CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 150

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id c57b
authors Bier, Eric A.
year 1988
title Snap-Dragging. Interactive Geometric design in Two and Three Dimensions
source University of California, Berkeley
summary Graphic artists, mechanical designers, architects, animators, authors of technical papers and others create geometric designs (illustrations and solid models) as a major part of their daily efforts. Some part of this shape construction must be done with precision. For instance, certain line segments should be horizontal, parallel or congruent. In recent years, interactive computer programs have been used to speed up the production of precise geometric designs. These programs take advantage of high-speed graphics, equation solving, and computer input peripherals to reduce the time needed to describe point positions to the machine. Previous techniques include rounding the cursor to points on a rectangular grid, solving networks of constraints, and supporting step-by-step drafting-style constructions. Snap-dragging is a modification of the drafting approach that takes advantage of powerful workstations to reduce the time needed to make precise illustrations. Using a single gravity mapping, a cursor can be snapped to either points, lines or surface. The gravity algorithm achieves good performance by computing intersection points on the fly. To aid precise construction, a set of lines, circles, planes, and spheres, called alignment objects, are constructed by the system at a set of slopes, angles, and distances specified by the user. These alignments objects are constructed at each vertex or edge that the user has declared to be hot (of interest). Vertices and edges can also be made hot by the system through the action of an automatic hotness rule. When snap-dragging is used, shapes can often be constructed using a few more keystrokes than would be needed to sketch them freehand. Objects can be edited at arbitrary orientations and sizes. The number of primitive operations is small, making it possible to provide keyboard combinations for quickly activating most of these operations. The user interface works nearly identically in two or three dimensions. In three dimensions, snap-dragging works with a two-dimensional pointing device in a single perspective view.  
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 0ee6
authors Boyle, R. and Thomas, R.
year 1988
title Computer Vision: A First Course
source Blackwell Scientific Publications
summary Computer vision is a new discipline recently developed from image processing, which is able to take raw images, and, after suitable processing, derive information from them automatically. Computer vision applications are legion in the areas of automated manufacture and robotics, where it may be addressed to such problems as resolving motion in images, and 3-D analysis. This book is a much-needed introduction to the subject for senior undergraduates and graduates. It covers the necessary mathematical techniques at a level suitable for the mathematical literate who has not encountered any image processing before, and proceeds to an examination of some pure vision applications. There is a discussion of human perception and how it relates to machine perception, and there are examples throughout the text, with exercises at the end of each chapter. Table of Contents Perception A pattern recognition system Image acquisition and modelling Low level processing Segmentation A PCB example Line labelling Towards three dimensions Knowledge representation Rule based systemsl Epilogue Appendices.
series other
last changed 2003/04/23 15:14

_id sigradi2018_1762
id sigradi2018_1762
authors de Albuquerque Montezi, Rafael; Tanoue Vizioli, Simone Helena
year 2018
title Digital morphogenesis and tectonics: an analysis of Peter Eisenman’s Aronoff Center
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 359-366
summary The concept of architectural tectonics relates simultaneously to pragmatic and poetic aspects of the materiality, aiming the expression of these concerns in the result of the Form. Far from only a theoretical concerning, these design decisions affect how our society employs its natural and human resources. This work takes the Aronoff Center for Design and Arts (1988-1996), by Peter Eisenman, as a case study for a graphical analysis, dealing with the consequences of a free-form morphogenesis to its construction and investigating the tectonics of the contemporary architecture.
keywords Contemporary Architecture; Digital Project; Tectonics
series SIGRADI
email
last changed 2021/03/28 19:58

_id e7a8
authors Emde, H.
year 1988
title Geometrical Fundamentals for Design and Visualization of Spatial Objects
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 171-178
summary Every architectural object is a 3-dimensional entity of the human environment, haptically tangible and optically visible. During the architectural process of planning every object should be designed as a body and should be visualized in pictures. Thus the parts of construction get an order in space and the steps of construction get an order in time. The ideal planning object is a simulated anticipation of the real building object, which is to be performed later on. The possibility to relate the planning object immediately to the building object relies on the fact that they both have the same "geometry" This means: both can be described in the same geometric manner. Creating and visualizing spatial objects is based on geometrical fundamentals. Theoretical knowledge and practical control of these fundamentals is essential for the faultless construction and the realistic presentation of architectural objects. Therefore they have to be taught and learned thoroughly in the course of an architectural education. Geometrical design includes the forming of object- models (geometry of body boundaries), the structuring of object-hierarchies (geometry of body combinations) and the colouring of objects. Geometrical visualization includes controlling the processes of motion, of the bodies (when moving objects) and of the center of observation (when moving subjects) as well as the representation of 3-dimensional objects in 2- dimensional pictures and sequences of pictures. All these activities of architects are instances of geometrical information processing. They can be performed with the aid of computers. As for the computer this requires suitable hardware and software, as for the architect it requires suitable knowledge and capabilities to be able to talk about and to recall the perceivable objects and processes of the design with logic abstracts (language of geometry). In contrast to logical, numerical and textual informations the geometric informations concerning spatial objects are of much higher complexity. Usually these complexes of information are absorbed, processed and transmitted by the architect in a perceptive manner. The computer support in the field of geometry assumes that the processing of perceptions of the human consciousness can be converted by the computer as a framework of logical relations. Computer aided construction and representation require both suited devices for haptical and optical communication and suitable programs in particular.
series CAAD Futures
last changed 1999/04/03 17:58

_id 88cb
authors Gero, John S. and Oksala, Tarkko (editors)
year 1988
title Knowledge-Based Systems in Architecture
source TIPS'88 - Knowledge Based Design in Architecture, Acta Polytechnica Scandinavica (1988 : Helsinki, Finland). 143 p. 1989
summary The technology of knowledge-based systems can be found in texts on artificial intelligence. There is very little published so far on knowledge-based systems in architecture. To this end an international conference -- TIPS' 88: Knowledge-Based Design in Architecture -- was organized for August 1988 in Finland. Thirteen papers from that conference have been selected and edited for this monograph. They are grouped under five parts: Introduction; Schemas and Models; Processes and Knowledge; Modeling Buildings; and Creativity and Knowledge-Based Systems
keywords knowledge base, architecture, representation, expert systems,building, creativity
series CADline
email
last changed 2003/06/02 13:58

_id f65d
authors Kalisperis, L.N.
year 1988
title A Conceptual Framework for Computing in Architectural Design
source Pennsylvania State University
summary A brief historical overview of architectural design reveals that there has been a slow development in the conceptualization of the scope of architectural design. Advancing our understanding of the architectural design process reveals new directions for computing in architectural design. This study proposes a conceptual framework for an integrated computing environment. Design disciplines have embarked on a rigorous search for theoretical perspectives and methods that encompass a comprehensive view of architecture. Architectural design has been seen as a sequential process similar to that of industrial design. Attempts to formalize this process based on industrial design methods solved only a fraction of the overall integration problem. The resultant models are inadequate to deal with the complexity of architectural design. Emerging social problem-solving paradigms seek to construct a cognitive psychology of problem solving and have a direct relevance to architectural design. These problem-solving activities include structured, semi-structured, and ill-defined problems, which are included to varying degrees in each problem situation across a continuum of difficulty. Problem solving in architectural design involves the determination of certain objectives and also whether or not it is possible to accomplish them. Developments in computing in architecture have paralleled developments in architectural methodologies. The application of computing in architectural design has predominantly focused only on sequential process, optimum solutions, and quantifiable tasks of the design process. Qualitative, generative, tasks of architectural design were dealt with through the introduction of paradigms from linguistics and knowledge-based systems borrowed from engineering applications. Although the application of such paradigms resulted in some success, this reductionist approach to computing in architecture fragmented its integration into the design process. What is required, therefore, is a unified approach to computing in architecture based on a holistic view of the architectural design process. The model proposed in this study provides such a conceptual framework. This model shifts the focus from product to process and views the design problem as a goal-oriented problem-solving activity that allows a design team to identify strategies and methodologies in the quest for design solutions.  
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 1447
authors Meyer, B.
year 1988
title Object Oriented Software Construction
source Prentice-Hall, Englewood-Cliff NJ
summary Object-Oriented Software Construction, second edition is the comprehensive reference on all aspects of object technology, from design principles to O-O techniques, Design by Contract, O-O analysis, concurrency, persistence, abstract data types and many more. Written by a pioneer in the field, contains an in-depth analysis of both methodological and technical issues.
series other
last changed 2003/04/23 15:14

