CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 20

_id avocaad_2001_09
id avocaad_2001_09
authors Yu-Tung Liu, Yung-Ching Yeh, Sheng-Cheng Shih
year 2001
title Digital Architecture in CAD studio and Internet-based competition
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design has been changing because of the vast and creative use of computer in different ways. From the viewpoint of designing itself, computer has been used as drawing tools in the latter phase of design (Mitchell 1977; Coyne et al. 1990), presentation and simulation tools in the middle phase (Liu and Bai 2000), and even critical media which triggers creative thinking in the very early phase (Maher et al. 2000; Liu 1999; Won 1999). All the various roles that computer can play have been adopted in a number of professional design corporations and so-called computer-aided design (CAD) studio in schools worldwide (Kvan 1997, 2000; Cheng 1998). The processes and outcomes of design have been continuously developing to capture the movement of the computer age. However, from the viewpoint of social-cultural theories of architecture, the evolvement of design cannot be achieved solely by designers or design processes. Any new idea of design can be accepted socially, culturally and historically only under one condition: The design outcomes could be reviewed and appreciated by critics in the field at the time of its production (Csikszentmihalyi 1986, 1988; Schon and Wiggins 1992; Liu 2000). In other words, aspects of design production (by designers in different design processes) are as critical as those of design appreciation (by critics in different review processes) in the observation of the future trends of architecture.Nevertheless, in the field of architectural design with computer and Internet, that is, so-called computer-aided design computer-mediated design, or internet-based design, most existing studies pay more attentions to producing design in design processes as mentioned above. Relatively few studies focus on how critics act and how they interact with designers in the review processes. Therefore, this study intends to investigate some evolving phenomena of the interaction between design production and appreciation in the environment of computer and Internet.This paper takes a CAD studio and an Internet-based competition as examples. The CAD studio includes 7 master's students and 2 critics, all from the same countries. The Internet-based competition, held in year 2000, includes 206 designers from 43 counties and 26 critics from 11 countries. 3 students and the 2 critics in the CAD studio are the competition participating designers and critics respectively. The methodological steps are as follows: 1. A qualitative analysis: observation and interview of the 3 participants and 2 reviewers who join both the CAD studio and the competition. The 4 analytical criteria are the kinds of presenting media, the kinds of supportive media (such as verbal and gesture/facial data), stages of the review processes, and interaction between the designer and critics. The behavioral data are acquired by recording the design presentation and dialogue within 3 months. 2. A quantitative analysis: statistical analysis of the detailed reviewing data in the CAD studio and the competition. The four 4 analytical factors are the reviewing time, the number of reviewing of the same project, the comparison between different projects, and grades/comments. 3. Both the qualitative and quantitative data are cross analyzed and discussed, based on the theories of design thinking, design production/appreciation, and the appreciative system (Goodman 1978, 1984).The result of this study indicates that the interaction between design production and appreciation during the review processes could differ significantly. The review processes could be either linear or cyclic due to the influences from the kinds of media, the environmental discrepancies between studio and Internet, as well as cognitive thinking/memory capacity. The design production and appreciation seem to be more linear in CAD studio whereas more cyclic in the Internet environment. This distinction coincides with the complementary observations of designing as a linear process (Jones 1970; Simon 1981) or a cyclic movement (Schon and Wiggins 1992). Some phenomena during the two processes are also illustrated in detail in this paper.This study is merely a starting point of the research in design production and appreciation in the computer and network age. The future direction of investigation is to establish a theoretical model for the interaction between design production and appreciation based on current findings. The model is expected to conduct using revised protocol analysis and interviews. The other future research is to explore how design computing creativity emerge from the process of producing and appreciating.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
doi https://doi.org/10.52842/conf.acadia.1994.039
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 56be
authors Dillon, Andrew and Marian, Sweeney
year 1988
title The Application of Cognitive Psychology to CAD Input/Output
source Proceedings of the HCI'88 Conference on People and Computers IV 1988 p.477-488
summary The design of usable human-computer interfaces is one of the primary goals of the HCI specialist. To date however interest has focussed mainly on office or text based systems such as word processors or databases. Computer aided design (CAD) represents a major challenge to the human factors community to provide suitable input and expertise in an area where the users goals and requirements are cognitively distinct from more typical HCI. The present paper is based on psychological investigations of the engineering domain, involving an experimental comparison of designers using CAD and the more traditional drawing board. By employing protocol analytic techniques it is possible to shed light on the complex problem-solving nature of design and to demonstrate the crucial role of human factors in the development of interfaces which facilitate the designers in their task. A model of the cognition of design is proposed which indicates that available knowledge and guidelines alone are not sufficient to aid CAD developers and the distinct nature of the engineering designer's task merits specific attention.
keywords Cognitive Psychology; Interface Design; Protocol Analysis
series other
last changed 2002/07/07 16:01

