CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 162

_id a7c3
authors Bly, S.A.
year 1988
title A use of drawing surfaces in different collaborative settings
source Conference on Computer-Supported Cooperative Work (CSCW '88), (pp. 250-256), Portland, OR: ACM Press
summary Two-person design sessions were studied in three different settings: face-to-face, geographically separated with an audio/video link, and a telephone-only connection. In all settings, the designers' uses of a drawing surface were noted. Many similar drawing surface activities occurred in all design settings even though the settings did not each allow for the same sharing and interaction with the drawing surfaces. Observations suggest that the process of creating drawings may be as important to the design process as the drawings themselves. These preliminary results raise issues for further study, particularly with respect to computer support for collaborative drawing surface use.
series other
last changed 2003/11/21 15:16

_id 7d26
authors Pearson, D.G., Alexander, C. and Webster, Robin
year 2001
title Working Memory and Expertise Differences in Design.
source J. S. Gero, B. Tversky and T. Purcell (eds), 2001, Visual and Spatial Reasoning in Design, II - Key Centre of Design Computing and Cognition, University of Sydney, Australia
summary The Creative Synthesis task devised by Finke and Slayton(1988) has been widely used as an experimental measure of mentalsynthesis, but previous studies have often failed to demonstrate anysignificant benefits of external support on participants’ performance.This paper discusses a study that examined novice and expert drawers’performance of synthesis using a modified stimuli set that was designedto increase the load on visuo-spatial working memory. The resultsshowed a significant increase in Transformational Complexity(Anderson & Hesltrup, 1993) of patterns produced by the expert groupwhile using sketching. It is argued that experts are more effective atusing sketching interactively to increase complexity, while novices relymore on using it as a simple memory aid.
series other
email
more http://www.arch.usyd.edu.au/kcdc/conferences/vr01/
last changed 2003/05/02 11:14

_id 8c6d
authors Brooks, H. Gordon
year 1988
title A New Communication Model for Architecture Using Video and 3D Computer Animated Graphics
doi https://doi.org/10.52842/conf.acadia.1988.263
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 263-274
summary The University of Arkansas School of Architecture has produced a half-hour television program describing Richard Meier's Atheneum in New Harmony, Indiana. The program uses an analysis technique developed by Dr. Geoffrey Baker, RIBA. The treatment for the material is a combination of on- site video and computer generated 3D animated graphics. An instrument was developed to evaluate the video and its 3D graphics. Based on analysis of the test data several conclusions are apparent. Students believe the video to be very helpful in understanding this building. This video appears to be paced too quickly for understanding in one viewing. Repetitive viewings of the video are helpful in understanding the content. Some students are able to understand principles presented visually better than those presented verbally, but best learning happens when information is reinforced visually and verbally.

series ACADIA
last changed 2022/06/07 07:54

_id 21b9
authors Landsdown, J.
year 1988
title Computers and Visualisation of Design Ideas: Possibilities and Promises
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 71-80
summary Drawing in all its various forms, from freehand sketching to detailed technical layout, is a type of modelling that designers find indispensable. In many cases, indeed, drawing is the only form of external modelling a designer uses. It has two basic functions: to assist in the externalisation and development of mental concepts and to help in the presentation of these concepts to others. The current thrust of work in computer graphics - although valuable - tends to concentrate almost exclusively on the presentation aspects and it is now possible to create images almost resembling photographs of real objects as well as production drawings of great accuracy and consistency. This paper summarises some of this presentation work as well as developments which might go further in assisting the activities and processes of design.
series CAAD Futures
last changed 1999/04/03 17:58

_id 0ee1
authors Veness, R. E.
year 1988
title Bridge Builder: An Expert System for the Design of Non-Equipment Military Bridging
source Department of Architectural Science, University of Sydney
summary This thesis describes an expert system for the selection, design and documentation of non-equipment military bridges. The expert system uses the expert system shell BUILD. Extensive use has been made of interfacing between BUILD and Prolog and then by using Prolog's foreign language interface with Pascal procedures and the graphics interface. The expert system, which consists of rules, Pascal procedures and a graphics package, aims at: (a) the determination of the suitable bridging structure; (b) designing a bridge using material constraints; (c) producing a consistent and sound structural design for the bridge and the necessary support structures; (d) producing the necessary working drawings and a bill of materials for the solution. The graphics interface is used to display and manipulate a three dimensional model of the solution and the hardcopy output. [Unpublished. -- CADLINE has abstract only.]
keywords Military Engineering, Expert Systems, Structures, User Interface, Applications
series thesis:MSc
last changed 2002/12/14 19:13