_id 8403
authors Mitchell, William J., Liggett, Robin S. and Tan, Milton
year 1988
title The Topdown System and its use in Teaching - An Exploration of Structured, Knowledge-Based Design
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 251-262
doi https://doi.org/10.52842/conf.acadia.1988.251
summary The Topdown System is a shell for use in developing simple (but we believe non-trivial) knowledge-based CAD systems. It provides a data structure, graphics capabilities, a sophisticated user interface, and programming tools for rapid construction of knowledge bases. Implementation is for Macintosh, Macintosh II, IBM PC/AT, PS12, and Sun workstations.

The basic idea is that of top-down design - beginning with a very abstract representation, and elaborating that, in step-by-step fashion, into a complete and detailed representation. The basic operations are real-time parametric variation of designs (using the mouse and slide bar) and substitution of objects. Essentially, then, a knowledge-base in Topdown implements a kind of parametric shape grammar.

The main applications of Topdown are in introductory teaching of CAD, and (since it provides a very quick and easy way for a user to develop detailed geometric models) to provide a uniform front-end for a variety of different applications. The shell, and some example knowledge-bases, are publicly available.

This paper discusses the principles of the Topdown Shell, the implementation of knowledge bases within it, and a variety of practical design applications.

series ACADIA
email
last changed 2022/06/07 07:58

_id 45b7
authors Oxman, R.E.
year 1988
title Expert System for Generation and Evaluation in Architectural Design
source Technion, Faculty of Architecture and Town Planing, Haifa
summary The research field, focuses on a new research area of Knowledge Based Systems for Architectural Design. The research deals with concepts and tools emerging from Artificial Intelligence, Knowledge Based Systems and Expert Systems. The research is involved with the construction of a theoretical basis for the development of approaches and methods for the representation and control of design knowledge as a reasoning process. Key questions which attempt to reconsider representation and control in design are formulated. The following questions serve as a research framework out of which new approaches, methods and tools were developed. (1.)What are the existing ideas, methods and tools in Expert Systems? (2.) What are the performance characteristics of Expert Systems in Architectural Design ? (3.) What are the desired operative characteristics and interactions for Expert Systems in design ? (4.) How is it possible to formulate and apply the diverse forms of Architectural Knowledge in Expert Systems for design? (5.) What are the problems of implementation in the development of Expert Systems for design ? The state of the art in knowledge based systems is surveyed, while emphasizing the differences between conventional systems and knowledge based systems. Representation and control methods and the components of expert systems are reviewed. Expert systems for diagnosis, interpretation, planning and design are analysed with respect to their performance characteristics. Techniques and technologies of existing tools are defined. An expert system for the generation and evaluation of ill defined architectural design problems is develped. A formalization of the concept of 'design interpretation' is proposed and developed. It is applied in the process of defining and classifying the performance characteristics of expert systems for design. This concept is based upon two sets of reasoning processes: those which enable a mapping between design requirements and solution descriptions in the generation stage of design and those between solution descriptions and performance evaluation in the evaluation stage of design. On the basis of the formalization of this concept, an expert system capable of integrating various modes of performance is proposed and developed. The system functions as a 'design generator', a 'design critic', or a' design critic-generator'. These modes, which integrate generation and evaluation in the same system, operate by employing both forward chaining and backward chaining inference mechanisms. As a result of the examination of desired forms of interactions, a new approach for dual direction interpretation between graphic and verbal modes is developed. This approach reflects the importance of both graphical and verbal expression in design. The approach is based upon a simultaneous mapping between symbolic-verbal interpretation and graphic interpretation. The work presents the mapping process through the concept of