertation]
source Dept. of Architectural Science, University of Sydney
summary Unpublished. CADLINE has abstract only. This dissertation is concerned with developments in design decision methodologies applied to computer-aided design. The major aim of this research was to design and develop a knowledge-based computer-aided optimization system that has the ability to emulate some of the human performances in design decision processes. The issues and problems involved in developing a knowledge-based system for design optimization are addressed. A knowledge-based methodology to aid design optimization formulation is investigated. The major issues considered include representation of design description, the variety of knowledge required for the formulation process, recognizing optimization formulations, and selection of appropriate algorithms. It is demonstrated that the knowledge-based control of numerical processes leads to efficient and improved decisions in design. In developing knowledge-based systems for computer-aided decision applications an effective human-machine interface is essential. A model for knowledge-based graphical interfaces is proposed. This model incorporates knowledge for graphics interpretation, extraction of features of graphics objects and identification of prototypical objects. An experimental system developed in Prolog and C is demonstrated in the domain of structural design. The system shows one way of combining knowledge-based systems technology with computer graphics and indicates how knowledge-based interfaces improve the system's interactive capabilities. Finally, the system, OPTIMA, is presented. The system is designed as an integrated knowledge-based decision system using frames, rule bases, menu inputs, algebraic computation and optimization algorithms. The system has been written in LISP, Prolog and C and implemented on SUN Microsystems workstations. The performance of the system is demonstrated using two example problems from the domains of structural and architectural design respectively. The knowledge-based approach to design optimization is shown to be considerably easier and more efficient than those using conventional programs.
keywords Knowledge Base, Systems, CAD, Representation, Design, Frames, Computer Graphics, User Interface, Decision Making
series CADline
last changed 2003/06/02 13:58

_id 5f4b
authors Coyne, R.D.
year 1988
title Logic Models of Design
source Pitman, London
summary This monograph places design in a theoretical context which applies developments in knowledge-based systems, logic programming and planning to design. It addresses two important design issues: the interpretation of designs, which concerns the discovery of implicit design attributes, a key activity in design evaluation that can be modelled by deductive inference in logic programming; and the process of generation, whereby a design description is produced which exhibits these implicit design attributes. Implicit attributes can be seen as analogous to the semantic content of natural language utterances. The work presented here is mainly concerned with design generation, and an operational model of design is investigated in which operations on processes are treated in a similar way to operations on form. It is argued that there are advantages in representing control knowledge as rules in a design system, and that logic is an effective medium for this purpose. This is demonstrated by means of programs developed in Prolog and C using the example of spatial layout in buildings. Primarily, this book is directed at those in artificial intelligence (AI) involved in logic programming, planning and expert systems. However, since AI techniques are finding widespread application in industry, the use of an architectural design example makes this work relevant to architects, designers, engineers and developers of intelligent architectural design software.
series other
email
last changed 2003/04/23 15:14

_id e2ad
authors Coyne, Richard D.
year 1988
title The Logic of Computer-aided Design
source Design Computing. 1988. vol. 3: CADLINE has abstract only
summary The appropriateness of logic and language as the basis of models of the design process are discussed in relation to computer-aided design. A model of design systems is discussed which accounts for the role of interpretative and generative knowledge. It is argued that this knowledge serves to define design spaces. Interpretative knowledge can be used to derive implicit properties of designs, but designs can also be produced by 'abduction.' How interpretative and generative knowledge continue to produce designs is discussed. The relationship to other models is also reviewed
keywords CAD, logic, design process
series CADline
email
last changed 2003/05/17 10:13

_id ab54
authors Coyne, Richard D.
year 1988
title Logic Models of Design
source 317 p. London: Pitman, 1988. CADLINE has abstract only
summary This book constitutes both a theoretical and a technical exploration into modelling design tasks in logic. It provides a framework for describing design processes based on logic, achieved primarily by gathering together various strands evident in theories of reasoning, problem solving, design and knowledge engineering. The book demonstrates the applicability of logic programming and knowledge-based techniques to design, particularly in the area of controlling generative systems. The design task by which this is demonstrated is spatial layout, though the issues reach further than this one application
keywords reasoning, logic, design process
series CADline
email
last changed 2003/05/17 10:13

_id 56be
authors Dillon, Andrew and Marian, Sweeney
year 1988
title The Application of Cognitive Psychology to CAD Input/Output
source Proceedings of the HCI'88 Conference on People and Computers IV 1988 p.477-488
summary The design of usable human-computer interfaces is one of the primary goals of the HCI specialist. To date however interest has focussed mainly on office or text based systems such as word processors or databases. Computer aided design (CAD) represents a major challenge to the human factors community to provide suitable input and expertise in an area where the users goals and requirements are cognitively distinct from more typical HCI. The present paper is based on psychological investigations of the engineering domain, involving an experimental comparison of designers using CAD and the more traditional drawing board. By employing protocol analytic techniques it is possible to shed light on the complex problem-solving nature of design and to demonstrate the crucial role of human factors in the development of interfaces which facilitate the designers in their task. A model of the cognition of design is proposed which indicates that available knowledge and guidelines alone are not sufficient to aid CAD developers and the distinct nature of the engineering designer's task merits specific attention.
keywords Cognitive Psychology; Interface Design; Protocol Analysis
series other
last changed 2002/07/07 16:01

_id 4086
authors Ervin, Stephen M.
year 1988
title Computer-Aided Diagramming and the `Generator-Test' Cycle
source 1988. 22 p.: ill. includes bibliography
summary Simon's `generator-test' model is both a metaphor and a literal prescription for the organization of computer systems for designing. In most approaches to computer-aided design, one side of the cycle - generating or testing - is reserved to the human designer, the other side delegated to the computer. A more comfortable and comprehensive approach is to support switching these roles between designer and computer. This approach underlies a prototype system for computer-aided diagramming, the CBD (Constraint-Based Diagrammer). Diagramming is an important design activity, especially in preliminary design, as diagrams play a pivotal role between graphic and symbolic knowledge. Diagrams as a medium of knowledge representation and as means of inference have an ambivalent status in the generator-test model; they may serve either purpose. Examination of CBD sheds some light on Simon's model and on the requirements for sharing generating and testing with computational design tools
keywords problem solving, CAD, constraints, evaluation, synthesis
series CADline
last changed 2003/06/02 13:58

_id f65d
authors Kalisperis, L.N.
year 1988
title A Conceptual Framework for Computing in Architectural Design
source Pennsylvania State University
summary A brief historical overview of architectural design reveals that there has been a slow development in the conceptualization of the scope of architectural design. Advancing our understanding of the architectural design process reveals new directions for computing in architectural design. This study proposes a conceptual framework for an integrated computing environment. Design disciplines have embarked on a rigorous search for theoretical perspectives and methods that encompass a comprehensive view of architecture. Architectural design has been seen as a sequential process similar to that of industrial design. Attempts to formalize this process based on industrial design methods solved only a fraction of the overall integration problem. The resultant models are inadequate to deal with the complexity of architectural design. Emerging social problem-solving paradigms seek to construct a cognitive psychology of problem solving and have a direct relevance to architectural design. These problem-solving activities include structured, semi-structured, and ill-defined problems, which are included to varying degrees in each problem situation across a continuum of difficulty. Problem solving in architectural design involves the determination of certain objectives and also whether or not it is possible to accomplish them. Developments in computing in architecture have paralleled developments in architectural methodologies. The application of computing in architectural design has predominantly focused only on sequential process, optimum solutions, and quantifiable tasks of the design process. Qualitative, generative, tasks of architectural design were dealt with through the introduction of paradigms from linguistics and knowledge-based systems borrowed from engineering applications. Although the application of such paradigms resulted in some success, this reductionist approach to computing in architecture fragmented its integration into the design process. What is required, therefore, is a unified approach to computing in architecture based on a holistic view of the architectural design process. The model proposed in this study provides such a conceptual framework. This model shifts the focus from product to process and views the design problem as a goal-oriented problem-solving activity that allows a design team to identify strategies and methodologies in the quest for design solutions.  
series thesis:PhD
email
last changed 2003/02/12 22:37

_id ca71
authors Noble, Douglas and Rittel, Horst W.J.
year 1988
title Issue-Based Information Systems for Design
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 275-286
doi https://doi.org/10.52842/conf.acadia.1988.275
summary The understanding of planning and design as a process of argumentation (of the designer with himself or with others) has led to the concept of IBIS (Issue-Based Information Systems). The elements of IBIS are Issues, each of which are associated with alternative positions. These in turn are associated with arguments which support or object to a given position (or another argument). In the course of the treatment of issues, new issues come up which are treated likewise.

Issue-Based Information Systems are used as a means of widening the coverage of a problem. By encouraging a greater degree of participation, particularly in the earlier phases of the process, the designer is increasing the opportunity that difficulties of his proposed solution, unseen by him, will be discovered by others. Since the problem observed by a designer can always be treated as merely a symptom of another higher-level problem, the argumentative approach also increases the likelyhood that someone will attempt to attack the problem from this point of view. Another desirable characteristic of the Issue-Based Information System is that it helps to make the design process 'transparent'. Transparency here refers tO the ability of observers as well as participants to trace back the process of decision-making.