_id 696c
authors Beheshti, M. and Monroy, M.
year 1988
title Requirements for Developing an Information System for Architecture
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 149-170
summary This paper discusses possibilities of developing new tools for architectural design. It argues that architects should meet the challenge of information technology and computer-based design techniques. One such attempt has been the first phase of the development of an architectural design information system (ADIS), also an architectural design decision support system. The system should benefit from the developments of the artificial intelligence to enable the architect to have access to information required to carry out design work. In other words: the system functions as a huge on-line electronic library of architecture, containing up-to-date architectural design information, literature, documents, etc. At the same time, the system offers necessary design aids such as computer programs for design process, drawing programs, evaluation programs, cost calculation programs, etc. The system also provides data communication between the architect and members of the design coalition team. This is found to be of vital importance in the architectural design process, because it can enable the architect to fit in changes, brought about in the project by different parties. Furthermore, they will be able, to oversee promptly the consequences of changes or decisions in a comprehensive manner. The system will offer advantages over the more commonly applied microcomputer based CAAD and IGDM (integrated graphics database management) systems, or even larger systems available to an architect. Computer programs as well as hardware change rapidly and become obsolete. Therefore, unrelenting investment pressure to up-date both software and hardware exists. The financial burden of this is heavy, in particular for smaller architectural practices (for instance an architect working for himself or herself and usually with few or no permanent staff). ADIS, as an on-line architectural design aid, is constantly up-dated by its own organisation. This task will be co-ordinated by the ADIS data- base administrator (DBA). The processing possibilities of the system are faster, therefore more complex processing tasks can be handled. Complicated large graphic data files, can be easily retrieved and manipulated by ADIS, a large system. In addition, the cost of an on-line system will be much less than any other system. The system is based on one model of the architectural design process, but will eventually contain a variety of design models, as it develops. The development of the system will be an evolutionary process, making use of its users' feed-back system. ADIS is seen as a step towards full automation of architectural design practices. Apart from being an architectural design support system, ADIS will assist the architect in his/her administrative and organisational activities.
series CAAD Futures
last changed 2003/11/21 15:16

_id e1e2
authors Danahy, John
year 1988
title Engaging Intuitive Visual Thinking in Urban Design Modelling: A Real-Time Hypothesis
doi https://doi.org/10.52842/conf.acadia.1988.087
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 87-97
summary This paper will present prototypical software being used in the teaching of urban design to students and for use by professionals in the early stages of a project. The system is intended to support a heuristic approach to design. That is, it supports a process of refining ideas and understandings through a process of trial and error. The support or aid to design comes in the form of a didactic real-time programme. Its power lies in its ability to provide instantaneous response to operations on the data that can allow one to develop threedimensional spatial ideas in an intuitively driven manner. This condition appears to occur for both novice and expert computer operators.

The presentation will present our experience to-date in using conventional computer graphic tools to represent design ideas and contrast it with a video demonstration of our prototypical dynamic urban design modelling software for the Silicon Graphics IRIS computers.

series ACADIA
email
last changed 2022/06/07 07:55

_id e7a8
authors Emde, H.
year 1988
title Geometrical Fundamentals for Design and Visualization of Spatial Objects
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 171-178
summary Every architectural object is a 3-dimensional entity of the human environment, haptically tangible and optically visible. During the architectural process of planning every object should be designed as a body and should be visualized in pictures. Thus the parts of construction get an order in space and the steps of construction get an order in time. The ideal planning object is a simulated anticipation of the real building object, which is to be performed later on. The possibility to relate the planning object immediately to the building object relies on the fact that they both have the same "geometry" This means: both can be described in the same geometric manner. Creating and visualizing spatial objects is based on geometrical fundamentals. Theoretical knowledge and practical control of these fundamentals is essential for the faultless construction and the realistic presentation of architectural objects. Therefore they have to be taught and learned thoroughly in the course of an architectural education. Geometrical design includes the forming of object- models (geometry of body boundaries), the structuring of object-hierarchies (geometry of body combinations) and the colouring of objects. Geometrical visualization includes controlling the processes of motion, of the bodies (when moving objects) and of the center of observation (when moving subjects) as well as the representation of 3-dimensional objects in 2- dimensional pictures and sequences of pictures. All these activities of architects are instances of geometrical information processing. They can be performed with the aid of computers. As for the computer this requires suitable hardware and software, as for the architect it requires suitable knowledge and capabilities to be able to talk about and to recall the perceivable objects and processes of the design with logic abstracts (language of geometry). In contrast to logical, numerical and textual informations the geometric informations concerning spatial objects are of much higher complexity. Usually these complexes of information are absorbed, processed and transmitted by the architect in a perceptive manner. The computer support in the field of geometry assumes that the processing of perceptions of the human consciousness can be converted by the computer as a framework of logical relations. Computer aided construction and representation require both suited devices for haptical and optical communication and suitable programs in particular.
series CAAD Futures
last changed 1999/04/03 17:58