_id 8385
authors Holtz, Neal M. and Rasdorf, William J.
year 1988
title An Evaluation of Programming Languages and Language Features for Engineering Software Development
source International Journal of Engineering with Computers. Springer-Verlag, 1988. vol. 3: pp. 183-199
summary Also published as 'Procedural Programming Languages for the Development of CAD and CAE Systems Software,' in the proceedings of ASME International Conference on Computers in Engineering (1987 : New York, NY). The scope of engineering software has increased dramatically in the past decade. In its early years, most engineering applications were concerned solely with solving difficult numerical problems, and little attention was paid to man- machine interaction, to data management, or to integrated software systems. Now computers solve a much wider variety of problems, including those in which numerical computations are less predominant. In addition, completely new areas of engineering applications such as artificial intelligence have recently emerged. It is well recognized that the particular programming language used to develop an engineering application can dramatically affect the development cost, operating cost. reliability, and usability of the resulting software. With the increase in the variety, functionality, and complexity of engineering software, with its more widespread use, and with its increasing importance, more attention must be paid to programming language suitability so that rational decisions regarding language selection may be made. It is important that professional engineers be aware of the issues addressed in this paper, for it is they who must design, acquire, and use applications software, as well as occasionally develop or manage its development. This paper addresses the need for engineers to possess a working knowledge of the fundamentals of computer programming languages. In pursuit of this, the paper briefly reviews the history of four well known programming languages. It then attempts to identify and to look critically at the attributes of programming languages that significantly affect the production of engineering software. The four procedural programming languages chosen for review are those intended for scientific and general purpose programming, FORTRAN 77, C, Pascal, and Modula-2. These languages are compared and some general observations are made. As it is felt important that professional engineers should be able to make informed decisions about programming language selection, the emphasis throughout this paper is on a methodology of evaluation of programming languages. Choosing an appropriate language can be a complex task and many factors must be considered. Consequently, fundamentals are stressed
keywords programming, engineering, languages, software, management, evaluation, FORTRAN, C, PASCAL, MODULA-2, CAD, CAE
series CADline
last changed 2003/06/02 13:58

_id 0803
authors Jabri, Marwan A. and Skellern, David J.
year 1988
title Automatic Floorplan Design Using PIAF
source August, 1988. 36 p. : ill. tables
summary This paper presents PIAF (a Package for Intelligent and Algorithmic Floorplanning), developed at Sydney University Electrical Engineering (SUEE) for use in custom integrated circuit design. Floorplanning plays a crucial role in the design of custom integrated circuits. When design is approached in a top-down fashion, the function to be implemented on silicon is first decomposed in a conceptual phase into a Functional Block Diagram (FBD). This FBD has a 'blocks and buses' structure where blocks represent sub- functions and buses represent the interconnections that carry data and other information between blocks. The decomposition of the function into sub-functions is hierarchical and aims at reducing the complexity of the design problem. When the FBD is known, the floorplanning process may be performed. When this task is performed manually, the designer searches for a relative placement of the blocks and for an area and shape for each block to minimize the overall chip layout area while at the same time meeting design constraints such as design tool limitations, interconnection characteristics and technological design rules. PIAF is a knowledge-based system (KBS) that has been developed at SUEE during the last four years. It relies on a strategy that partitions the floorplanning task in a way that allows efficient use of heuristics and specialized design knowledge in the generation and pruning of the solution space. This paper presents the operation of PIAF and discusses several implementation issues including; KBS structure, knowledge representation, knowledge acquisition, current context memory design, design quality factors and explanation facility. This paper uses a running example to present the operation of each PIAF's KBS-based solving phases
keywords knowledge, representation, knowledge acquisition, electrical engineering, design, integrated circuits, knowledge base, systems, layout, synthesis
series CADline
last changed 2003/06/02 10:24

