CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 161
Reformat results as: short short into frame detailed detailed into frame
The presentation will present our experience to-date in using conventional computer graphic tools to represent design ideas and contrast it with a video demonstration of our prototypical dynamic urban design modelling software for the Silicon Graphics IRIS computers.
A highly unusual feature of PHIDIAS II is that it implements all of its functions using only hypermedia mechanisms. Complex vector graphic drawings and objects are represented as composite hypermedia nodes. Inference and critiquing are implemented through use of what are known as virtual structures [Halasz 1988], including virtual links and virtual nodes. These nodes and links are dynamic (computed) rather than static (constant). They are defined as expressions in the same language used for queries and are computed at display time. The implementation of different kinds of functions using a common set of mechanisms makes it easy to use them in combination, thus further augmenting the system's functionality.
PHIDIAS supports design by informing architects as they develop a solution's form. The idea is thus not to make the design process faster or cheaper but rather to improve the quality of the things designed. We believe that architects can create better buildings for their users if they have better information. This includes information about buildings of given types, user populations, historical and modern precedents, local site and climate conditions, the urban and natural context and its historical development, as well as local, state and federal regulations.
The background to this large planning exercise is sketched, the goals of our computing support plan are stated, the strategies aimed at achieving these goals are explained, and the observed outcomes from implementing these strategies are listed.
In evaluating the plan, this paper argues the position that a computer culture must take hold within the College before computer-aided design will have a truly profound effect upon pedagogy. Operationally, this means that every faculty member must have a personal computer and that every student must have free access to a microcomputer facility. Only then does the whole College adopt the new culture.
The fiscal commitment is high, but there are payoffs in of fice automation that justify the investment even in the short-term. Trivial as it seems, wordprocessing is the first step in seeding this culture. These short term payoffs help make the case for investing in the promise of long-term payoffs in superior design through computer aids.
The energy performance of a base case building in each of four climates and cultures is presented. The climates are: Phoenix (hotdry), Minneapolis (cold-dry), Boston (cold-humid), and New Orleans ( hot- humid). Keeping the host climate, site, building size and function constant: but varying materials, shape and design concepts, each base case is iterated through a series of computer assisted re-designs to transform each base case building into an architecture representative of its regional climate and culture.
Traditional technologies and concepts produce traditional regional architecture. New technologies and concepts produce forms expressive of an emerging high-tech, high-touch, low energy society.
The paper presents computer generated work by the author and his students. It also presents an interim evaluation of the successes and difficulties of conducting a 'paper free' design studio.
For more results click below: