CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 157

_id c568
authors Balachandran, M.B. and John S. Gero
year 1987
title A Model for Knowledge Based Graphical Interfaces
source AI '87: Proceedings of the Australian Joint Artificial Intelligence Conference. 1987. pp. 505-521. Also published in Artificial Intelligence Developments and Applications edited by J. S. Gero and R Stanton, North-Holland Pub. 1988. -- CADLINE has abstract only.
summary This paper describes a model for knowledge-based graphical interface which incorporates a variety of knowledge of the domain of application. The key issues considered include graphics interpretation, extraction of features of graphics objects and identification of prototype objects. The role of such knowledge-based interfaces in computer-aided design is discussed. A prototype system developed in Prolog and C is described and its application in the domain of structural engineering is demonstrated
keywords user interface, computer graphics, knowledge base, systems, civil engineering, structures
series CADline
email
last changed 2003/06/02 13:58

_id 45b7
authors Oxman, R.E.
year 1988
title Expert System for Generation and Evaluation in Architectural Design
source Technion, Faculty of Architecture and Town Planing, Haifa
summary The research field, focuses on a new research area of Knowledge Based Systems for Architectural Design. The research deals with concepts and tools emerging from Artificial Intelligence, Knowledge Based Systems and Expert Systems. The research is involved with the construction of a theoretical basis for the development of approaches and methods for the representation and control of design knowledge as a reasoning process. Key questions which attempt to reconsider representation and control in design are formulated. The following questions serve as a research framework out of which new approaches, methods and tools were developed. (1.)What are the existing ideas, methods and tools in Expert Systems? (2.) What are the performance characteristics of Expert Systems in Architectural Design ? (3.) What are the desired operative characteristics and interactions for Expert Systems in design ? (4.) How is it possible to formulate and apply the diverse forms of Architectural Knowledge in Expert Systems for design? (5.) What are the problems of implementation in the development of Expert Systems for design ? The state of the art in knowledge based systems is surveyed, while emphasizing the differences between conventional systems and knowledge based systems. Representation and control methods and the components of expert systems are reviewed. Expert systems for diagnosis, interpretation, planning and design are analysed with respect to their performance characteristics. Techniques and technologies of existing tools are defined. An expert system for the generation and evaluation of ill defined architectural design problems is develped. A formalization of the concept of 'design interpretation' is proposed and developed. It is applied in the process of defining and classifying the performance characteristics of expert systems for design. This concept is based upon two sets of reasoning processes: those which enable a mapping between design requirements and solution descriptions in the generation stage of design and those between solution descriptions and performance evaluation in the evaluation stage of design. On the basis of the formalization of this concept, an expert system capable of integrating various modes of performance is proposed and developed. The system functions as a 'design generator', a 'design critic', or a' design critic-generator'. These modes, which integrate generation and evaluation in the same system, operate by employing both forward chaining and backward chaining inference mechanisms. As a result of the examination of desired forms of interactions, a new approach for dual direction interpretation between graphic and verbal modes is developed. This approach reflects the importance of both graphical and verbal expression in design. The approach is based upon a simultaneous mapping between symbolic-verbal interpretation and graphic interpretation. The work presents the mapping process through the concept of design interpretation, employing geometrical knowledge, typological knowledge and evaluation knowledge. A tool which provides communication between an expert system and a graphic system was developed and is presented. The importance of such a tool in expert systems for design resides in the provision of free choice to the user for interacting with the system either graphically or verbally during the design process. An additional component in the development of knowledge-based systems for design is related to the important question of knowledge definition and the representational schemata of design knowledge. A new representational scheme for complex architectural knowledge, termed 'The generation and refinement scheme of a design prototype' is proposed and developed. Its operation as part of a total integrated design system is demonstrated. The scheme is based upon the structures of knowledge of design precedents which constitute typical situations and solutions in architectural design. This scheme provides an appropriate representation for the two types of knowledge which operate in a refinement process of a design prototype. Generative knowledge describes the solution space by predefined refinement stages; interpretive knowledge enables their selection. The examination of representational methods for the proposed scheme indicated that employing a single representational method lacked enough generalization and expressive power for the needs of the design knowledge structures. It was found that a way to represent complex structures is through the integration of multiple methods of representation, each one according to the knowledge characteristics. In order to represent the proposed scheme of design knowledge, a unique method was developed which integrates both rules and frames. The method consists of a rules-frames-rules structure for the representation of a design prototype. An approach is developed for the implementation of these concepts in an expert system for design. PRODS: A prototype based expert system shell for design is developed and demonstrated. The system consists of three basic components: a rule-based expert system shell, a frame system, and a knowledge base interface. All system interactions are controlled by the inference engine. It passes control between the rule-base and the frame-base inference engines, and provides communications between the rule-based and frame-based representations. It is suggested that expert system can interface with external CAD systems including graphics, communicating through a central representation. These concepts and developments are demonstrated in two implementations. The PREDIKT system for the preliminary design of the residential kitchen; the PROUST system for the selection and refinement of dwelling types. PREDIKT demonstrates the integration of rules and a graphical-verbal interpreter; in addition, PROUST demonstrates the significance of hybrid representation in the generation and refinement processes. The results and conlusions are summarized. Future research agenda within the field of knowledge-based systems for design is discussed, and potential research areas are defined.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 0350
authors Norman, Richard B.
year 1988
title The Role of Color in Architectural Pedagogy Computation as a Creative Tool
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 217-223
doi https://doi.org/10.52842/conf.acadia.1988.217
summary From among the possible ways of introducing graphic computing in the design studio, it is customary to develop an argument from point, to line, to shape and finally to colon The logic of this process is undeniable as technology and perhaps as history, but it should be questioned as pedagogy. A designer, tuned to the visual focus of the studio and searching for creative self-expression is not overly stimulated by drawing lines, at first laboriously, in imitation of what he can do by hand.