_id eaea2005_151
id eaea2005_151
authors Ohno, Ruyzo
year 2006
title Seat preference in public squares and distribution of the surrounding people: An examination of the validity of using visual simulation
source Motion, E-Motion and Urban Space [Proceedings of the 7th European Architectural Endoscopy Association Conference / ISBN-10: 3-00-019070-8 - ISBN-13: 978-3-00-019070-4], pp. 151-163
summary Public squares are shared by people who use them for various purposes. When people choose seats in a square, they unconsciously evaluate not only the physical characteristics of the space but also the distribution of others already present (Hall, 1966; Sommer, 1969; Whyte, 1988). Knowing the hidden rules of this behaviour will be important in designing squares that remain comfortable even in crowded situations. Most past studies of seat choice preference have reported on statistical tendencies derived from observations of subject behavior in actually existing sites (i.e., Abe, 1997; Imai, 1999; Kawamoto, 2003). However, they provide no clear theoretical model for explaining the basic mechanisms regulating such behaviour. The present study conducts a series of experiments in both real and virtual settings in order to extract quantitative relationships between subjects’ seat preferences and the presence of nearby strangers and to clarify what factors influence their seat choices.
series EAEA
type normal paper
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id 696c
authors Beheshti, M. and Monroy, M.
year 1988
title Requirements for Developing an Information System for Architecture
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 149-170
summary This paper discusses possibilities of developing new tools for architectural design. It argues that architects should meet the challenge of information technology and computer-based design techniques. One such attempt has been the first phase of the development of an architectural design information system (ADIS), also an architectural design decision support system. The system should benefit from the developments of the artificial intelligence to enable the architect to have access to information required to carry out design work. In other words: the system functions as a huge on-line electronic library of architecture, containing up-to-date architectural design information, literature, documents, etc. At the same time, the system offers necessary design aids such as computer programs for design process, drawing programs, evaluation programs, cost calculation programs, etc. The system also provides data communication between the architect and members of the design coalition team. This is found to be of vital importance in the architectural design process, because it can enable the architect to fit in changes, brought about in the project by different parties. Furthermore, they will be able, to oversee promptly the consequences of changes or decisions in a comprehensive manner. The system will offer advantages over the more commonly applied microcomputer based CAAD and IGDM (integrated graphics database management) systems, or even larger systems available to an architect. Computer programs as well as hardware change rapidly and become obsolete. Therefore, unrelenting investment pressure to up-date both software and hardware exists. The financial burden of this is heavy, in particular for smaller architectural practices (for instance an architect working for himself or herself and usually with few or no permanent staff). ADIS, as an on-line architectural design aid, is constantly up-dated by its own organisation. This task will be co-ordinated by the ADIS data- base administrator (DBA). The processing possibilities of the system are faster, therefore more complex processing tasks can be handled. Complicated large graphic data files, can be easily retrieved and manipulated by ADIS, a large system. In addition, the cost of an on-line system will be much less than any other system. The system is based on one model of the architectural design process, but will eventually contain a variety of design models, as it develops. The development of the system will be an evolutionary process, making use of its users' feed-back system. ADIS is seen as a step towards full automation of architectural design practices. Apart from being an architectural design support system, ADIS will assist the architect in his/her administrative and organisational activities.
series CAAD Futures
last changed 2003/11/21 15:16

_id a19d
authors Brown, G.Z. and Novitski, Barbara-Jo
year 1988
title A Macintosh Design Studio
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 151-162
doi https://doi.org/10.52842/conf.acadia.1988.151
summary During the past year at the University of Oregon, we have conducted an experimental design studio in which each student had an Apple Macintosh SE microcomputer on his or her studio desk. Each term we experimented with a variety of software, furniture arrangements, and pedagogical approaches to integrating computers in design teaching. Like most others who have conducted such experiments, we encountered problems in trying to use hardware and software which is fundamentally inappropriate for the intuitive, graphic, and creative processes characteristic of preliminary design. However, we solved many of these problems and have produced useful techniques that may form the beginnings of a new approach to the use of computers in architecture schools.