_id 8fb2
id 8fb2
authors McCall, Raymond, Bennett, Patrick and Johnson, Erik
year 1994
title An Overview of the PHIDIAS II HyperCAD System
doi https://doi.org/10.52842/conf.acadia.1994.063
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 63-74
summary The PHIDIAS II HyperCAD system combines the functionality of CAD graphics, hypermedia, database management and knowledge-based computation in a single, highly integrated design environment. The CAD functionality includes both 3-D and 2-D vector graphics. The hypermedia includes support for text, raster images, video and sound. The database management enables persistent storage and interlinking of large collections of text, images, video, sound and vector graphics, i.e., thousands of vector graphic objects and drawings in a single database. Retrieval is provided both through use of "associative indexing" based on hyperlinks and through use of an advanced query language. The knowledge- based computation includes both inference and knowledgebased critiquing.

A highly unusual feature of PHIDIAS II is that it implements all of its functions using only hypermedia mechanisms. Complex vector graphic drawings and objects are represented as composite hypermedia nodes. Inference and critiquing are implemented through use of what are known as virtual structures [Halasz 1988], including virtual links and virtual nodes. These nodes and links are dynamic (computed) rather than static (constant). They are defined as expressions in the same language used for queries and are computed at display time. The implementation of different kinds of functions using a common set of mechanisms makes it easy to use them in combination, thus further augmenting the system's functionality.

PHIDIAS supports design by informing architects as they develop a solution's form. The idea is thus not to make the design process faster or cheaper but rather to improve the quality of the things designed. We believe that architects can create better buildings for their users if they have better information. This includes information about buildings of given types, user populations, historical and modern precedents, local site and climate conditions, the urban and natural context and its historical development, as well as local, state and federal regulations.

series ACADIA
last changed 2022/06/07 07:59

_id 0e42
authors Rouse, W., Geddes, N. and Curry, R.
year 1998
title An Architecture for Intelligent Interfaces: Outline of an Approach to Supporting Operators of Complex Systems Articles
source Human-Computer Interaction 1987-1988 v.3 n.2 pp. 87-122
summary The conceptual design of a comprehensive support system for operators of complex systems is presented. Key functions within the support system architecture include information management, error monitoring, and adaptive aiding. One of the central knowledge sources underlying this functionality is an operator model that involves a combination of algorithmic and symbolic models for assessing and predicting an operator's activities, awareness, intentions, resources, and performance. Functional block diagrams are presented for the overall architecture as well as the key elements within this architecture. A variety of difficult design issues are discussed, and ongoing efforts aimed at resolving these issues are noted.
series other
last changed 2002/07/07 16:01

_id c6d5
authors Balachandran, M.B.
year 1988
title A Model for Knowledge-Based Design Optimization [PhD dissertation]
source Dept. of Architectural Science, University of Sydney
summary Unpublished. CADLINE has abstract only. This dissertation is concerned with developments in design decision methodologies applied to computer-aided design. The major aim of this research was to design and develop a knowledge-based computer-aided optimization system that has the ability to emulate some of the human performances in design decision processes. The issues and problems involved in developing a knowledge-based system for design optimization are addressed. A knowledge-based methodology to aid design optimization formulation is investigated. The major issues considered include representation of design description, the variety of knowledge required for the formulation process, recognizing optimization formulations, and selection of appropriate algorithms. It is demonstrated that the knowledge-based control of numerical processes leads to efficient and improved decisions in design. In developing knowledge-based systems for computer-aided decision applications an effective human-machine interface is essential. A model for knowledge-based graphical interfaces is proposed. This model incorporates knowledge for graphics interpretation, extraction of features of graphics objects and identification of prototypical objects. An experimental system developed in Prolog and C is demonstrated in the domain of structural design. The system shows one way of combining knowledge-based systems technology with computer graphics and indicates how knowledge-based interfaces improve the system's interactive capabilities. Finally, the system, OPTIMA, is presented. The system is designed as an integrated knowledge-based decision system using frames, rule bases, menu inputs, algebraic computation and optimization algorithms. The system has been written in LISP, Prolog and C and implemented on SUN Microsystems workstations. The performance of the system is demonstrated using two example problems from the domains of structural and architectural design respectively. The knowledge-based approach to design optimization is shown to be considerably easier and more efficient than those using conventional programs.
keywords Knowledge Base, Systems, CAD, Representation, Design, Frames, Computer Graphics, User Interface, Decision Making
series CADline
last changed 2003/06/02 13:58