design interpretation, employing geometrical knowledge, typological knowledge and evaluation knowledge. A tool which provides communication between an expert system and a graphic system was developed and is presented. The importance of such a tool in expert systems for design resides in the provision of free choice to the user for interacting with the system either graphically or verbally during the design process. An additional component in the development of knowledge-based systems for design is related to the important question of knowledge definition and the representational schemata of design knowledge. A new representational scheme for complex architectural knowledge, termed 'The generation and refinement scheme of a design prototype' is proposed and developed. Its operation as part of a total integrated design system is demonstrated. The scheme is based upon the structures of knowledge of design precedents which constitute typical situations and solutions in architectural design. This scheme provides an appropriate representation for the two types of knowledge which operate in a refinement process of a design prototype. Generative knowledge describes the solution space by predefined refinement stages; interpretive knowledge enables their selection. The examination of representational methods for the proposed scheme indicated that employing a single representational method lacked enough generalization and expressive power for the needs of the design knowledge structures. It was found that a way to represent complex structures is through the integration of multiple methods of representation, each one according to the knowledge characteristics. In order to represent the proposed scheme of design knowledge, a unique method was developed which integrates both rules and frames. The method consists of a rules-frames-rules structure for the representation of a design prototype. An approach is developed for the implementation of these concepts in an expert system for design. PRODS: A prototype based expert system shell for design is developed and demonstrated. The system consists of three basic components: a rule-based expert system shell, a frame system, and a knowledge base interface. All system interactions are controlled by the inference engine. It passes control between the rule-base and the frame-base inference engines, and provides communications between the rule-based and frame-based representations. It is suggested that expert system can interface with external CAD systems including graphics, communicating through a central representation. These concepts and developments are demonstrated in two implementations. The PREDIKT system for the preliminary design of the residential kitchen; the PROUST system for the selection and refinement of dwelling types. PREDIKT demonstrates the integration of rules and a graphical-verbal interpreter; in addition, PROUST demonstrates the significance of hybrid representation in the generation and refinement processes. The results and conlusions are summarized. Future research agenda within the field of knowledge-based systems for design is discussed, and potential research areas are defined.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id aef1
authors Rosenman, M.A., Gero, J.S. and Coyne, R.D. (et al)
year 1987
title SOLAREXPERT : A Prototype Expert System for Passive Solar Energy Design in Housing
source Canberra: Aust NZ Solar Energy Society, 1987. vol.II: pp. 361-370. Also published in People and Technology - Sun, Climate and Building, edited by V. Szokolay, Univ. of Queensland, Brisbane, 1988
summary Passive solar energy design is not an exact science in which a set of analytical procedures can be followed to produce results. Rather it depends heavily on subjective parameters and experience collected over time which is heuristic by nature. At present this knowledge is available in books but while this knowledge is comprehensive, it is unstructured and not always easy to make use of. A computer-based system allows for flexible interactive dialogue and for the incorporation of analytical procedures which may be required. This paper describes work on SOLAREXPERT, a prototype expert system to aid designers in passive solar energy design for single dwellings. The system operates at a strategic level to provide basic advice on the form of construction and types of passive solar systems and at a spatial zone level to provide more detailed advice on sizes and materials. It allows for modification of the information entered so that users may explore several possibilities
keywords applications, experience, housing, expert systems, energy, design, architecture
series CADline
email
last changed 2003/05/17 10:17