Using color is among the more difficult of traditional studio chores -- it is not difficult on a computer. The manipulation of color can be a simple task if one is given reasonable software and a good graphic computer. Once introduced to students, the techniques for coloring elements on a computer find acceptance as a design tool. Methods can be quickly found for modifying the perception of space and form through the use of colon

Modern architecture is rooted in the study of color as a generator of form. This idea permeated the teachings of its founders. Yet modernist concern for color has over time evolved into a pedagogy of space and form at the exclusion of color, so much so that the modern movement today stands accused by its detractors as being formed in many shades of grey.

Modern architecture is not grey! This paper will illustrate how, using the modern graphic computer, color may be introduced to the studio and discovered as an element of design and as the substance of architectural form giving.

series ACADIA
email
last changed 2022/06/07 07:58

_id c6d5
authors Balachandran, M.B.
year 1988
title A Model for Knowledge-Based Design Optimization [PhD dissertation]
source Dept. of Architectural Science, University of Sydney
summary Unpublished. CADLINE has abstract only. This dissertation is concerned with developments in design decision methodologies applied to computer-aided design. The major aim of this research was to design and develop a knowledge-based computer-aided optimization system that has the ability to emulate some of the human performances in design decision processes. The issues and problems involved in developing a knowledge-based system for design optimization are addressed. A knowledge-based methodology to aid design optimization formulation is investigated. The major issues considered include representation of design description, the variety of knowledge required for the formulation process, recognizing optimization formulations, and selection of appropriate algorithms. It is demonstrated that the knowledge-based control of numerical processes leads to efficient and improved decisions in design. In developing knowledge-based systems for computer-aided decision applications an effective human-machine interface is essential. A model for knowledge-based graphical interfaces is proposed. This model incorporates knowledge for graphics interpretation, extraction of features of graphics objects and identification of prototypical objects. An experimental system developed in Prolog and C is demonstrated in the domain of structural design. The system shows one way of combining knowledge-based systems technology with computer graphics and indicates how knowledge-based interfaces improve the system's interactive capabilities. Finally, the system, OPTIMA, is presented. The system is designed as an integrated knowledge-based decision system using frames, rule bases, menu inputs, algebraic computation and optimization algorithms. The system has been written in LISP, Prolog and C and implemented on SUN Microsystems workstations. The performance of the system is demonstrated using two example problems from the domains of structural and architectural design respectively. The knowledge-based approach to design optimization is shown to be considerably easier and more efficient than those using conventional programs.
keywords Knowledge Base, Systems, CAD, Representation, Design, Frames, Computer Graphics, User Interface, Decision Making
series CADline
last changed 2003/06/02 13:58

_id 5f4b
authors Coyne, R.D.
year 1988
title Logic Models of Design
source Pitman, London
summary This monograph places design in a theoretical context which applies developments in knowledge-based systems, logic programming and planning to design. It addresses two important design issues: the interpretation of designs, which concerns the discovery of implicit design attributes, a key activity in design evaluation that can be modelled by deductive inference in logic programming; and the process of generation, whereby a design description is produced which exhibits these implicit design attributes. Implicit attributes can be seen as analogous to the semantic content of natural language utterances. The work presented here is mainly concerned with design generation, and an operational model of design is investigated in which operations on processes are treated in a similar way to operations on form. It is argued that there are advantages in representing control knowledge as rules in a design system, and that logic is an effective medium for this purpose. This is demonstrated by means of programs developed in Prolog and C using the example of spatial layout in buildings. Primarily, this book is directed at those in artificial intelligence (AI) involved in logic programming, planning and expert systems. However, since AI techniques are finding widespread application in industry, the use of an architectural design example makes this work relevant to architects, designers, engineers and developers of intelligent architectural design software.
series other
email
last changed 2003/04/23 15:14

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
doi https://doi.org/10.52842/conf.acadia.1994.039
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 696c
authors Beheshti, M. and Monroy, M.
year 1988
title Requirements for Developing an Information System for Architecture
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 149-170
summary This paper discusses possibilities of developing new tools for architectural design. It argues that architects should meet the challenge of information technology and computer-based design techniques. One such attempt has been the first phase of the development of an architectural design information system (ADIS), also an architectural design decision support system. The system should benefit from the developments of the artificial intelligence to enable the architect to have access to information required to carry out design work. In other words: the system functions as a huge on-line electronic library of architecture, containing up-to-date architectural design information, literature, documents, etc. At the same time, the system offers necessary design aids such as computer programs for design process, drawing programs, evaluation programs, cost calculation programs, etc. The system also provides data communication between the architect and members of the design coalition team. This is found to be of vital importance in the architectural design process, because it can enable the architect to fit in changes, brought about in the project by different parties. Furthermore, they will be able, to oversee promptly the consequences of changes or decisions in a comprehensive manner. The system will offer advantages over the more commonly applied microcomputer based CAAD and IGDM (integrated graphics database management) systems, or even larger systems available to an architect. Computer programs as well as hardware change rapidly and become obsolete. Therefore, unrelenting investment pressure to up-date both software and hardware exists. The financial burden of this is heavy, in particular for smaller architectural practices (for instance an architect working for himself or herself and usually with few or no permanent staff). ADIS, as an on-line architectural design aid, is constantly up-dated by its own organisation. This task will be co-ordinated by the ADIS data- base administrator (DBA). The processing possibilities of the system are faster, therefore more complex processing tasks can be handled. Complicated large graphic data files, can be easily retrieved and manipulated by ADIS, a large system. In addition, the cost of an on-line system will be much less than any other system. The system is based on one model of the architectural design process, but will eventually contain a variety of design models, as it develops. The development of the system will be an evolutionary process, making use of its users' feed-back system. ADIS is seen as a step towards full automation of architectural design practices. Apart from being an architectural design support system, ADIS will assist the architect in his/her administrative and organisational activities.
series CAAD Futures
last changed 2003/11/21 15:16

_id a1a1
authors Cornick, T. and Bull, S.
year 1988
title Expert Systems for Detail Design in Building
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 117-126
summary Computer-Aided Architectural Design (CAAD) requires detailed knowledge of the construction of building elements to be effective as a complete design aid. Knowledge-based systems provide the tools for both encapsulating the "rules" of construction - i.e. the knowledge of good construction practice gained from experience - and relating those rules to geometric representation of building spaces and elements. The "rules" of construction are based upon the production and performance implications of building elements and how these satisfy various functional criteria. These building elements in turn may be related to construction materials, components and component assemblies. This paper presents two prototype knowledge-based systems, one dealing with the external envelope and the other with the internal space division of buildings. Each is "component specific" and is based upon its own model of the overall construction. This paper argues that "CAAD requires component specific knowledge bases and that integration of these knowledge bases into a knowledge-based design system for complete buildings can only occur if every knowledge base relates to a single coordinated construction model".
series CAAD Futures
last changed 1999/04/03 17:58

_id sigradi2018_1762
id sigradi2018_1762
authors de Albuquerque Montezi, Rafael; Tanoue Vizioli, Simone Helena
year 2018
title Digital morphogenesis and tectonics: an analysis of Peter Eisenman’s Aronoff Center
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 359-366
summary The concept of architectural tectonics relates simultaneously to pragmatic and poetic aspects of the materiality, aiming the expression of these concerns in the result of the Form. Far from only a theoretical concerning, these design decisions affect how our society employs its natural and human resources. This work takes the Aronoff Center for Design and Arts (1988-1996), by Peter Eisenman, as a case study for a graphical analysis, dealing with the consequences of a free-form morphogenesis to its construction and investigating the tectonics of the contemporary architecture.
keywords Contemporary Architecture; Digital Project; Tectonics
series SIGRADI
email
last changed 2021/03/28 19:58

_id 4743
authors Dvorak, Robert W.
year 1988
title Designing in the CAD Studio
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 123-134
doi https://doi.org/10.52842/conf.acadia.1988.123
summary The "CAD Studio" is one of many design options that fourth year students may select in the College of Architecture. In this electronic environment, the students analyze and present their designs totally on the computer. The vehicle used is a fifteen week architectural problem called the "Calor Redesign Project".

The "Calor" problem requires the move of a famous residence to a hot arid climate. The residence must then be redesigned in the original architect's style so the building becomes as energy efficient as possible in its new arid environment. The students are required to use as design criteria a new building program, the design philosophy of the original architect, and appropriate passive energy techniques that will reduce the thermal stress on the building. The building's energy response is measured by using an envelope energy analysis program called "Calor".

Much of the learning comes from imposing a new set of restraints on a famous piece of architecture and asking the student to redesign it. The students not only need to learn and use a different design philosophy, but also develop new skills to communicate their ideas on the computer. Both Macintosh and IBM computers are used with software ranging from Microsoft Works, Superpaint, AutoCAD, MegaCAD, Dr Halo, to Calor.

series ACADIA
last changed 2022/06/07 07:55

_id 4cbb
authors Gero, John S. (editor)
year 1988
title Artificial Intelligence in Engineering : Design
source 465 p. Amsterdam: Elsevier/CMP, 1988. CADLINE has abstract only
summary This volume contains the papers in the design area from the Third International Conference on Artificial Intelligence in Engineering. Design is that most fundamental but least understood of engineering activities. Most current computer- aided design systems are primarily concerned with graphical representations of objects as they are being designed. The introduction of artificial intelligence into engineering has fostered the burgeoning interest in formal methods of engineering design. These methods treat design as being modelable using reasoning processes. The papers related to design can be grouped into two categories: those primarily concerned with design knowledge in its various forms and those primarily concerned with applications in specific domains. The papers in this volume are presented under the following headings: Design Knowledge and Representation; Integrated Circuit Design; Mechanical Engineering Design; Structural Engineering Design; Simultaneous Engineering Design; Architectural Design
keywords AI, design, engineering, knowledge, applications, architecture, CAD, CAE, integrated circuits, representation, structures, civil engineering
series CADline
email
last changed 2003/06/02 13:58

_id f65d
authors Kalisperis, L.N.
year 1988
title A Conceptual Framework for Computing in Architectural Design
source Pennsylvania State University
summary A brief historical overview of architectural design reveals that there has been a slow development in the conceptualization of the scope of architectural design. Advancing our understanding of the architectural design process reveals new directions for computing in architectural design. This study proposes a conceptual framework for an integrated computing environment. Design disciplines have embarked on a rigorous search for theoretical perspectives and methods that encompass a comprehensive view of architecture. Architectural design has been seen as a sequential process similar to that of industrial design. Attempts to formalize this process based on industrial design methods solved only a fraction of the overall integration problem. The resultant models are inadequate to deal with the complexity of architectural design. Emerging social problem-solving paradigms seek to construct a cognitive psychology of problem solving and have a direct relevance to architectural design. These problem-solving activities include structured, semi-structured, and ill-defined problems, which are included to varying degrees in each problem situation across a continuum of difficulty. Problem solving in architectural design involves the determination of certain objectives and also whether or not it is possible to accomplish them. Developments in computing in architecture have paralleled developments in architectural methodologies. The application of computing in architectural design has predominantly focused only on sequential process, optimum solutions, and quantifiable tasks of the design process. Qualitative, generative, tasks of architectural design were dealt with through the introduction of paradigms from linguistics and knowledge-based systems borrowed from engineering applications. Although the application of such paradigms resulted in some success, this reductionist approach to computing in architecture fragmented its integration into the design process. What is required, therefore, is a unified approach to computing in architecture based on a holistic view of the architectural design process. The model proposed in this study provides such a conceptual framework. This model shifts the focus from product to process and views the design problem as a goal-oriented problem-solving activity that allows a design team to identify strategies and methodologies in the quest for design solutions.  
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 2a6e
authors McCullough, Malcolm
year 1988
title Representation in the Computer Aided Design Studio
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 163-174
doi https://doi.org/10.52842/conf.acadia.1988.163
summary Application of commercial computer aided design systems to schematic design in a studio setting in a professionally oriented university provides the opportunity for observation of extensive use of CAD by designers with little or no orientation toward computing. Within a framework of studios intended to contrast media and highlight the issue of design representation, the most encouraging applications of computing have involved dynamic visual design representation. This paper presents a case study of three studios at the University of Texas at Austin together with commentary on the place of computing in this essentially artistic environment. It presents, in slide form, a body of aesthetically oriented CAD work which signals the spread of computer aided design out of the hands of researchers and into mainstream architectural design, where development of the visual and dynamic aspects of the medium may prove to be primary routes to improvement of itS power and acceptance. Much like a first design project, this paper then presents a lot of observations without yet much rigorous development of any one. It asks implicitly whether application of software constitutes research.