This paper offers a description of a computer-supported IBIS (written in 'C' using the 'XWindows' user interface), including a discussion of the usefulness of IBIS in design, as well as comments on the role of the computer in IBIS implementation, and related developments in computing.

series ACADIA
email
last changed 2022/06/07 07:58

_id 404e
authors Oksala , T.
year 1988
title Logical Models for Rule-based CAAD
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 107-116
summary The aim of this paper is to present the basic results of a theoretic approach to represent architectural individual forms in CAD systems. From the point of view of design methodology and problem solving these descriptions might be conceived' as parts of possible environments satisfying the laws of some design theory in logical sense. This paper describes results in a series of logical studies towards rule and knowledge based systems for design automation. The effective use of programming languages and computers as design aids in architecture presupposes certain capabilities to articulate built environment logically. The use of graphic languages in the description of environmental items e.g. buildings might be theoretically mastered by formal production systems including linguistic, geometric, and spatio-material generation. The combination of the power of formal mechanisms and logical individual calculus offers suitable framework to generate arbitrary e.g. free spatial compositions as types or unique solutions. In this frame it is natural to represent in a coherent way very complex hierarchical parsing of buildings in explicit form as needed in computer implementations. In order to simulate real design work the individual configurations of possible built forms should be designed to satisfy known rules. In the preliminary stage partial solutions to design problems may be discussed in mathematical terms using frameworks like lattices, graphs, or group theoretical considerations of structural, functional, and visual organization of buildings. The capability to produce mathematically sophisticated geometric structures allows us to generalize the approach further. The theoretical design knowhow in architecture can be partly translated in to some logic and represented in a knowledge base. These rules are used as selection criteria for geometric design candidates in the sense of logical model theory and mathematical optimization. The economy of the system can be developed by using suitable conduct mechanisms familiar e.g. from logic programming. The semantics of logic offers a frame to consider computer assisted and formal generation in design. A number of semantic and pragmatic problems, however, remain to be solved. In any case conceptual analyses based on logic are applicable in order to rationally reconstruct architectural goals contributing to the quality of environmental design, which should be the main goal in the development of design systems in near future.
series CAAD Futures
last changed 1999/04/03 17:58

_id ea5c
authors Purcell, P.
year 1988
title The Role of Media Technology in the Design Studio
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 179-187
summary This paper refers to a program of work, which aims to integrate a range of computer-based multi-media technologies which has the overall goal of enhancing the processes of education in the design studio. The individual projects describe the development of visual information systems and intelligent design systems. The framework of support for much of the work is Project Athena, a campus wide initiative to apply new technology towards enhancing the educational process project.
series CAAD Futures
last changed 1999/04/03 17:58

_id 2622
authors Schmitt, G.
year 1988
title Expert Systems and Interactive Fractal Generators in Design and Evaluation
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 91-106
summary Microcomputer based interactive programmable drafting programs and analysis packages are setting new standards for design support, systems in architectural offices. These programs allow the representation and performance simulation of design proposals with one tool, but they lack the ability to represent knowledge concerning relations between design and artifact. While they can expediate the traditional design and analysis process, they do not fundamentally improve it. We shall describe three computationally related approaches which could be a step towards a necessary paradigm change in developing design software. These approaches deal with expert design generators and evaluators, function oriented programming, and fractal design machines.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
doi https://doi.org/10.52842/conf.acadia.1994.039
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 696c
authors Beheshti, M. and Monroy, M.
year 1988
title Requirements for Developing an Information System for Architecture
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 149-170
summary This paper discusses possibilities of developing new tools for architectural design. It argues that architects should meet the challenge of information technology and computer-based design techniques. One such attempt has been the first phase of the development of an architectural design information system (ADIS), also an architectural design decision support system. The system should benefit from the developments of the artificial intelligence to enable the architect to have access to information required to carry out design work. In other words: the system functions as a huge on-line electronic library of architecture, containing up-to-date architectural design information, literature, documents, etc. At the same time, the system offers necessary design aids such as computer programs for design process, drawing programs, evaluation programs, cost calculation programs, etc. The system also provides data communication between the architect and members of the design coalition team. This is found to be of vital importance in the architectural design process, because it can enable the architect to fit in changes, brought about in the project by different parties. Furthermore, they will be able, to oversee promptly the consequences of changes or decisions in a comprehensive manner. The system will offer advantages over the more commonly applied microcomputer based CAAD and IGDM (integrated graphics database management) systems, or even larger systems available to an architect. Computer programs as well as hardware change rapidly and become obsolete. Therefore, unrelenting investment pressure to up-date both software and hardware exists. The financial burden of this is heavy, in particular for smaller architectural practices (for instance an architect working for himself or herself and usually with few or no permanent staff). ADIS, as an on-line architectural design aid, is constantly up-dated by its own organisation. This task will be co-ordinated by the ADIS data- base administrator (DBA). The processing possibilities of the system are faster, therefore more complex processing tasks can be handled. Complicated large graphic data files, can be easily retrieved and manipulated by ADIS, a large system. In addition, the cost of an on-line system will be much less than any other system. The system is based on one model of the architectural design process, but will eventually contain a variety of design models, as it develops. The development of the system will be an evolutionary process, making use of its users' feed-back system. ADIS is seen as a step towards full automation of architectural design practices. Apart from being an architectural design support system, ADIS will assist the architect in his/her administrative and organisational activities.
series CAAD Futures
last changed 2003/11/21 15:16

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_423710 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002