Our results fall in three major categories: 1) pedagogical discoveries about learning to design with a computer, which is greater than the sum of learning to design and learning about computers; 2) design exercises based on the Macintosh environment, exploiting the unique graphic qualities of the machine while simultaneously developing the ideas and drawing skills needed in the preliminary stages of design; 3) descriptions of the studio environment, including hardware, software, workstation layouts, security solutions, and other practical information that might be useful to others who are contemplating a similar project.

series ACADIA
email
last changed 2022/06/07 07:54

_id e1e2
authors Danahy, John
year 1988
title Engaging Intuitive Visual Thinking in Urban Design Modelling: A Real-Time Hypothesis
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 87-97
doi https://doi.org/10.52842/conf.acadia.1988.087
summary This paper will present prototypical software being used in the teaching of urban design to students and for use by professionals in the early stages of a project. The system is intended to support a heuristic approach to design. That is, it supports a process of refining ideas and understandings through a process of trial and error. The support or aid to design comes in the form of a didactic real-time programme. Its power lies in its ability to provide instantaneous response to operations on the data that can allow one to develop threedimensional spatial ideas in an intuitively driven manner. This condition appears to occur for both novice and expert computer operators.

The presentation will present our experience to-date in using conventional computer graphic tools to represent design ideas and contrast it with a video demonstration of our prototypical dynamic urban design modelling software for the Silicon Graphics IRIS computers.

series ACADIA
email
last changed 2022/06/07 07:55

_id sigradi2018_1762
id sigradi2018_1762
authors de Albuquerque Montezi, Rafael; Tanoue Vizioli, Simone Helena
year 2018
title Digital morphogenesis and tectonics: an analysis of Peter Eisenman’s Aronoff Center
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 359-366
summary The concept of architectural tectonics relates simultaneously to pragmatic and poetic aspects of the materiality, aiming the expression of these concerns in the result of the Form. Far from only a theoretical concerning, these design decisions affect how our society employs its natural and human resources. This work takes the Aronoff Center for Design and Arts (1988-1996), by Peter Eisenman, as a case study for a graphical analysis, dealing with the consequences of a free-form morphogenesis to its construction and investigating the tectonics of the contemporary architecture.
keywords Contemporary Architecture; Digital Project; Tectonics
series SIGRADI
email
last changed 2021/03/28 19:58

_id 4743
authors Dvorak, Robert W.
year 1988
title Designing in the CAD Studio
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 123-134
doi https://doi.org/10.52842/conf.acadia.1988.123
summary The "CAD Studio" is one of many design options that fourth year students may select in the College of Architecture. In this electronic environment, the students analyze and present their designs totally on the computer. The vehicle used is a fifteen week architectural problem called the "Calor Redesign Project".

The "Calor" problem requires the move of a famous residence to a hot arid climate. The residence must then be redesigned in the original architect's style so the building becomes as energy efficient as possible in its new arid environment. The students are required to use as design criteria a new building program, the design philosophy of the original architect, and appropriate passive energy techniques that will reduce the thermal stress on the building. The building's energy response is measured by using an envelope energy analysis program called "Calor".

Much of the learning comes from imposing a new set of restraints on a famous piece of architecture and asking the student to redesign it. The students not only need to learn and use a different design philosophy, but also develop new skills to communicate their ideas on the computer. Both Macintosh and IBM computers are used with software ranging from Microsoft Works, Superpaint, AutoCAD, MegaCAD, Dr Halo, to Calor.

series ACADIA
last changed 2022/06/07 07:55

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

_id 2a6e
authors McCullough, Malcolm
year 1988
title Representation in the Computer Aided Design Studio
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 163-174
doi https://doi.org/10.52842/conf.acadia.1988.163
summary Application of commercial computer aided design systems to schematic design in a studio setting in a professionally oriented university provides the opportunity for observation of extensive use of CAD by designers with little or no orientation toward computing. Within a framework of studios intended to contrast media and highlight the issue of design representation, the most encouraging applications of computing have involved dynamic visual design representation. This paper presents a case study of three studios at the University of Texas at Austin together with commentary on the place of computing in this essentially artistic environment. It presents, in slide form, a body of aesthetically oriented CAD work which signals the spread of computer aided design out of the hands of researchers and into mainstream architectural design, where development of the visual and dynamic aspects of the medium may prove to be primary routes to improvement of itS power and acceptance. Much like a first design project, this paper then presents a lot of observations without yet much rigorous development of any one. It asks implicitly whether application of software constitutes research.