series ACADIA
email
last changed 2022/06/07 07:58

_id 11cb
id 11cb
authors Oguzhan Özcan
year 2004
title MATHEMATICS AND DESIGN EDUCATION
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 199-203.
summary Many people believe that mathematical thought is an essential element of creativity. The origin of this idea in art dates back to Plato. Asserting that aesthetics is based on logical and mathematical rules, Plato had noticed that geometrical forms were “forms of beauty” in his late years. Unlike his contemporaries, he had stressed that the use of geometrical forms such as lines, circles, planes, cubes in a composition would aid to form an aesthetics. The rational forms of Plato and the rules of geometry have formed the basis of antique Greek art, sculpture and architecture and have influenced art and design throughout history in varying degrees. This emphasis on geometry has continued in modern design, reflected prominently by Kandinsky’s geometric classifications .

Mathematics and especially geometry have found increasing application in the computer-based design environment of our day. The computer has become the central tool in the modern design environment, replacing the brush, the paints, the pens and pencils of the artist. However, if the artist does not master the internal working of this new tool thoroughly, he can neither develop nor express his creativity. If the designer merely learns how to use a computer-based tool, he risks producing designs that appear to be created by a computer. From this perspective, many design schools have included computer courses, which teach not only the use of application programs but also programming to modify and create computer-based tools.

In the current academic educational structure, different techniques are used to show the interrelationship of design and programming to students. One of the best examples in this area is an application program that attempts to teach the programming logic to design students in a simple way. One of the earliest examples of such programs is the Topdown Programming Shell developed by Mitchell, Liggett and Tan in 1988 . The Topdown system is an educational CAD tool for architectural applications, where students program in Pascal to create architectural objects. Different examples of such educational programs have appeared since then. A recent fine example of these is the book and program called “Design by Number” by John Maeda . In that book, students are led to learn programming by coding in a simple programming language to create various graphical primitives.

However, visual programming is based largely on geometry and one cannot master the use of computer-based tools without a through understanding of the mathematical principles involved. Therefore, in a model for design education, computer-based application and creativity classes should be supported by "mathematics for design" courses. The definition of such a course and its application in the multimedia design program is the subject of this article.

series other
type normal paper
email
last changed 2005/04/07 15:36

_id 0e5d
authors Reed, Raymond D.
year 1988
title The Teaching of Computer Assisted Sustainable Architectural Design
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 111-122
doi https://doi.org/10.52842/conf.acadia.1988.111
summary Sustainable architecture is high-tech, energy and resource conserving architecture that sustains and increases the human and natural carrying capacity of the host environment. This paper presents a computer assisted design process to teach sustainable architectural design.

The energy performance of a base case building in each of four climates and cultures is presented. The climates are: Phoenix (hotdry), Minneapolis (cold-dry), Boston (cold-humid), and New Orleans ( hot- humid). Keeping the host climate, site, building size and function constant: but varying materials, shape and design concepts, each base case is iterated through a series of computer assisted re-designs to transform each base case building into an architecture representative of its regional climate and culture.

Traditional technologies and concepts produce traditional regional architecture. New technologies and concepts produce forms expressive of an emerging high-tech, high-touch, low energy society.