_id a19d
authors Brown, G.Z. and Novitski, Barbara-Jo
year 1988
title A Macintosh Design Studio
doi https://doi.org/10.52842/conf.acadia.1988.151
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 151-162
summary During the past year at the University of Oregon, we have conducted an experimental design studio in which each student had an Apple Macintosh SE microcomputer on his or her studio desk. Each term we experimented with a variety of software, furniture arrangements, and pedagogical approaches to integrating computers in design teaching. Like most others who have conducted such experiments, we encountered problems in trying to use hardware and software which is fundamentally inappropriate for the intuitive, graphic, and creative processes characteristic of preliminary design. However, we solved many of these problems and have produced useful techniques that may form the beginnings of a new approach to the use of computers in architecture schools.

Our results fall in three major categories: 1) pedagogical discoveries about learning to design with a computer, which is greater than the sum of learning to design and learning about computers; 2) design exercises based on the Macintosh environment, exploiting the unique graphic qualities of the machine while simultaneously developing the ideas and drawing skills needed in the preliminary stages of design; 3) descriptions of the studio environment, including hardware, software, workstation layouts, security solutions, and other practical information that might be useful to others who are contemplating a similar project.

series ACADIA
email
last changed 2022/06/07 07:54

_id 56be
authors Dillon, Andrew and Marian, Sweeney
year 1988
title The Application of Cognitive Psychology to CAD Input/Output
source Proceedings of the HCI'88 Conference on People and Computers IV 1988 p.477-488
summary The design of usable human-computer interfaces is one of the primary goals of the HCI specialist. To date however interest has focussed mainly on office or text based systems such as word processors or databases. Computer aided design (CAD) represents a major challenge to the human factors community to provide suitable input and expertise in an area where the users goals and requirements are cognitively distinct from more typical HCI. The present paper is based on psychological investigations of the engineering domain, involving an experimental comparison of designers using CAD and the more traditional drawing board. By employing protocol analytic techniques it is possible to shed light on the complex problem-solving nature of design and to demonstrate the crucial role of human factors in the development of interfaces which facilitate the designers in their task. A model of the cognition of design is proposed which indicates that available knowledge and guidelines alone are not sufficient to aid CAD developers and the distinct nature of the engineering designer's task merits specific attention.
keywords Cognitive Psychology; Interface Design; Protocol Analysis
series other
last changed 2002/07/07 16:01

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
doi https://doi.org/10.52842/conf.acadia.1994.039
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 0803
authors Jabri, Marwan A. and Skellern, David J.
year 1988
title Automatic Floorplan Design Using PIAF
source August, 1988. 36 p. : ill. tables
summary This paper presents PIAF (a Package for Intelligent and Algorithmic Floorplanning), developed at Sydney University Electrical Engineering (SUEE) for use in custom integrated circuit design. Floorplanning plays a crucial role in the design of custom integrated circuits. When design is approached in a top-down fashion, the function to be implemented on silicon is first decomposed in a conceptual phase into a Functional Block Diagram (FBD). This FBD has a 'blocks and buses' structure where blocks represent sub- functions and buses represent the interconnections that carry data and other information between blocks. The decomposition of the function into sub-functions is hierarchical and aims at reducing the complexity of the design problem. When the FBD is known, the floorplanning process may be performed. When this task is performed manually, the designer searches for a relative placement of the blocks and for an area and shape for each block to minimize the overall chip layout area while at the same time meeting design constraints such as design tool limitations, interconnection characteristics and technological design rules. PIAF is a knowledge-based system (KBS) that has been developed at SUEE during the last four years. It relies on a strategy that partitions the floorplanning task in a way that allows efficient use of heuristics and specialized design knowledge in the generation and pruning of the solution space. This paper presents the operation of PIAF and discusses several implementation issues including; KBS structure, knowledge representation, knowledge acquisition, current context memory design, design quality factors and explanation facility. This paper uses a running example to present the operation of each PIAF's KBS-based solving phases
keywords knowledge, representation, knowledge acquisition, electrical engineering, design, integrated circuits, knowledge base, systems, layout, synthesis
series CADline
last changed 2003/06/02 10:24

_id caadria2007_659
id caadria2007_659
authors Chen, Zi-Ru
year 2007
title The Combination of Design Media and Design Creativity _ Conventional and Digital Media
doi https://doi.org/10.52842/conf.caadria.2007.x.w5x
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
summary Creativity is always interested in many fields, in particular, creativity and design creativity have many interpretations (Boden, 1991; Gero and Maher, 1992, 1993; Kim, 1990; Sternberg, 1988; Weisberg, 1986). In early conceptual design process, designers used large number of sketches and drawings (Purcell and Gero, 1998). The sketch can inspire the designer to increase the creativity of the designer’s creations(Schenk, 1991; Goldschmidt, 1994; Suwa and Tversky, 1997). The freehand sketches by conventional media have been believed to play important roles in processes of the creative design thinking(Goldschmidt, 1991; Schon and Wiggins, 1992; Goel, 1995; Suwa et al., 2000; Verstijnen et al., 1998; Elsas van and Vergeest, 1998). Recently, there are many researches on inspiration of the design creativity by digital media(Liu, 2001; Sasada, 1999). The digital media have been used to apply the creative activities and that caused the occurrenssce of unexpected discovery in early design processes(Gero and Maher, 1993; Mitchell, 1993; Schmitt, 1994; Gero, 1996, 2000; Coyne and Subrahmanian, 1993; Boden, 1998; Huang, 2001; Chen, 2001; Manolya et al. 1998; Verstijinen et al., 1998; Lynn, 2001). In addition, there are many applications by combination of conventional and digital media in the sketches conceptual process. However, previous works only discussed that the individual media were related to the design creativity. The cognitive research about the application of conceptual sketches design by integrating both conventional and digital media simultaneously is absent.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 4086
authors Ervin, Stephen M.
year 1988
title Computer-Aided Diagramming and the `Generator-Test' Cycle
source 1988. 22 p.: ill. includes bibliography
summary Simon's `generator-test' model is both a metaphor and a literal prescription for the organization of computer systems for designing. In most approaches to computer-aided design, one side of the cycle - generating or testing - is reserved to the human designer, the other side delegated to the computer. A more comfortable and comprehensive approach is to support switching these roles between designer and computer. This approach underlies a prototype system for computer-aided diagramming, the CBD (Constraint-Based Diagrammer). Diagramming is an important design activity, especially in preliminary design, as diagrams play a pivotal role between graphic and symbolic knowledge. Diagrams as a medium of knowledge representation and as means of inference have an ambivalent status in the generator-test model; they may serve either purpose. Examination of CBD sheds some light on Simon's model and on the requirements for sharing generating and testing with computational design tools
keywords problem solving, CAD, constraints, evaluation, synthesis
series CADline
last changed 2003/06/02 13:58

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

_id 4cbb
authors Gero, John S. (editor)
year 1988
title Artificial Intelligence in Engineering : Design
source 465 p. Amsterdam: Elsevier/CMP, 1988. CADLINE has abstract only
summary This volume contains the papers in the design area from the Third International Conference on Artificial Intelligence in Engineering. Design is that most fundamental but least understood of engineering activities. Most current computer- aided design systems are primarily concerned with graphical representations of objects as they are being designed. The introduction of artificial intelligence into engineering has fostered the burgeoning interest in formal methods of engineering design. These methods treat design as being modelable using reasoning processes. The papers related to design can be grouped into two categories: those primarily concerned with design knowledge in its various forms and those primarily concerned with applications in specific domains. The papers in this volume are presented under the following headings: Design Knowledge and Representation; Integrated Circuit Design; Mechanical Engineering Design; Structural Engineering Design; Simultaneous Engineering Design; Architectural Design
keywords AI, design, engineering, knowledge, applications, architecture, CAD, CAE, integrated circuits, representation, structures, civil engineering
series CADline
email
last changed 2003/06/02 13:58

_id c085
authors Goldman, Glenn and Zdepski, M. Stephen
year 1988
title Abstraction and Representation: Computer Graphics and Architectural Design
doi https://doi.org/10.52842/conf.acadia.1988.205
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 205-215
summary While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nature, there remains a long history of design exploration dependent on representation. Furthermore, methods of imager 3While there is evidence to support that many important aspects of architectural design are not graphically based, but analytical in nat
series ACADIA
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_742045 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002