series ACADIA
email
last changed 2022/06/07 07:58

_id 21b5
authors Müller, Volker
year 1993
title Introducing CAD to a Big Corporation
source CAAD Futures ‘93 [Conference Proceedings / ISBN 0-444-89922-7] (Pittsburgh / USA), 1993, pp. 497-512
summary The report presents the ongoing activity of introducing CAD to the entire range of facilities planning and management of the Frankfurt Airport Corporation. It addresses issues of organizing the shift from conventional to computer supported planning and facilities management,- the problems of training professionals with various background in the use of new tools; aspects of data validity; regulation of data exchange; and customization of software to the needs of special tasks within the corporation. The report is based on about four years of project runtime. The preparation of the project started in fall 1988. The project proper started in June 1989. It is entering its last year. Up to now about 120 persons have been trained to use CAD.
keywords CAD Introduction, Corporation Setting, Adult Education, Data Integrity, Data Security, Data Exchange, Linkage Between Geometric and Alphanumeric Data, Customized Systems
series CAAD Futures
email
last changed 2003/05/16 20:58

_id ea5c
authors Purcell, P.
year 1988
title The Role of Media Technology in the Design Studio
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 179-187
summary This paper refers to a program of work, which aims to integrate a range of computer-based multi-media technologies which has the overall goal of enhancing the processes of education in the design studio. The individual projects describe the development of visual information systems and intelligent design systems. The framework of support for much of the work is Project Athena, a campus wide initiative to apply new technology towards enhancing the educational process project.
series CAAD Futures
last changed 1999/04/03 17:58

_id 6c93
authors Rehg, J., Elfes, A. and Talukdar, S.N. (et al)
year 1988
title CASE : Computer-Aided Simultaneous Engineering
source 13 p. : ill
summary Pittsburgh, PA: Engineering Design Research Center, CMU, 1988. EDRC 05-22-88. This paper presents a new system for computer-aided mechanical design known as CASE, which stands for Computer- Aided Simultaneous Engineering. CASE was developed to support mechanical design at the project level, and serve as a means of integrating into the design process concerns from other parts of the lifecycle of a product. CASE is composed of an integrated framework of synthesis, analysis, and translation programs, and is designed to serve as a testbed for research in representation, problem-solving, and systems integration for computer-aided mechanical design. A prototype version of CASE has been applied to the domain of window regulator design, and is capable of automatically synthesizing regulators to meet a set of specifications and performing tolerance and stress analysis on developing designs
keywords representation, problem solving, constraints, reasoning, mechanical engineering
series CADline
last changed 2003/06/02 14:42

_id 252a
authors Reich, Yoram
year 1988
title Machine Learning for Expert Systems : Motivation and Techniques
source i-iii, 51 p. : some ill Pittsburgh, PA: Engineering Design Research Center, CMU, June, 1988. EDRC 12-27-88. includes bibliography. First generation expert systems suffer from two major problems: they are brittle and their development is a long, effortful process. Few successful expert systems for real world problems have been demonstrated. In this paper, learning, the key to intelligent behavior and expertise, is described as the answer to both expert systems deficiencies. Machine learning techniques are described, with their applicability to expert systems. A framework to organize machine learning techniques is provided. The description is followed by examples taken from the structural design domain. AI / learning / expert systems / structures / techniques. 37. Requicha, Aristides A. G. 'Mathematical Models of Rigid Solid Objects -- Production Automation Project.' Rochester, NY: College of Engineering & Applied Science, University of Rochester, November, 1977. [3], 37 p. : ill.
summary Computational models of solid objects are potentially useful in a variety of scientific and engineering fields, and in particular in the field of design and manufacturing automation for the mechanical industries. In recent years a multitude of modelling systems have been implemented both by research laboratories and commercial vendors, but little attention has been paid to the fundamental theoretical issues in geometric modelling. This has led to severe difficulties in assessing current and proposed systems, and in distinguishing essential capabilities and limitations from user conveniences and efficiency considerations. This paper seeks a sharp mathematical characterization of 'rigid solids' in a manner that is suitable for studies in design and production automation. It draws heavily on established results in modern geometry and topology. Relevant results scattered throughout the mathematical literature are placed in a coherent framework and presented in a form accessible to engineers and computer scientists. A companion paper is devoted to a discussion of representational issues in the context set forth by this paper
keywords solid modeling, geometric modeling
series CADline
last changed 1999/02/12 15:09