The paper presents computer generated work by the author and his students. It also presents an interim evaluation of the successes and difficulties of conducting a 'paper free' design studio.

series ACADIA
last changed 2022/06/07 08:00

_id 24df
authors Saggio, Antonino
year 1998
title HyperArchitecture
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998, pp. 224-227
doi https://doi.org/10.52842/conf.ecaade.1998.224
summary The "Universale d?architettura" is a pocket book series which is now arrived at 40 titles. Printed by Testo&Immagine in Turin it is directed by Bruno Zevi. It has a very large public, being distributed in newstands, in bookstores and mailed to subscribers at a very convenient price (6 dollars each). Many of its titles will soon appear in English, French, Spanish and German. The book series is divided into different sections (monographs, essays, architectural guides, anthologies) and in April 1988 a new section has been introduced. "La rivoluzione informatica" ("The Information revolution") is the title and Antonino Saggio is the curator. Scope of this new section is to bring closer architecture and computers by providing intellectual and cultural tools to orient the reader in a fast growing filed. The first book (Luigi Prestinenza Puglisi, Hyperarchitecture. Spaces in the electronic era) is an essay that combines a critical overview of most recent projects by Ito, Arakama, Koolhaas, Libeskind with epistemological consideration and researches coming from conceptual art. Three key words organized the material: projection, mutation, simulation. The next book (Gerhard Schmitt, Information architecture) deals with foundation and future of Caad systems and it can be seen from one side as an extremely updated manual and from the other as the construction of the developing lines of Caad research. Other forthcoming titles include: Virtual Terragni, How works the Eisenman Office, Design and Build with Computers. "La rivoluzione informatica" is (not only in Italy but also, quite probably, anywhere) the only book series which addresses the theme of architectural design in the electronic era. To better understand its scope, character and goals, it follows the Afterward by Saggio to the first book.
series eCAADe
email
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/11saggio/index.htm
last changed 2022/06/07 07:56

_id e05e
authors Schon, Donald A. and Wigging, Glenn
year 1988
title Kinds of Seeing and Their Functions in Designing
source November, 1988. 31 p. : ill
summary Architectural designing is described as a kind of experimentation that consists in reflective 'conversation' with the materials of a design situation. A designer sees, moves and sees again. Working in some visual medium -- drawing, in the article examples -- the designer sees what is 'there' in some representation of a site, draws in relation to it, and sees what has been drawn, thereby informing further designing. In all this 'seeing' the designer not only visually registers information but also constructs its meaning -- identifies patterns and gives them meaningsÔ h) 0*0*0*°° ÔŒ beyond themselves. Words like 'recognize,' 'detect,' 'discover' and 'appreciate' denote variants of seeing, as do such terms as 'seeing that,' 'seeing as' and 'seeing in.' The purpose here is to explore the kinds of seeing involved in designing and to describe their various functions. At local and global levels, and in many different ways, designing is an interaction of making and seeing, doing and discovering. On the basis of a few minuscule examples, the authors suggest some of the ways in which this sort of interaction works. Some conditions that enable it to work are described. And some of its consequences for design education and for the development of computer environments useful to designers are drawn
keywords design methods, education, architecture, cognition, perception, design process, semantics, protocol analysis
series CADline
last changed 2003/06/02 13:58

_id fbe9
authors Sharit, Joseph and Cuomo, Donna L.
year 1988
title A Cognitively Based Methodology for Evaluating Human Performance in the Computer-Aided Design Task Domain
source Behaviour and Information Technology 1988 v.7 n.4 p.373-397
summary This article describes a methodology for evaluating human performance in the computer aided design (CAD) task environment. The methodology is based primarily on cognitive theoretic frameworks that are consistent with processes presumed to underlie human design activities. The motivation for its development stems from rapid software and hardware advances in CAD systems and our relative lack of understanding of how these enhancements affect human design performance for (1) fundamentally different types of tasks and (2) different levels of complexity for a particular task. This methodology is currently being applied to computer aided architectural design, an area where artificial intelligence (AI), enhanced geometric modelling and other system features are being debated in terms of their usefulness in aiding the human's design activities.
series other
last changed 2002/07/07 16:01

_id 2d0b
authors Wagter, H.
year 1988
title CAD-Techniques in Architecture and Building Design, a Realistic Overview
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 7-14
summary Giving an overview on CAD-techniques in architecture and building design might seem a bit superfluous. Every mentioned subject will be worked out in this conference in much more detail than is possible in the context of this very first paper. Nevertheless it will be useful to sketch a framework. It gives an opportunity to participants to compare, and will help to judge the different influences of the conclusions in the right context. For the authors it might mean that they can fill in their own place, and that their introductions can be short so there will be more time available for in depth explanations. It must be stated that CAAD-Futures theme is at the design part of the building process as mentioned in its announcement "it takes stock of current developments in CAAD and attempts to anticipate the direction of future developments and their relevance to and impact on architectural practice and education, the building industry and the quality of the built environment".
series CAAD Futures
email
last changed 2003/05/16 20:58

_id avocaad_2001_09
id avocaad_2001_09
authors Yu-Tung Liu, Yung-Ching Yeh, Sheng-Cheng Shih
year 2001
title Digital Architecture in CAD studio and Internet-based competition
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design has been changing because of the vast and creative use of computer in different ways. From the viewpoint of designing itself, computer has been used as drawing tools in the latter phase of design (Mitchell 1977; Coyne et al. 1990), presentation and simulation tools in the middle phase (Liu and Bai 2000), and even critical media which triggers creative thinking in the very early phase (Maher et al. 2000; Liu 1999; Won 1999). All the various roles that computer can play have been adopted in a number of professional design corporations and so-called computer-aided design (CAD) studio in schools worldwide (Kvan 1997, 2000; Cheng 1998). The processes and outcomes of design have been continuously developing to capture the movement of the computer age. However, from the viewpoint of social-cultural theories of architecture, the evolvement of design cannot be achieved solely by designers or design processes. Any new idea of design can be accepted socially, culturally and historically only under one condition: The design outcomes could be reviewed and appreciated by critics in the field at the time of its production (Csikszentmihalyi 1986, 1988; Schon and Wiggins 1992; Liu 2000). In other words, aspects of design production (by designers in different design processes) are as critical as those of design appreciation (by critics in different review processes) in the observation of the future trends of architecture.Nevertheless, in the field of architectural design with computer and Internet, that is, so-called computer-aided design computer-mediated design, or internet-based design, most existing studies pay more attentions to producing design in design processes as mentioned above. Relatively few studies focus on how critics act and how they interact with designers in the review processes. Therefore, this study intends to investigate some evolving phenomena of the interaction between design production and appreciation in the environment of computer and Internet.This paper takes a CAD studio and an Internet-based competition as examples. The CAD studio includes 7 master's students and 2 critics, all from the same countries. The Internet-based competition, held in year 2000, includes 206 designers from 43 counties and 26 critics from 11 countries. 3 students and the 2 critics in the CAD studio are the competition participating designers and critics respectively. The methodological steps are as follows: 1. A qualitative analysis: observation and interview of the 3 participants and 2 reviewers who join both the CAD studio and the competition. The 4 analytical criteria are the kinds of presenting media, the kinds of supportive media (such as verbal and gesture/facial data), stages of the review processes, and interaction between the designer and critics. The behavioral data are acquired by recording the design presentation and dialogue within 3 months. 2. A quantitative analysis: statistical analysis of the detailed reviewing data in the CAD studio and the competition. The four 4 analytical factors are the reviewing time, the number of reviewing of the same project, the comparison between different projects, and grades/comments. 3. Both the qualitative and quantitative data are cross analyzed and discussed, based on the theories of design thinking, design production/appreciation, and the appreciative system (Goodman 1978, 1984).The result of this study indicates that the interaction between design production and appreciation during the review processes could differ significantly. The review processes could be either linear or cyclic due to the influences from the kinds of media, the environmental discrepancies between studio and Internet, as well as cognitive thinking/memory capacity. The design production and appreciation seem to be more linear in CAD studio whereas more cyclic in the Internet environment. This distinction coincides with the complementary observations of designing as a linear process (Jones 1970; Simon 1981) or a cyclic movement (Schon and Wiggins 1992). Some phenomena during the two processes are also illustrated in detail in this paper.This study is merely a starting point of the research in design production and appreciation in the computer and network age. The future direction of investigation is to establish a theoretical model for the interaction between design production and appreciation based on current findings. The model is expected to conduct using revised protocol analysis and interviews. The other future research is to explore how design computing creativity emerge from the process of producing and appreciating.
series AVOCAAD
email
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_25251 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002