_id caadria2005_b_4a_b
id caadria2005_b_4a_b
authors Ruchi Choudhary, Jeremy Michalek
year 2005
title Design Optimization in Computer-Aided Architectural Design
source CAADRIA 2005 [Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] New Delhi (India) 28-30 April 2005, vol. 2, pp. 149-159
doi https://doi.org/10.52842/conf.caadria.2005.149
summary The proposition of using design optimization to formalize and add rigor to the decision-making process in building and construction was earlier compiled by Radford et al. in 1988, providing an in-depth demonstration of techniques available at the time. Much has changed since, both in the available solution methods and the nature of the problems themselves. This paper provides an updated insight into past and current trends of using this engineering design paradigm to solve architectural design problems, with an emphasis on continuous nonlinear formulations of simulation-based problems. The paper demonstrates different problem formulations and current techniques for solving them. Examples from recent research are used to demonstrate significant achievements and existing challenges associated with formalizing and solving decision-making tasks in architecture.
series CAADRIA
email
last changed 2022/06/07 07:56

_id 24df
authors Saggio, Antonino
year 1998
title HyperArchitecture
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998, pp. 224-227
doi https://doi.org/10.52842/conf.ecaade.1998.224
summary The "Universale d?architettura" is a pocket book series which is now arrived at 40 titles. Printed by Testo&Immagine in Turin it is directed by Bruno Zevi. It has a very large public, being distributed in newstands, in bookstores and mailed to subscribers at a very convenient price (6 dollars each). Many of its titles will soon appear in English, French, Spanish and German. The book series is divided into different sections (monographs, essays, architectural guides, anthologies) and in April 1988 a new section has been introduced. "La rivoluzione informatica" ("The Information revolution") is the title and Antonino Saggio is the curator. Scope of this new section is to bring closer architecture and computers by providing intellectual and cultural tools to orient the reader in a fast growing filed. The first book (Luigi Prestinenza Puglisi, Hyperarchitecture. Spaces in the electronic era) is an essay that combines a critical overview of most recent projects by Ito, Arakama, Koolhaas, Libeskind with epistemological consideration and researches coming from conceptual art. Three key words organized the material: projection, mutation, simulation. The next book (Gerhard Schmitt, Information architecture) deals with foundation and future of Caad systems and it can be seen from one side as an extremely updated manual and from the other as the construction of the developing lines of Caad research. Other forthcoming titles include: Virtual Terragni, How works the Eisenman Office, Design and Build with Computers. "La rivoluzione informatica" is (not only in Italy but also, quite probably, anywhere) the only book series which addresses the theme of architectural design in the electronic era. To better understand its scope, character and goals, it follows the Afterward by Saggio to the first book.
series eCAADe
email
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/11saggio/index.htm
last changed 2022/06/07 07:56

_id avocaad_2001_19
id avocaad_2001_19
authors Shen-Kai Tang, Yu-Tung Liu, Yu-Sheng Chung, Chi-Seng Chung
year 2001
title The visual harmony between new and old materials in the restoration of historical architecture: A study of computer simulation
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the research of historical architecture restoration, scholars respectively focus on the field of architectural context and architectural archeology (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000) or on architecture construction and the procedure of restoration (Shi, 1988, 1989; Chiu, 1990). How to choose materials and cope with their durability becomes an important issue in the restoration of historical architecture (Dasser, 1990; Wang, 1998).In the related research of the usage and durability of materials, some scholars deem that, instead of continuing the traditional ways that last for hundreds of years (that is to replace new materials with old ones), it might be better to keep the original materials (Dasser, 1990). However, unavoidably, some of the originals are much worn. Thus we have to first establish the standard of eliminating components, and secondly to replace identical or similar materials with the old components (Lee, 1990). After accomplishing the restoration, we often unexpectedly find out that the renewed historical building is too new that the sense of history is eliminated (Dasser, 1990; Fu, 1997). Actually this is the important factor that determines the accomplishment of restoration. In the past, some scholars find out that the contrast and conflict between new and old materials are contributed to the different time of manufacture and different coating, such as antiseptic, pattern, etc., which result in the discrepancy of the sense of visual perception (Lee, 1990; Fu, 1997; Dasser, 1990).In recent years, a number of researches and practice of computer technology have been done in the field of architectural design. We are able to proceed design communication more exactly by the application of some systematic softwares, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and so on (Lawson, 1995; Liu, 1996). The application of computer technology to the research of the preservation of historical architecture is comparatively late. Continually some researchers explore the procedure of restoration by computer simulation technology (Potier, 2000), or establish digital database of the investigation of historical architecture (Sasada, 2000; Wang, 1998). How to choose materials by the technology of computer simulation influences the sense of visual perception. Liu (2000) has a more complete result on visual impact analysis and assessment (VIAA) about the research of urban design projection. The main subjects of this research paper focuses on whether the technology of computer simulation can extenuate the conflict between new and old materials that imposed on visual perception.The objective of this paper is to propose a standard method of visual harmony effects for materials in historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example).There are five steps in this research: 1.Categorize the materials of historical architecture and establish the information in digital database. 2.Get new materials of historical architecture and establish the information in digital database. 3.According to the mixing amount of new and old materials, determinate their proportion of the building; mixing new and old materials in a certain way. 4.Assign the mixed materials to the computer model and proceed the simulation of lighting. 5.Make experts and the citizens to evaluate the accomplished computer model in order to propose the expected standard method.According to the experiment mentioned above, we first address a procedure of material simulation of the historical architecture restoration and then offer some suggestions of how to mix new and old materials.By this procedure of simulation, we offer a better view to control the restoration of historical architecture. And, the discrepancy and discordance by new and old materials can be released. Moreover, we thus avoid to reconstructing ¡§too new¡¨ historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id c5ec
authors Smith Shaw, Doris
year 1988
title The Conceptual Approach to CAD Education
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 35-45
doi https://doi.org/10.52842/conf.acadia.1988.035
summary Recent research at the Corps of Engineers Construction Engineering Research Laboratory (CERL) investigated embedded computer-based instruction for AutoCAD. The results of this study, which are the focus of this paper, indicated that the only factor which correlated with success in completing the final test was previous experience with another CAD system. Those who knew another CAD system had higher scores and required less than half the time to complete the lessons. Presumably their conceptual knowledge about CAD transferred to the new software environment, even though the Corps' study showed that they were initially biased against learning the new system. Such biased attitudes have been observed when users are asked to learn a second similar software of any kind.

Architects who are deeply involved in computer-aided design have stated that one must learn to program the computer to build the conceptual framework for the creative process. We at CERL agree that an understanding of underlying graphics concepts is essential to the designer. Our research shows that giving students the freedom to explore an existing software program can result in the development of conceptual knowledge. Interviews also reveal that students can invent ways to meet individual objectives when "guided discovery" learning is encouraged.

series ACADIA
last changed 2022/06/07 07:56

_id 0051
authors Wastell, D.G. and White, P.
year 1993
title Using Process Technology to Support Cooperative work: Prospects and Design Issues
source CSCW in Practice: An Introduction and Case Studies. pp. 105-126. Edited by Dan Diaper and Colston Sanger, London: Springer-Veriag
summary CSCW is a diverse and eclectic field. The theme which unifies CSCW is the question of group coordination, how it is achieved as a social phenomenon and how it may be actively assisted by computer-based support. The nature of these social processes are variously discussed in many of this book's other chapters. The issue of what is "true" CSCW and what is not is a contentious academic issue. Support for non-routine "professional" work such as collaborative writing would be widely accepted as a paradigm of CSCW (see, in particular, Sharples, Chapter 4; Gilbert, chapter 5; and Diaper, Chapter 6). Electronic mail, however, does not count for some as CSCW, because it is "not really tuned (or tunable) to the needs of the work group" (Greif, 1988). Technologies which support routine work would appear to fall into a particularly controversial category. Traditional office automation systems come under this heading.
series other
last changed 2003/04/23 15:14

_id 0dff
authors Woodbury, Robert F., Fenves, Stephen J. and Baker, Nelson C. (et al)
year 1988
title Geometric Reasoning in Computer Integrated Building Construction
source Robotics in Construction, International Symposium (5th : 1988 : Tokyo, Japan). pp. 115-124 : ill. includes bibliography
summary Geometric reasoning, the integration of geometric representation and inference in advanced computer systems, is presented as an issue at the forefront of research in construction automation. The unique demands that construction automation poses on such reasoning are discussed. An architecture that provides a structure for geometric reasoning is presented and results from a prototype implementation are shown. A project to develop geometric reasoning in the construction domain of panelized building systems is introduced. Within this project, two exemplary applications, structural/architectural design and construction sequence planning, each supported by the same geometric reasoning facility, are being demonstrated
keywords geometry, reasoning, representation, inference, construction, automation, applications, architecture, engineering
series CADline
email
last changed 2003/06/02 13:58

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
doi https://doi.org/10.52842/conf.acadia.1994.039
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 0697
authors Balachandran, M.B. and Gero, John S.
year 1988
title Development of a Knowledge-Based System for Structural Optimization
source Dordrecht: Kluwer, 1988. pp. 17-24
summary Optimization is a useful and challenging activity in structural design. It provides designers with tools for better designs while saving time in the design process. The features of conventional optimization tools are presented and their limitations are outlined. The impact and role of knowledge-based methodologies in structural optimization processes is discussed. Structural optimization involves a number of tasks which require human expertise, and are traditionally assisted by human designers. These include design optimization formulation, problem recognition and the selection of appropriate algorithm(s). In this representation and processing of constraints are crucial tasks. This paper presents a framework for developing a knowledge-based system to accomplish these tasks. Based on the needs and the nature of the optimization process, a conceptual architecture of an integrated knowledge-based system is presented. The structure and functions of various components of the system are described
keywords knowledge base, systems, integration, optimization, structures, engineering
series CADline
email
last changed 2003/06/02 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_685334 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002