_id 0dff
authors Woodbury, Robert F., Fenves, Stephen J. and Baker, Nelson C. (et al)
year 1988
title Geometric Reasoning in Computer Integrated Building Construction
source Robotics in Construction, International Symposium (5th : 1988 : Tokyo, Japan). pp. 115-124 : ill. includes bibliography
summary Geometric reasoning, the integration of geometric representation and inference in advanced computer systems, is presented as an issue at the forefront of research in construction automation. The unique demands that construction automation poses on such reasoning are discussed. An architecture that provides a structure for geometric reasoning is presented and results from a prototype implementation are shown. A project to develop geometric reasoning in the construction domain of panelized building systems is introduced. Within this project, two exemplary applications, structural/architectural design and construction sequence planning, each supported by the same geometric reasoning facility, are being demonstrated
keywords geometry, reasoning, representation, inference, construction, automation, applications, architecture, engineering
series CADline
email
last changed 2003/06/02 13:58

_id f65d
authors Kalisperis, L.N.
year 1988
title A Conceptual Framework for Computing in Architectural Design
source Pennsylvania State University
summary A brief historical overview of architectural design reveals that there has been a slow development in the conceptualization of the scope of architectural design. Advancing our understanding of the architectural design process reveals new directions for computing in architectural design. This study proposes a conceptual framework for an integrated computing environment. Design disciplines have embarked on a rigorous search for theoretical perspectives and methods that encompass a comprehensive view of architecture. Architectural design has been seen as a sequential process similar to that of industrial design. Attempts to formalize this process based on industrial design methods solved only a fraction of the overall integration problem. The resultant models are inadequate to deal with the complexity of architectural design. Emerging social problem-solving paradigms seek to construct a cognitive psychology of problem solving and have a direct relevance to architectural design. These problem-solving activities include structured, semi-structured, and ill-defined problems, which are included to varying degrees in each problem situation across a continuum of difficulty. Problem solving in architectural design involves the determination of certain objectives and also whether or not it is possible to accomplish them. Developments in computing in architecture have paralleled developments in architectural methodologies. The application of computing in architectural design has predominantly focused only on sequential process, optimum solutions, and quantifiable tasks of the design process. Qualitative, generative, tasks of architectural design were dealt with through the introduction of paradigms from linguistics and knowledge-based systems borrowed from engineering applications. Although the application of such paradigms resulted in some success, this reductionist approach to computing in architecture fragmented its integration into the design process. What is required, therefore, is a unified approach to computing in architecture based on a holistic view of the architectural design process. The model proposed in this study provides such a conceptual framework. This model shifts the focus from product to process and views the design problem as a goal-oriented problem-solving activity that allows a design team to identify strategies and methodologies in the quest for design solutions.  
series thesis:PhD
email
last changed 2003/02/12 22:37

_id c5ec
authors Smith Shaw, Doris
year 1988
title The Conceptual Approach to CAD Education
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 35-45
doi https://doi.org/10.52842/conf.acadia.1988.035
summary Recent research at the Corps of Engineers Construction Engineering Research Laboratory (CERL) investigated embedded computer-based instruction for AutoCAD. The results of this study, which are the focus of this paper, indicated that the only factor which correlated with success in completing the final test was previous experience with another CAD system. Those who knew another CAD system had higher scores and required less than half the time to complete the lessons. Presumably their conceptual knowledge about CAD transferred to the new software environment, even though the Corps' study showed that they were initially biased against learning the new system. Such biased attitudes have been observed when users are asked to learn a second similar software of any kind.

Architects who are deeply involved in computer-aided design have stated that one must learn to program the computer to build the conceptual framework for the creative process. We at CERL agree that an understanding of underlying graphics concepts is essential to the designer. Our research shows that giving students the freedom to explore an existing software program can result in the development of conceptual knowledge. Interviews also reveal that students can invent ways to meet individual objectives when "guided discovery" learning is encouraged.

series ACADIA
last changed 2022/06/07 07:56

No more hits.

HOMELOGIN (you are user _anon_695105 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002